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This paper presents a preprocessing technique based on exponential windowing (EW) for parameter estimation of superimposed exponentially damped sinusoids. It is shown that the EW technique significantly improves the robustness to noise over two other commonly used preprocessing techniques: subspace decomposition and higher order statistics. An ad-hoc but efficient approach for the EW parameter selection is provided and shown to provide close to CRB performance.

I. INTRODUCTION

Parameter estimation of superimposed exponentially damped sinusoids from a set of noisy observation data is a problem one frequently encounters in many applications such as power systems [START_REF] Lovisolo | Modeling of electric disturbance signals using damped sinusoids via atomic decompositions and its applications[END_REF], audio modeling [START_REF] Boyer | Audio modeling based on delayed sinusoids[END_REF], mechanical systems [START_REF] Sarma | An adaptive nonlinear filter for online parameter estimation of undamped and damped sinusoids[END_REF], physics [START_REF] Berti | Mining information from binary black hole mergers: a comparison of estimation methods for complex exponentials in noise[END_REF], chemistry [START_REF] Papy | Exponential data fitting using multilinear algebra: The decimative case[END_REF], nuclear magnetic resonance imaging [START_REF] Rubtsov | Time-domain Bayesian detection and estimation of noisy damped sinusoidal signals applied to NMR spectroscopy[END_REF] and others. This problem has received considerable attention in the signal processing community in the last decades and is now considered by many to be "solved". Indeed, there are plenty of "solutions" available to this problem. The best known methods include the Prony's method [START_REF] Kumaresan | Estimating the parameters of exponentially damped sinusoids and pole-zero modeling in noise[END_REF], [START_REF] Hua | Matrix pencil method for estimating parameters of exponentially damped/undamped sinusoids in noise[END_REF], the iterative quadratic maximum likelihood (IQML) method [START_REF] Bresler | Exact maximum likelihood parameter estimation of superimposed exponential signals in noise[END_REF], [START_REF] Hua | The most efficient implementation of the IQML algorithm[END_REF], the matrix pencil (MP) method [START_REF] Hua | Matrix pencil method for estimating parameters of exponentially damped/undamped sinusoids in noise[END_REF], and state space-based method [START_REF] Lu | Internal model principle-based control of exponentially damped sinusoids[END_REF]. In addition to the above methods, there are many tools available to preprocess (i.e., clean up) the raw data before any of the above methods is applied. The most popular ones of these tools are subspace decomposition (SD) [START_REF] Kumaresan | Estimating the parameters of exponentially damped sinusoids and pole-zero modeling in noise[END_REF], [START_REF] Hua | Matrix pencil method for estimating parameters of exponentially damped/undamped sinusoids in noise[END_REF] and higher order statistics (HOS) [START_REF] Papadopoulos | Parameter estimation of exponentially damped sinusoids using higherorder statistics[END_REF], [START_REF] Ruiz | Parameter estimation of exponentially damped sinusoids using a higher order correlation-based approach[END_REF].

In the last few years, renewed interest in the sinusoidal estimation problem has been observed either for dedicated applications [START_REF] Boyer | Audio modeling based on delayed sinusoids[END_REF], [START_REF] Rubtsov | Time-domain Bayesian detection and estimation of noisy damped sinusoidal signals applied to NMR spectroscopy[END_REF] or for adverse situations such as irregular sampling [START_REF] Gudmundson | Spectral Estimation of Damped Sinusoids in the Case of Irregularly Sampled Data[END_REF], impulsive noise [START_REF] Altınkaya | Subspace-based frequency estimation of sinusoidal signals in alphastable noise[END_REF] or colored noise [START_REF] Stoica | Subspace-based frequency estimation in the presence of moving-average noise using decimation[END_REF].

In this work, we consider a colored noise context and we discuss the idea of preprocessing the data with complex exponential windowing. Although there are various ways to modify and improve the Prony's method, the IQML method, or the MP method with a preprocessing step, using SD or HOS is known to be the most effective in reducing the noise effect. However, the SD method, which separates "signal subspace" from "noise subspace", requires the assumption that the noise is either white, or colored with known covariance up to a scalar. The HOS method works well only with Gaussian noise and long available data length.

