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In this paper, we establish a local gradient estimate for a p-Lpalacian equation with a fast growing gradient nonlinearity. With this estimate, we can prove a parabolic Liouville theorem for ancient solutions satisfying some growth restriction near infinity.

Introduction and main result

In this paper, we are interested in qualitative properties of solutions of the non-linear degenerate parabolic equation

u t -∆ p u = |∇u| q , ( 1.1) 
where ∆ p u = div(|∇u| p-2 ∇u), q > p -1 > 1.

The kind of result we are going to prove are gradient estimates for local solutions in time-space, and a Liouville type theorem for ancient solutions. In the last years, gradient estimates have played a key role in geometry and PDE since at least the early work of Bernstein. Gradient a priori estimates are fundamental for elliptic and parabolic equations, leading to Harnack inequalities, Liouville theorems, and compactness theorems for both linear and nonlinear PDE. For the corresponding elliptic equation of (1.1), gradient estimates were first considered by Lions [START_REF] Lions | Quelques remarques sur les problèmes elliptiques quasilinéaires du second ordre[END_REF] for the linear diffusion case p = 2. These estimates were based upon the Bernstein technique. Recently for the possibly degenerate elliptic equation with q > p -1 > 0, Bidaut-Véron, Huidobro, Véron [START_REF] Bidaut-Veron | Local and global properties of solutions of quasilinear Hamilton-Jacobi equations[END_REF] obtained a priori universal gradient estimate for equations on a domain Ω of R N and they extended their estimates to equations on complete non compact manifolds satisfying a lower bound estimate on the Ricci curvature. These estimates allowed them to derive some Liouville type theorems.

It is natural to look also for parabolic Liouville-type-theorems. In the linear diffusion case p = 2 and for q > 1, Souplet and Zhang [START_REF] Ph | Global solutions of inhomogeneous Hamilton-Jacobi equations[END_REF] obtained local gradient estimate for locally upper bounded solution of (1.1) (u ≤ M) of the form

|∇u| ≤ C(p, N, q) t -1 q + R -1 + R -1 q-1 (M + 1 -u) in B(x 0 , R) × (0, T ).
Relying on this estimate they proved that, under some growth condition at infinity, ancient solutions in the whole of R N are constant. Motivated by their result, we generalize the gradient estimate and Liouville theorem to the case 1 < p -1 < q. We also require that the solution is locally lower bounded. Using a Bernstein method, we have the following gradient estimate.

Theorem 1.1 Let q > p-1 > 1, x 0 ∈ R N and R, T > 0. We set Q T,R = B(x 0 , R)× (0, T ). Let u be a solution in L ∞ ((0, T ); W 1,∞ (B(x 0 , R)) of ∂ t u -∆ p u = |∇u| q in Q T,R . Suppose that |u| ≤ M for some constant M ≥ 1. Then, |∇u| ≤ C(p, N, q) t -1 q + R -1 + R -1 q-p+1 M in Q T, R 2 .
(1.2)

For the Cauchy-Dirichlet problem associated to (1.1), a gradient estimate involving the W 1,∞ norm of the initial data has been obtained in [START_REF] Attouchi | Well-posedness and gradient blow-up estimate near the boundary for a Hamilton-Jacobi equation with degenerate diffusion[END_REF][START_REF] Ph | Global solutions of inhomogeneous Hamilton-Jacobi equations[END_REF]. In Theorem 1.1 we only use the local L ∞ norm of the solution but we get a weaker estimate regarding the exponent on the distance to the boundary R.

