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Abstract. Side effects are an important characteristic of MAS, and
proving them is an interesting issue. They often can be expressed as
liveness properties. But there is no system dedicated to this kind of
proof. The GDT4MAS framework allows to specify and prove the cor-
rectness of multiagent systems. This framework is mainly dedicated to
prove safety properties about the system and to prove that agents achieve
their goal(s). However, there is no proof principle to prove that agents
satisfy liveness properties that are not part of their goal(s). In this arti-
cle, we propose a proof mechanism that addresses this kind of problem:
we show how we can add to GDT4MAS a proof mechanism adapted to
prove leads-to properties, a subclass of liveness properties.

1 Introduction

During the execution of a MAS, unexpected system properties are often ob-
served. These properties can either be useful (they can be for example called
emergent properties) or harmful. In both cases, it may be interesting to prove
that such properties will eventually happen in order to understand how they
happen. However, to our knowledge, there is no system suitable to prove such
properties.

Proving the correctness of multiagent systems is a hard problem that has
been tackled for several years. Most of the works on the subject have established
that a new formal specification and proof system, dedicated to multiagent sys-
tems, should be developed. Among them, GDT4MAS [1] proposes interesting
characteristics. Especially, the proof obligation generation process is fully au-
tomatisable and it can be applied to very large systems, essentially because it
relies on theorem proving and first-order logic rather than on model-checking
and propositional logic.

However, if this system is well-suited to prove invariant properties (also called
safety properties) and to guarantee that agents satisfy their main goal, it does
not propose any proof system to guarantee that an agent establishes liveness
properties that are not part of its main goal, which is necessary when considering
side effects.

So, in this article, we propose to add a new proof system to GDT4MAS
dedicated to the verification of a well-known kind of liveness properties: leads-to
properties.



Of course, there are techniques to verify leads-to properties in distributed sys-
tems [2–4], but these techniques are dedicated to systems where all the processes
are globally taken into account for each proof that must be performed.

Most of these techniques are dedicated to systems where processes work on
independant variables, and synchronize occasionnaly to exchange information
(This for instance the case of the π-calculus [4]).

On the contrary, in a method such as TLA+ [3], shared variables can be
specified, but the proof process requires to consider, for each step of the system
trace, all the actions that may be considered. This is not suitable for multi-
agents systems, because the number of possible actions is very large and thus,
the property to prove would be to complicated to be performed by an automatic
(or human) prover.

To perform efficient proofs on multi-agents systems, a compositional proof
system is required. This is the case of the GDT4MAS proof system, and this
is a property we require for a proof system dedicated to leads-to properties in
multi-agents systems.

In the next section, we briefly introduce the notion of liveness property.
In section 3, we recall the main concepts of the GDT4MAS framework. The
new proof system we propose is described in section 4, and its application is
examplified in section 5. Finally, a comparison with other works is proposed in
section 6.

2 Invariant and liveness properties

When dealing with formal verification of software, many kinds of properties may
be considered. In this section, we present two kinds of them: invariant properties
and liveness properties.

2.1 Invariant properties

Invariant properties specify a set of states the system must satisfy at every
moment. They are often presented as properties specifying that “nothing bad
happens”. Theses properties are mainly safety properties. Indeed, when specify-
ing safety critical systems (as, for instance, a train control system), a first critial
step is to verify that the system does not reach an unsafe state. In a formal
verification system such as the B method, used by corporates developing safety
critical systems, this kind of property is the only one that is formally proven.

Using temporal logic, an invariant property IP is specified as:

�(IP )

However, a system doing nothing may trivially verify such invariant properties.
Indeed, these properties do not specify anything about the task of the system.



2.2 Liveness properties

Contrary to invariant properties, liveness properties specify how the system
should modify its state. They are often presented as properties specifying that
“something good will happen”. There are many kinds of liveness properties. Here
are a small presentation of some of them. More details can be found for instance
in [2, 3].

– One-day: a given property OD will eventually become true:

♦(OD)

– Leads-to: a given property LT will eventually become true every time an-
other property P is true:

�(P → ♦LT )

– Until: a given property UP remains true until another property becomes
true (and P will eventually become true):

�(UP → (�(UP ∨ P ) ∧ ♦P )

In the rest of this article, we will only consider leads-to properties. Indeed, a one-
day property is a subtype of a leads-to property (with P , true and LT , OD),
and an until property is also a special kind of leads-to property.

3 The GDT4MAS framework and the GDT model

3.1 Main concepts

In the GDT4MAS framework, the MAS is described by an environment, mainly
specified by variables, an invariant (denoted iE in the sequel) and a population
of agents evolving in this environment. Each agent is described as an instance
of an agent type. As a consequence, in the following, after a short description
of the notations we use, the notions of agent type and of agent behaviour are
described.

3.2 Notation

Notation 1 (primed and unprimed variable)

When the value of a variable v in two execution states is considered, the value
of v in the first state, called the current state, is written v, and its value in the
second state is written v′. For instance, the action consisting in increasing the
value of v by 1 is specified by the postcondition v′ = v + 1.



3.3 Agent Type Specification

Simplified Definition 1 (Agent Type) An agent type t is mainly described
by a name (namet), a set of variables (V arIt), an invariant (iA), and a be-
haviour (bt) defined by a GDT.