We show that the concept of cyclostationarity (CS) [START_REF] Gardner | Exploitation of spectral redundancy in cyclostationary signals[END_REF], [START_REF] Abed-Meraim | Parameter estimation of exponentially damped sinusoids using second order statistics[END_REF] or more generally exponential windowing (EW) can be easily applied to better preprocess the superimposed exponentially damped sinusoids. The CS or EW methods preserve the signal structure but mitigate the noise effectively as long as it is stationary.

Compared to the SD and HOS methods, the CS or EW methods require the least assumption on the noise and hence perform the best. This advantage will be clearly illustrated by simulation results. We propose simple approaches to optimize the EW parameters in such a way the signal power or the post-processing signal to noise ratio (SNR) is maximized. As a benchmark, we derive the Cramér-Rao bound (CRB) expression and use it to illustrate the closeness of the proposed method's performance to the CRB.

The organization of this paper is as follows. In section II, the idea behind using cyclo-stationarity for pre-processing and a generalized exponential windowing method are introduced. Section III is devoted to performance investigations. First, we review the CRB expression for the colored noise case. Then, we evaluate the asymptotic covariance matrix of the pre-processed noise term. The latter is evaluated for white noise and used to express the averaged signal-to-noise ratio (after data pre-processing) that is used for efficient EW parameter selection. In section IV, simulation results are presented demonstrating the superiority of the proposed method. Finally, we state the conclusion in section V.

II. PROPOSED SIGNAL PREPROCESSING METHODOLOGY

A. Data Model

The data y(n) under consideration is modeled as follows:

y(n) = x(n) + w(n) = L ∑ m=1 h m e bmn + w(n), n = 0, 1, • • • , N -1 (1) 
where h m = a m e jθm , b m = α m + jω m with α m < 0, and w(n) denotes the stationary noise 1 . a m and θ m are respectively the amplitude and the initial phase of the m th sinusoid; its damping and frequency factors are respectively α m and ω m .

B. Preprocessing Using Cyclo-Stationarity

Considering the fact that exponentially damped signals have relatively short (effective) length, we apply the CS concept only in the context of second order statistics (SOS) as opposed to HOS. Define the k th lag (k ≥ 0) cyclo-correlation r β (k) at the cyclo-frequency β as:

r β (k) := N -k-1 ∑ n=0 y(n + k)y * (n)e jβn ( 2 
)
where * denotes the complex conjugate transpose operator. Assuming large sample size2 , and using (1) in (2) yields

r β (k) = L ∑ m,l=1 h m h * l e kbm N -1-k ∑ n=0 e (bm+b * l +jβ)n + v(k) ≈ L ∑ m=1 A β (m)e kbm + v(k) (3) 
where

v(k) = N -1-k ∑ n=0 w(n + k)w * (n)e jβn , A β (m) = L ∑ l=1 h m h * l 1 -e bm+b * l +jβ (4) 
It is seen from ( 4) that the cyclo-correlation as function of k also consists of superimposed exponentially damped sinusoids and a noise term. The main advantage, in dealing with cyclo-correlation instead of correlation function as considered in standard sinusoidal estimation techniques [START_REF] Hua | Matrix pencil method for estimating parameters of exponentially damped/undamped sinusoids in noise[END_REF], [START_REF] Bresler | Exact maximum likelihood parameter estimation of superimposed exponential signals in noise[END_REF], is that noise contribution is considerably reduced in the former case. In fact, due to the stationarity assumption of the noise process, we have:

lim N →∞ 1 N N -1-k ∑ n=0 w(n + k)w * (n)e jβn = 0 when lim N →∞ 1 N N -1-k ∑ n=0 w(n + k)w * (n) = ρ(k)
ρ(k) being the k th correlation factor of the noise process. Generally, for additive colored noise, the signal to noise ratio (SNR) gain, can be considerable since, for ρ(k) ̸ = 0, we have

lim N →∞ ∑ N -1-k n=0 w(n + k)w * (n) ∑ N -1-k n=0 w(n + k)w * (n)e jβn = ∞.
Remark 1: In the case where the data length is relatively small, one can enhance the signal component by applying the integral of the cyclo-correlation over an interval of the cyclo-frequency:

∫ β1 β0 r β (k)dβ = L ∑ m=1 B β (m)e bmk (5) 
where

B β (m) = L ∑ l=1 h m h * l [j(log(1 -e bm+b * l +jβ1 ) -log(1 -e bm+b * l +jβ0 )) + β 1 -β 0 ]. (6) 
Note that this integration is equivalent to replacing the unit-norm exponential weight w(n) = e jβn by the weight coefficient

w ′ (n) = ∫ β1 β0 e jβn dβ = e j β 1 +β 0 2 n sinc ( β 1 -β 0 2 n )
representing the modulation of a unit-norm exponential with a sinc function (where sinc(x) = sin(x)/x).

Such integration has also the advantage to provide certain robustness against a 'bad' choice of the cyclo- Remark 2: In the case where the noise is complex circular which implies E(w(n)w(n + k)) = 0, we also can use the following cyclo-correlation: [START_REF] Kumaresan | Estimating the parameters of exponentially damped sinusoids and pole-zero modeling in noise[END_REF] in which the noise term is mitigated due to both the stationarity and the circularity.

r ′ β (k) def = N -1-k ∑ n=0 y(n + k)y(n)e jβn

C. Generalized Preprocessing Using Exponential Windows

A generalization of the previous preprocessing method is the use of a complex cyclo-frequency or a complex exponential window (EW). Therefore, we define the k th lag exponentially windowed signal r W (k) as:

r W (k) := N -1-k ∑ n=0 y(n + k)y * (n)W n ( 8 
)
where W is a complex windowing parameter satisfying |W | ≤ 1. We retrieve the previous case when

|W | = 1.
Again by assuming large sample size, the expression of the exponentially windowed signal is:

r W (k) = L ∑ m=1 A W (m)e kbm + v(k) (9) 
where

v(k) = N -1-k ∑ n=0 w(n + k)w * (n)W n , A W (m) = L ∑ l=1 h m h * l 1 -W e bm+b * l (10)
The rational behind using a complex windowing parameter is that the exponentially damped signal has a short effective length determined by the damping factor, and the rest of the data samples are almost noise. Therefore, using an exponential window will reduce accumulated noise in the resulting signal and provide higher weight to data samples with higher signal amplitude. This can lead, as will be observed later in section V, to non-negligible performance gain. Another reason is that if the signal frequencies were pure sinusoids, then the formula (3) will no longer be valid without a damped window W . The damped window |W | < 1 will guarantee the geometric series to converge always.

III. PERFORMANCE INVESTIGATION

In this section, we review the CRB for the estimation based on the exponentially windowed signal (EW-CRB). This will serve two objectives, the first is to compare the EW-CRB with the genuine CRB computed from the raw data directly, and to observe the amount of information lost by the EW preprocessing. The second objective is tp usethe EW-CRB to optimize the EW parameters. More precisely, the optimal value will be chosen as the one minimizing the EW-CRB.

A. CRB for the damped sinusoid estimation problem with colored noise

Consider the data model [START_REF] Lovisolo | Modeling of electric disturbance signals using damped sinusoids via atomic decompositions and its applications[END_REF]. We assume that w(n) is zero-mean stationary Gaussian circular noise with unknown covariance. Define:

Θ d = [α 1 α 2 ... α L ω 1 ω 2 ... ω L ] T , Θ n = [a 1 a 2 ... a L θ 1 θ 2 ... θ L ] T ( 11 
)
where Θ d are the desired parameters and Θ n are the nuisance parameters 3 . Define Θ = [Θ T d Θ T n ] T to refer to the desired and nuisance parameters. Assume that the noise follows some parametric model and Θ w represents the parameters of the noise model. Let Ω = [Θ T Θ T w ] T denotes all model parameters. The CRB, which is given by the diagonal terms of the Fisher Information Matrix (FIM) inverse [START_REF] Stoica | Spectral analysis of signals[END_REF], is a lower bound 4 on the variance of the model parameters, i.e., MSE(Ω) ≥ CRB(Ω) = F -1 Ω , where F Ω denotes the FIM for parameter Ω and MSE stands for mean-squared error.