Recently, for the singular diffusion case 1 < p < 2 and for q = p, F. Wang [START_REF] Wang | Gradient estimates for the p-Laplace heat equation under the Ricci flow[END_REF] established gradient estimates similar to (1.2) for smooth, upper bounded, local solutions to (1.1) on a closed manifolds or on complete noncompact Riemannian manifolds evolving under a Ricci flow. These estimates are of the form:

|∇u| 1 -u (x, t) ≤ C(N, p) R -1 + t -1 p + K 2 p + K in Q T, R 2 . (1.3)
where K > 0 is a constant related to the Ricci flow and the sectional curvature of the manifold. These estimates allowed to the author to provide some Harnack inequalities for positive solutions of the following p-Laplace heat equation

|z| p-2 z t = ∆ p z. (1.4)
The estimates (1.3) have been obtained by deriving an equation for w = |∇v| p , v = f -1 (-u) and f (s) = e s/(p-1) -1. For q > p > 2, we take a different auxiliary function f , adapted to the degenerate diffusion case and to the fast growing gradient non-linearity.

As an application of the gradient estimate (1.2), we can state the following Liouville theorem for (1.1).

Theorem 1.2 Assume that q > p -1 > 1 and let σ = min 1, 1 q-p+1 . Assume that u ∈ L ∞ loc ((-∞, 0); W 1,∞ loc (R N )) is a weak solution of u t -∆ p u = |∇u| q , x ∈ R N , -∞ < t < 0, satisfying |u(x, t)| = o(|x| σ + |t| 1 q ), as |x| σ + |t| 1 q → ∞. (1.5)
Then u is constant.

Remark 1.1 The growth hypothesis (1.5) is important (see the example of the function u(x, t) = x 1 + t). However, we do not know if the exponents are sharp.

Besides the works mentioned above, there are few other studies on gradient estimates and nonlinear Liouville theorems for a parabolic type equation on noncompact Riemannian manifolds. In this case the proof mostly relies on two types of gradient estimates or a combination of them. These estimates are known as Hamilton gradient estimate (the estimate only involves ∇u and u) [START_REF] Hamilton | A matrix Harnack estimate for the heat equation[END_REF] and Li-Yau's gradient estimate (the estimate involves ∇u, u and u t ) [START_REF] Li | On the parabolic kernel of the Schr 'odinger operator[END_REF]. Let us also mention that the linear heat equation on noncompact manifolds was studied by Souplet and Zhang in [START_REF] Ph | Sharp gradient estimate and Yau's Liou ville theorem for the heat equation on noncompact manifolds[END_REF] where they obtained a local gradient estimate related to the elliptic Cheng-Yau estimate and Hamilton's estimate for the heat equation on compact manifolds. A Liouville theorem was also proved in [START_REF] Ph | Sharp gradient estimate and Yau's Liou ville theorem for the heat equation on noncompact manifolds[END_REF]. Hamilton-type gradient estimates were also used in [START_REF] Wang | Liouville theorems for the ancient solution of heat flows[END_REF][START_REF] Ma | Gradient estimate for the degenerate parabolic equation u t = ∆(F (u)) + H(u) on manifolds[END_REF][START_REF] Zhu | Hmilton's gradient estimate and Liouville theorems for porous medium equations on noncompact Riemannian manifolds[END_REF]. For q = p > 1, a nonlinear analogue of Li-Yau's estimate has been established in [START_REF] Kotschwar | Local gradient estimates of p-harmonic functions, 1/Hflow and an entropy formula[END_REF] for positive solutions of (1.1) on compact manifolds with nonnegative Ricci curvature. In [START_REF] Kotschwar | Local gradient estimates of p-harmonic functions, 1/Hflow and an entropy formula[END_REF], the gradient estimate was not used to get Liouville theorems but to obtain an entropy formula. Nevertheless, Liouville theorems should be obtained as a consequence of the obtained gradient estimate.

This paper is organized as follows: In Section 2, we provide the proof of the gradient estimate (1.2) and we prove Theorem 1.2. In Sections 3 we give the proof of a technical auxiliary lemma that appears in the proof of the gradient estimate.

Bernstein-type gradient estimate

The proof of Theorem 1.1 is based on the following technical lemma which is based on a Bernstein method. The most significant difficulty being the choice of the auxiliary function f and the estimates coming from the cut-off argument. Let us mention that for different suitable choice of f , gradient bounds global in space for the Cauchy problem associated to (1.1) have been obtained in [START_REF] Bartier | Gradient estimates for a degenerate parabolic equation with gradient absorption and applications[END_REF]. First let us make precise that by local weak solution of (1.1) we mean a function

u ∈ C loc (Ω × (0, T )) ∩ L ∞ loc (0, T ; W 1,∞ loc (Ω))
where Ω is a smooth domain and such that the integral equality

Ω (u(x, t)ψ(x, t) -u(x, s)ψ(x, s)) dx + t s Ω -uψ t + |∇u| p-2 ∇u • ∇ψ dx dτ = t s Ω
|∇u| q ψ dx dτ holds for all 0 < s < t < T and for all for all testing function ψ ∈ C 1 (Ω × [0, T ]) such that ψ = 0 near ∂Ω × (0, T ). Now let α ∈ (0, 1) to be chosen later on. Set R ′ = 3R 4 . We select a cut-off function

η ∈ C 2 ( B(x o , R ′ )), 0 ≤ η ≤ 1, satisfying η = 0 for |x -x 0 | = R ′ and such that |∇η| ≤ CR -1 η α |D 2 η| + η -1 |∇η| 2 ≤ CR -2 η α for |x -x 0 | < R ′ , (2.1) 
for some C = C(α) > 0 (see [START_REF] Ph | Sharp gradient estimate and Yau's Liou ville theorem for the heat equation on noncompact manifolds[END_REF] for the existence of such function).

Lemma 2.1 Assume that u is a local weak solution of (1.1) and that |u| ≤ M in Q T,R for some M > 1. We consider a C 3 smooth increasing function f satisfying f ′′ > 0, the following differential equation

f ′′ f ′ ′ + (p -1)(1 + N) f ′′ f ′ 2 = 0 (2.2)
and mapping

[0, 3] onto [-M, M]. Defining v = f -1 (-u)
, we set w = |∇v| 2 and z = ηw. Then at any point where |∇u| > 0, z satisfies the following differential inequality

L(z) ≤ -2(q -1)(f ′ ) q-2 f ′′ w q+2 2 η + C(p, N)(f ′ ) p-2 R -2 η α w p 2 + C(p, q)R -1 η α w p+1 2 (f ′ ) p-3 f ′′ + w q+1 2 (f ′ ) q-1 (2.3)
where

L(z) := ∂ t z -Az + H • ∇z (2.4)
with A is given by (3.4) H is given by (3.5).

The proof of lemma 2.1 is postponed to the the next section.

Proof of Theorem 1.1

Let u ∈ L ∞ loc ((0, ∞); W 1,∞ loc (Ω)
) be a local weak solution of (1.1). Since u and ∇u are locally bounded, using the result of Di Benedetto and Friedman [START_REF] Dibenedetto | Hölder estimates for nonlinear degenerate parabolic systems[END_REF][START_REF] Dibenedetto | Degenerate Parabolic Equations[END_REF], we get that ∇u is a locally Hölder continuous function. Thus z is a continuous function on 

B(x 0 , R ′ ) × [0, T ] = Q, for any 0 < T . Therefore, unless z ≡ 0 in Q, z must reach a positive maximum at some point (x, t) ∈ B(x 0 , R ′ ) × [t 0 , T ]. Since z = 0 on ∂B R ′ × [0, T ], we deduce that x ∈ B R ′ . Since z(x, t) > 0, we have that |∇u| = f ′ (v)
γ = γ(p, N) = (p -1)(N + 1) + 1 (p -1)(N + 1) (2.5)
It is easy to see that f satisfies the differential equation (2.2) and f ′ , f ′′ > 0 and f maps 0, 3

1 γ -1 onto [-M, M]. Let us also note that γ ≥ 1 and γ -1 ≤ 1 p -1 ≤ 1.
By Lemma 2.1 we get that, in a small neighbourhood Q of (x, t), z satisfies

Lz ≤ -2(q -1)(f ′ ) q-2 f ′′ w q+2 2 η + C(p, N, α)(f ′ ) p-2 R -2 η α w p 2 + C(p, q, α)R -1 η α w p+1 2 (f ′ ) p-3 f ′′ + w q+1 2 (f ′ ) q-1 .
Hence

(f ′ ) 1-q Lz ≤ -2(q -1) f ′′ f ′ w q+2 2 η + C(p, N, α)(f ′ ) p-1-q R -2 η α w p 2 + C(p, q, α)R -1 η α w p+1 2 (f ′ ) p-q-1 f ′′ f ′ + w q+1 2
.