We will utilize the following lemma to reduce CRB computation to F Θ only: Lemma 3.1 ( [START_REF] Francos | Bounds for estimation of complex exponentials in unknown colored noise[END_REF]): The elements of the FIM corresponding to the cross terms of Θ and Θ w are zeros.

The FIM is given elementwise by:

[F Θ ] ij = E [ ∂L(Y ) ∂Θ i ∂L(Y ) H ∂Θ i ] ( 12 
)
where Y is the observation vector, i.e Y = [y(0) y(1) . . . y(N -1)] T , and L(Y ) is the log-likelihood function with respect to Y .

For a circular Gaussian process, the FIM can be written as [START_REF] Stoica | Spectral analysis of signals[END_REF]:

[F Θ ] ij = 2 Re { ∂X * ∂Θ i Γ -1 ∂X ∂Θ j } + tr ( Γ -1 ∂Γ ∂Θ i Γ -1 ∂Γ ∂Θ j ) = 2 Re { ∂X * ∂Θ i Γ -1 ∂X ∂Θ j } ( 13 
)
where X = [x(0) x(1) ... x(N -1)] T and Γ is the noise covariance. Note that the second term in [START_REF] Ruiz | Parameter estimation of exponentially damped sinusoids using a higher order correlation-based approach[END_REF] is zero since the noise covariance is assumed to be independent from the damped sinusoids parameters.

[F Θ ] ij = 2 Re { ∂X * ∂Θ i Γ -1 ∂X ∂Θ j } . ( 14 
)

B. Parameter Selection

The EW method has an important parameter W = e d+jβ to be selected. We use the expressions [START_REF] Hua | The most efficient implementation of the IQML algorithm[END_REF] for that purpose. An intuitive idea consists in enhancing the signal-to-noise ratio after pre-processing.

In the appendix, we derive the asymptotic covariance of the noise, which turns to have a complicated expression depending on the noise auto-covariance function. We compute instead an explicit expression in the white noise case: Lemma 3.2: If w(k) was zero-mean circular white Gaussian noise. Then, the EW noise v(k) is asymptotically circular white Gaussian noise with auto-covariance function:

ρ(k) = σ 4 1 -|W | 2 δ(k)
Thus, we can select the EW parameter by maximizing the averaged post-processing SNR given by:

max d,β (1 -|W 2 |)∥A W ∥ 2 (15) 
where

A W = [A W (1)...A W (L)] T .
Note that the noise covariance is independent of β. Therefore, for a fixed d, the maximization problem is interpreted as:

max β ∥A W ∥ 2 . ( 16 
)
However, if we have unknown noise, we cannot compute the SNR. Nevertheless, it turns out that selecting β according to [START_REF] Stoica | Subspace-based frequency estimation in the presence of moving-average noise using decimation[END_REF] and choosing d as the slowest damping can serve as a good choice for a wide range of noise statistics. Indeed, the latter choice for d is motivated by the fact that the 'effective life duration' of the exponentially damped signal e αn is approximately N = 1/(1 -e α ). Hence, it is natural to choose a window size corresponding to the desired signal life duration (i.e. choosing d as the slowest damping factor).

As a result, we provide the following iterative algorithm:

1) Initialize d = 0 and β randomly 5 .

2) Compute the cyclo-correlation as in [START_REF] Kumaresan | Estimating the parameters of exponentially damped sinusoids and pole-zero modeling in noise[END_REF] or [START_REF] Hua | Matrix pencil method for estimating parameters of exponentially damped/undamped sinusoids in noise[END_REF].

3) Apply a standard method (e.g MP or IQML) to r W to compute the complex frequencies. Compute the complex amplitude via solving a least square problem.

4) Set d as the slowest nonpositive damping and choose β by solving [START_REF] Stoica | Subspace-based frequency estimation in the presence of moving-average noise using decimation[END_REF].