Since v ∈ 0, (3)

1 γ -1 , γ, M ≥ 1, we have 1 ≤ v + 1 ≤ (3) 1 γ ≤ 3 and hence 1 3(p -1)(N + 1) ≤ f ′′ f ′ ≤ 1 (p -1)(N + 1) ≤ 1 (2.6)
Using (2.6) together with the fact that 1 ≤ M ≤ f ′ and pq -1 < 0, we get that

(f ′ ) 1-q Lz ≤ - 2(q -1) 3(p -1)(N + 1) w q+2 2 η + C(N, p, α)R -2 η α w p 2 + C(p, q, α)R -1 η α w p+1 2 + w q+1 2
.

We take α = max q+1 q+2 , p+1 q+2 . Using the Young's inequality and recalling that η ≤ 1, then

• for the conjugate exponents r 1 = q+2 p , s 1 = q+2 q-p+2 we have that

C(N, p, α)R -2 η α w p 2 = η p q+2 w p 2 C(N, p, q, α)η α-p/(q+2) R -2 ≤ ε 1 (N, p, q)ηw q+2 2 + C(N, p, q, α)R -2(q+2) q-p+2 ,
• for the conjugate exponents r 2 = q+2 p+1 , s 2 = q+2 q-p+1 we have that

C(N, p, q, α)R -1 η α w p+1 2 = η p+1 q+2 w p+1 2 C(N, p, q, α)R -1 η α-p+1 q+2 ≤ ε 2 ηw q+2 2 + C(N, p, q, α)R -(q+2) q-p+1
• and finally for the conjugate exponent r 3 = q+2 q+1 , s 3 = (q + 2) we have that

C(N, p, q, α)R -1 η α w q+1 2 = η q+1 q+2 w q+1 2 C(N, p, q, α)R -1 η α-q+1 q+2 ≤ ε 3 ηw q+2 2 + C(N, p, q, α)R -(q+2) .
Choosing ε i in such way that

ε 1 + ε 2 + ε 3 = 1 4 2(q -1) 3(p -1)(N + 1)
, we get that

(f ′ ) 1-q Lz ≤ - (q -1) 2(p -1)(N + 1) w q+2 2 η + C(N, p, q, α)R -2(q+2) q-p+2 +C(N, p, q, α)R - (q+2) 
q-p+1 + C(N, p, q, α)R -(q+2) .

(2.7)

Using the fact that 1 q-p+1 ≤ 2 q-p+2 ≤ 1 for q ≥ p, 1 ≤ 2 q-p+2 ≤ 1 q-p+1 for q ≤ p, we have that

(f ′ ) 1-q Lz ≤ - (q -1) 2(p -1)(N + 1) w q+2 2 η + C(N, p, q, α) R -q+2 q-p+1 + R -(q+2) .
Setting

A = A(R, p, q, N) := C(N, p, q) R -1 q-p+1 + R -1 2
and using that

(f ′ ) q-1 ≥ M q-1 ≥ 1, it follows that Lz ≤ - (q -1) -1)(N + 1) z q+2 2 in {(x, t) ∈ Q T,R ′ ; z(x, t) ≥ A} . (2.8) 
Next for λ = λ(q, N, p) > 0 suitably chosen, the function

ψ(t) = λt -2 q satisfies ψ ′ (t) ≥ - (q -1) 4(p -1)(N + 1) ψ q+2 2 .
Now for t 0 ∈ (0, T ) fixed, we define z(t) := z(t + t 0 , x)ψ(t). It is easy to see that

Lz ≤ 0 in {(x, t) ∈ Q T -t 0 ,R ′ ; z(x, t) ≥ A} .
Since z(t) ≤ 0 for t > 0 sufficiently small, we deduce from the maximum principle that z(t) ≤ A, i.e. z(x, t

+ t 0 ) ≤ A + ψ(t) in Q T -t 0 ,R ′ .
Finally using that z = η|∇v| 2 , letting t 0 to 0, we get that

|∇v| ≤ C(N, p, q)(A + t -2 q ) 1/2 .
Using that

v + 1 = 2 - u M 1 γ with u M ≤ 1, we get ∇v = -1 γM 2 - u M 1-γ γ ∇u. It follows that |∇u| ≤ Mγ|∇v| ≤ C(N, p, q)(A + t -2 q ) 1/2 M in Q T, R 2 
.

(2.9)

Here we used the fact that 2

-u M γ-1 γ ≤ 1. Hence we have |∇u| ≤ C(N, p, q) R -1 + R -1 q-p+1 + t -1 q M in Q T, R 2 .
and the proof of Theorem 1.1 is complete.

Proof of Theorem 1.2

Fix x 0 ∈ R N and t 0 ∈ (-∞, 0). Take R ≥ 1, T = R σq and set Q = B(0, R) × (0, T ). Now we consider the function U := u(x + x 0 , t + t 0 -T ). Using (1.5), we have that

|U| ≤ M R in Q, where M R := sup B(x 0 ,R)×(t 0 -T,t 0 ) |u| = o(T 1 q + R σ ) = o(R σ ), as R → ∞.
Applying Theorem 1.1 to U in Q, we get that

|∇u(x 0 , t 0 )| = |∇U(0, T )| ≤ C(N, p, q)R -σ M R
and the conclusion follows by sending R to +∞.

3 Proof of Lemma 2.1

Our proof consists of three steps.

Step 1: computations

Let f be a C 3 -function to be determined. We assume that f ′ , f ′′ > 0. We put v = f -1 (-u) and w = |∇v| 2 . By a straightforward computation, we have that v satisfies the following equation

∂ t v = (f ′ ) p-2 w p-2 2 ∆v + (p -2) D 2 v, ∇v, ∇v w + (p -1)(f ′ ) p-3 f ′′ w p 2 -(f ′ ) q-1 w q 2 =(f ′ ) p-2 w p-2 2 ∆v + (p -2) ∇w • ∇v 2w + (p -1)(f ′ ) p-3 f ′′ w p 2 -(f ′ ) q-1 w q 2 . (3.1) 
For i = 1, ..., N, we set v i = ∂v ∂x i . In a neighbourhood Q := ω × (τ 1 , τ 2 ) of any point (x, t) ∈ Q T,R for which |∇u| = f ′ (v)|∇v| > 0, the equation is uniformly parabolic and hence differentiating (3.1) with respect to x i , we have

∂ t v i =(f ′ ) p-2 w p-2 2 ∆v i + p -2 2 ∇w i • ∇v + ∇w • ∇v i w - w i ∇w • ∇v w 2 + (p -2)(f ′ ) p-3 f ′′ v i w p-2 2 ∆v + (p -2) ∇w • ∇v 2w + p -2 2 (f ′ ) p-2 w i w p-4 2 ∆v + (p -2) ∇w • ∇v 2w (3.2) 
+ (p -1)((f ′ ) p-3 f ′′ ) ′ v i w p 2 -(q -1)(f ′ ) q-2 f ′′ v i w q 2 + p(p -1) 2 (f ′ ) p-3 f ′′ w i w p-2 2 - q 2 (f ′ ) q-1 w i w q-2 2 .
Here and in all the manuscript, the variable v is omitted in the expression of

f ′ , f ′′ , f ′′ f ′ ′
, etc. The equalities are understood in a classical sense in Q. Multiplying (3.2) by 2v i , summing over i and using that