5) If an end criterion6 is reached, then stop. Otherwise, go to step 2.

C. The CRB for the exponentially windowed signal (EW-CRB)

In order to compute the EW-CRB, we need to computed to EW noise covariance, this is done in Appendix I.

IV. OPTIMIZATION OF THE EW PARAMETERS V. SIMULATION

A. Parameter Selection

The data we consider here is as in [START_REF] Papadopoulos | Parameter estimation of exponentially damped sinusoids using higherorder statistics[END_REF], [START_REF] Abed-Meraim | Parameter estimation of exponentially damped sinusoids using second order statistics[END_REF]:

y(n) = e b1n + e b2n + w(n)
where b 1 = -0.1 + 0.52(2π)i, b 2 = -0.2 + 0.42(2π)i. We assume, at first, zero-mean circular white Gaussian noise. We apply the cyclo-correlation [START_REF] Kumaresan | Estimating the parameters of exponentially damped sinusoids and pole-zero modeling in noise[END_REF]. For each experiment, the sample size is set to N = 100. N r = 500 independent Monte-Carlo runs are performed to evaluate the statistics.

Figure 1, shows the plot of the cost function. The optimal value is (d, β) = (-0.55, 0.37). Note that β = 0.37 is optimal for every fixed d. 

B. Performance Comparisons

To illustrate the performance of the EW preprocessing method, we consider the MP algorithm (which uses implicitly the SD technique) [START_REF] Hua | Matrix pencil method for estimating parameters of exponentially damped/undamped sinusoids in noise[END_REF]. By combining the MP method with HOS [START_REF] Papadopoulos | Parameter estimation of exponentially damped sinusoids using higherorder statistics[END_REF], we have a method to be called HOS-MP method. By applying the MP method to the exponentially window signal, we have the EW-MP method. We use CS-MP to refer to the EW-MP with d = 0. In the sequel, we compare the MP, HOS-MP, EW-MP and CS-MP methods.

The data we consider is same as previous subsection. The performance is measured by the meansquare error (MSE) defined as MSE= The same β is used for the CS-MP method. We set the processing window size for all MP methods to 15 (see [START_REF] Hua | Matrix pencil method for estimating parameters of exponentially damped/undamped sinusoids in noise[END_REF] for more details).

The following cases are considered:

Case 1: White Gaussian circular noise: Figure 3 shows the MSE versus SNR. The EW-MP method performs the best for low SNRs even in this case where the noise assumptions required by all methods are satisfied. For medium and high SNR, all methods perform closely. 

where the white Gaussian noise has the power σ 2 (SNR is defined as -10 log 10 σ 2 ). Figure V-B shows the MSE versus SNR for a = 0.9. In this case, the EW-MP method performs significantly better for low and medium SNRs. The HOS-MP seems to be highly affected by the small sample size. Note that EW-MP has better performance than CS-MP which illustrates the utility of the damped exponential windowing. 

VI. CONCLUSION

In this paper, we discussed a sinusoids estimation method that works acceptably with wide range of stationary noise. The idea is based on computing the cyclo-correlation (or a generalized exponential window) of the signal. We provided a simple algorithm for EW parameter selection and performance optimization. We showed through simulations that it has a superior performance to other methods especially in the case of non-Gaussian and/or colored noise. Comparisons with the CRB showed that it can give close to CRB performance at moderate and high SNRs. Proof: From (8), we have

v(k) = ∞ ∑ n=0 w(n + k)w * (n)W n (19)
First, we compute the mean of v(k). Using [START_REF] Stoica | Spectral analysis of signals[END_REF] we have:

µ k = E[v(k)] = ∞ ∑ n=0 E[w(n + k)w * (n)]W n = ρ(k) 1 -W = ρ(k)L, L = 1 1 -W .
Therefore,

C v (k, ℓ) = E[v(k)v * (ℓ)] -µ k µ * ℓ = E[v(k)v * (ℓ)] -|L| 2 ρ(k)ρ * (ℓ)
Using noise gaussianity and circularity, we compute the first term as: 