D 2 v, ∇v, ∇v = 1 2 ∇w • ∇v, ∆w = 2∇v • ∇∆v + 2|D 2 v| 2 , i 2(∇v i • ∇w)v i = |∇w| 2 , i (∇w i • ∇v)v i = D 2 w, ∇v, ∇v ,
we get that

∂ t w = |∇u| p-2 ∆w + (p -2)|∇u| p-4 D 2 w, ∇u, ∇u -2|∇u| p-2 |D 2 v| 2 + (p -2)(f ′ ) p-2 w p-4 2 ∆v (∇v • ∇w) + (p -2) 2 (f ′ ) p-2 w p-4 2 |∇w| 2 + (p -2)(p -4) 2 (f ′ ) p-2 w p-6 2 (∇v • ∇w) 2 (3.3) -q(f ′ ) q-1 w q-2 2 ∇w • ∇v + (p(p -1) + (p -2) 2 )(f ′ ) p-3 f ′′ w p-2 2 ∇w • ∇v + 2 (p -1)((f ′ ) p-3 f ′′ ) ′ w p+2 2 -(q -1)(f ′ ) q-2 f ′′ w q+2 2 + (p -2)(f ′ ) p-3 f ′′ w p 2 ∆v .
Here, when passing from (3.2) to (3.3), the terms have been transformed according to 

L 1 t1 → L1 t1 + L1 t3 , L 1 t2 → L1 t2 , L 1 t3 → L2 t2 , L 1 t4 + L 3 t2 → L3 , L 2 t1 → L5 t3 , L 2 t2 → L4 t3 , L 3 t1 → L2 t1 , L 4 t1 → L5 t1 , L 4 t2 → L5 t2 , L 5 t1 → L4 t2 , L 5 
H = (p -2)(f ′ ) p-2 w p-4 2 ∆v∇v + (p -2) 2 (f ′ ) p-2 w p-4 2 ∇w, + (p -2)(p -4) 2 (f ′ ) p-2 w p-6 2 (∇v • ∇w) ∇v -q(f ′ ) q-1 w q-2 2 ∇v (3.5) + (p(p -1) + (p -2) 2 )(f ′ ) p-3 f ′′ w p-2 2 ∇v N (w) = 2(p -1)((f ′ ) p-3 f ′′ ) ′ w p+2 2 -2(q -1)(f ′ ) q-2 f ′′ w q+2 2 + 2(p -2)(f ′ ) p-2 f ′′ f ′ w p 2 ∆v. (3.4) 
Step 2: equation for z and useful estimates

We set z = ηw. Defining the operator

L(z) := ∂ t z -A(z) -H • ∇z,
we have that

Lz = ηLw + wLη -2|∇u| p-2 ∇η • ∇w -2(p -2)|∇u| p-4 (∇u • ∇η)(∇w • ∇u) = -2|∇u| p-2 ∇η • ∇w -2(p -2)|∇u| p-4 (∇u • ∇η)(∇w • ∇u) + ηN w + wLη -2|∇u| p-2 |D 2 v| 2 η.

Leading estimates

Recalling that f is increasing and that f ′′ > 0, we get the following estimates.

1. Estimate of ηN w ηN w ≤ 2(p -1)((f ′ ) p-3 f ′′ ) ′ w p+2 2 η -2(q -1)(f ′ ) q-2 f ′′ w q+2 2 η + (f ′ ) p-2 2 w p-2 2 |D 2 v| 2 η + 2N(p -1) 2 (f ′ ) p-2 f ′′ f ′ 2 w p+2 2 η. (3.7) 
Here we used that

2(p -2)| f ′′ f ′ w∆v| ≤ 2N(p -1) 2 w 2 f ′′ f ′ 2 + |D 2 v| 2 2 .

Estimate of wL(η)

• Estimate of wA(η)

|wA(η)| ≤ (f ′ ) p-2 w p 2 ( √ N + (p -2))|D 2 η|. (3.8) • Estimate of |wH • ∇η| |wH • ∇η| ≤ (f ′ ) p-2 w p-2 2 C 1 (p, N, δ 1 )η -1 |∇η| 2 w + δ 1 [D 2 v| 2 η 1 + (f ′ ) p-2 w p-2 2 C 2 (p, N, δ 2 )η -1 |∇η| 2 w + δ 2 [D 2 v| 2 η 2 + (f ′ ) p-2 w p-2 2 C 3 (p, N, δ 3 )η -1 |∇η| 2 w + δ 3 [D 2 v| 2 η 3 +2(p -1) 2 (f ′ ) p-3 f ′′ w p+1 2 |∇η| + q(f ′ ) q-1 w q+1 2 |∇η|. (3.9) 
(1) comes from an estimate via the Young's inequality of |(p -2)w∆v∇v • ∇η|.

Recalling that ∇w = (2D 2 v, ∇v), (2) comes from an estimate of (p-2) 2 w∇w • ∇η and (3) come from an estimate of (p-2)(p-4) 2 w (∇v • ∇w) (∇v • ∇η) . Finally recalling that ∇u = f ′ ∇v and choosing δ i in such way that -2 + δ 1 + δ 2 + δ 3 + δ 4 + δ 5 = -1 and then recalling the properties of the function η, we arrive at

L(z) ≤ 2(p -1)η (f ′ ) p-3 f ′′ ′ w p+2 2 + N(p -1)(f ′ ) p-2 f ′′ f ′ 2 w p+2 2 
-2(q -1)(f ′ ) q-2 f ′′ w q+2 2 η + C(p, N, α)(f ′ ) p-2 R -2 w p 2 η α + C(p, q, α)η α R -1 w p+1 2 (f ′ ) p-3 f ′′ + w q+1 2 (f ′ ) q-1 .

Step 3: suitable choice for the function f

To get rid of the term

(f ′ ) p-3 f ′′ ′ w p+2 2 + N(p -1)(f ′ ) p-2 f ′′ f ′ 2 w p+2 2 
(3.10)

= (f ′ ) p-2 w p+2 2 f ′′ f ′ ′ + (p -2) f ′′ f ′ 2 + (p -1)N f ′′ f ′ 2 (3.11) ≤ (f ′ ) p-2 w p+2 2 f ′′ f ′ ′ + (p -1)(N + 1) f ′′ f ′ 2 .
(3.12)

we shall take a function f satisfying the following differential equation

f ′′ f ′ ′ + (p -1)(1 + N) f ′′ f ′ 2 = 0. (3.13) 
Hence we get that

L(z) ≤ -2(q -1)(f ′ ) q-2 f ′′ w q+2 2 η + C(p, N, α)(f ′ ) p-2 R -2 η α w p 2 + C(p, q, α)R -1 η α w p+1 2 (f ′ ) p-3 f ′′ + w q+1 2 (f ′ ) q-1 .

  |∇v| > 0 and hence we can use Lemma 2.1. Now let us take f (s) = M(s + 1) γ -2M where γ is given by

  t2 → L4 t1 , (with obvious labeling). Hence w satisfies ∂ t w -A(w) -H • ∇w = -2|∇u| p-2 |D 2 v| 2 + N (w) where A(w) = |∇u| p-2 ∆w + (p -2)|∇u| p-4 D 2 w, ∇u, ∇u ,

3 .-2 2 C 4 4 .

 3244 Estimate of 2|∇u| p-2 |∇η • ∇w|. Using the Young inequality, we have2|∇u| p-2 |∇η • ∇w| ≤ (f ′ ) p-2 w p(p, N, δ 4 )η -1 |∇η| 2 w + δ 4 |D 2 v| 2 η . Estimate of 2(p -2)(∇u • ∇η)(∇w • ∇u) |2(p -2)(∇u • ∇η)(∇w • ∇u)| ≤ (f ′ ) 2 w C 5 (N, p, δ 5 )η -1 |∇η| 2 w + |D 2 v| 2 η .