E[v(k)v * (ℓ)] = E [ ∑ m,
C v (s) = σ 4 ∞ ∑ m=0 ∞ ∑ n=0 W n W * m δ(n -m + s)δ * (n -m) = σ 4 ∞ ∑ n=0 |W | 2n = σ 4 1 -|W | 2 .

  frequency parameter β since we consider all cyclo-frequencies in the range [β 0 , β 1 ]. Indeed, one can observe in Fig. V-A (section IV) that a 'bad' selection of parameter β might lead to poor estimation performance at low or moderate SNRs.
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 221 Figure V-A shows the sensitivity of the method with respect to β. It is observed that the maximum of the cost function corresponds to the best performance obtained. Note also that optimization is highly needed since bad a choice of β causes bad performance.

  Fig. 2. (a) The MSE curves with different values of β with fixed d = -0.1 in the case of white Gaussian noise. (b) MSE curves comparing the performance between the optimization (15) and the proposed algorithm in the case of white Gaussian noise.
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  Figure V-A, shows the result when varying d between the best value suggested by (15) versus slowest damping factor suggested by the proposed algorithm in the case of white Gaussian noise. It can be seen that although d = -0.55 results in slightly improved results for mid and high SNRs, our proposed algorithm gives very reasonable performance. The comparison with the case d = 0 is given next.
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 1 Nr ∑ Nr r=1 ∥ br -b∥ 2 , where b denotes the parameter vector, i.e., b = [b 1 , b 2 ] T and br is the estimate of b at the r-th run. For the EW-MP method, we chose β = 0.37 and d = -0.1.
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 3 Fig. 3. White Gaussian circular noise case.
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 2 Colored Gaussian noise: The colored noise is generated by the AR(a) filter w(n) = aw(n -1) + white Gaussian noise
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 344 Figure V-B shows the MSE performance between the three methods versus the value of a with SNR=20 dB. Clearly, the EW preprocessing increases the robustness of MP against AR noise. Case 3: White non-Gaussian noise: The noise is complex with real and imaginary parts uniformly distributed over [-σ/ √ 2, σ/ √ 2]. Figure V-B, shows also the superiority of EW-MP method. Case 4: Colored non-Gaussian noise: In this case, the colored noise is generated filtering the white uniformly distributed by a AR(a) filter, where a = 0.9. As shown in Figure V-B, both the MP and HOS-MP methods fail to compete with the EW-MP method because the noise assumptions required by the former two are not satisfied.
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 5 Fig. 5. (a) The case of white uniformly distributed noise. (b) The case of AR(0.9) uniformly distributed noise.
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 2 n W n W * m w(n + k)w * (n)w * (m + ℓ)w(m) n W * m E [w(n + k)w * (n)w * (m + ℓ)w(m)] = ∑ m,n W n W * m (E [w(n + k)w * (n)] E [w * (m + ℓ)w(m)] + E [w(n + k)w * (m + ℓ)] E [w * (n)w(m)] + E [w(n + k)w(m)] E [w * (n)w * (m + ℓ)]) = ∑ m,n W n W * m (ρ(k)ρ * (ℓ) + ρ(n -m + k -ℓ)ρ * (n -m)) = |L| 2 ρ(k)ρ * (ℓ) + ∑ m,n W n W * m ρ(n -m + k -ℓ)ρ * (n -m)and the result follows.We can proof Lemma 3.2 now: Proof of Lemma 3.Set ρ(k) = δ(k). If s ̸ = 0, we have C v (s) = 0. If s = 0 then:

Note that, in contrary to most existing methods, the noise can be colored and non-Gaussian. The only assumption is its wide sense stationarity.

More precisely, we assume that e αmN << 1, ∀m = 1, ..., L.

This paper focuses only on the frequency and damping parameters estimation.

This lower bound applies for all unbiased estimators.

If any prior knowledge is available it can be used for initialization, e.g. if it's known that all sinusoids are damped, then d can be initialized to be less than zero.

We observed that 4-6 iterations yield acceptable performance.