Definition 1 (Goal Decomposition Tree (GDT)). A Goal Decomposition
Tree describes the behaviour of the agents of a given type. Each node of this tree
is a GDT goal. The tree structure is defined thanks to the decomposition of each
GDT goal into subgoals using decomposition operators. A predicate called Trig-
gering Context (TC) is associated to each GDT: an agent begins the execution
of its behaviour every time its TC is true.

Simplified Definition 2 (GDT goal) A GDT goal g is described by a name
(nameg), a satisfaction condition (scg), a gpf (gpfg), a decomposition or an
action and an ns flag (nsg). The satisfaction condition is a predicate specifying
the property the goal must establish when it succeeds, whereas the gpf (Guaranted
Property in case of Failure) is a predicate specifying the property the goal must
establish when its execution fails. The ns flag specifies whether the goal always
succeeds (Necessarily Satsfiable or NS) or not (NNS).

Please notice that when the execution of a node fails, the invariant must still
remain true. The failure of a node represents the fact that, in a real world, an
agent is not always guaranted to succeed in realizing a task dealing with the
environment. For instance, a robot that must move its arm may be blocked by
an object, or its arm may be rusty, reducing the amplitude of its move.

Simplified Definition 3 (Action) An action α is specified by a name (nameα),
a precondition (preα), a postcondition (postα), an ns flag (nsα) and a gpf (gpfα).
The precondition is a predicate specifying when the action is enabled, the post-
condition specifies what that action does (x′ = x− 1 for instance expresses that
the action decreases the value of x by 1), the ns flag has the value NS if the
action is guaranteed to always succeed, and NNS if the action may fail. The gpf
is a predicate specifying what is however guaranteed to be true if the action fails.

Definition 2 (Goal decomposition). A GDT goal is either a leaf goal or an
intermediate goal. An action is attached to a leaf goal, whereas an intermediate
goal is decomposed into several subgoals, thanks to a decomposition operator. A
list of decomposition operators can be found in [5].

Among others, we can introduce the following decomposition operators:

– SeqOr: Sequential Or. It decomposes the parent goalN into several subgoals
Ni. Subgoals are executed from the left to the right. If the considered subgoal
succeeds, N is achieved and the execution of the decomposition ends. But
if it fails, the next subgoal is considered. If the last subgoal is executed and
fails, the satisfaction condition of N must be evaluated to know if N is
however achieved or not.



– SeqAnd: Sequential And. It decomposes the parent goal N into several sub-
goals Ni. Subgoals are executed from the left to the right. If the considered
subgoal succeeds, the next one is executed. If the last subgoal is executed
and succeeds, N is achieved. But if a subgoal fails, the satisfaction condition
of N must be evaluated to determine whether N is achieved or not.

– SyncSeqOr and SyncSeqAnd: These operators are similar to the SeqOr
and SeqAnd operator, but a subset of environment variables can be locked
during the whole execution of the parent goal decomposition.

An example of GDT is given in figure 1. In this figure, goals are described
by their satisfaction condition. Moreover, NS goals are surrounded by a double
ellipse. In satisfaction conditions, x and x′ respectively represent the value of
the variable x before and after the goal execution.

Fig. 1. Simple GDT

3.4 Proof system: general principles

The proof system fo GDT4MAS relies on Proof Schemas (PS). Applying a proof
schema generates Proof Obligations (PO), that may be proven by an automatic
prover, such as PVS [6]. At the moment, PS allow us to prove several kinds of
properties. We first prove invariants at the agent-type level and at the system-
level. Moreover, the proof system of the method verifies that goal decompositions
are valid. Most PS rely on goal contexts. These contexts are computed automat-
ically starting from the root goal. Intuitively, the context CG of a goal G is a
predicate summarizing the state in which goal G will be executed.

3.5 Notations

In this section, we present two notations of GDT4MAS that will be used in the
sequel.

Notation 2 (Priming) Let f be a predicate/expression. If f contains at least
one primed variable, then pr(f) = f . Otherwise, pr(f) is the predicate/expression
derived from f where each unsubscripted variable is primed.

Examples: pr((x = x0)) ≡ (x′ = x0) and pr((x = x′)) ≡ (x = x′).



Notation 3 (Invariant) Let A an agent situated in an environment E. We
write:

– iA the invariant regarding variables of the agent;
– iE the invariant associated to the environment variables;
– iEA the conjunction of iA and iE .

4 A new proof mechanism dedicated to leads-to

properties

This section presents the proof mechanism we propose to verify that some leads-
to properties are established by an agent. Here, we only consider leads-to prop-
erties that are associated to an agent; no other agent is required to establish this
property.

In this section, we consider a leads-to property L defined so:

L ≡ �(PL → ♦QL)

A classical way to establish that a leads-to property is verified by a specifi-
cation consists in associating a variant and a witness to this property [2].

Informally, a variant expresses the progress towards the establishment of QL.
If it is proven that an agent makes a variant decrease and that when this variant
reaches its lower bound,QL is established, then the leads-to property L is proven.
A witness is a property that represents the fact that PL has been true, and thus,
that QL must be established. In this article we propose to adapt this mechanism
to verify leads-to properties of agents.

4.1 Definitions and notations

We begin by a formal definition of a variant:

Definition 3 (Variant). A variant is a decreasing sequence defined in a well-
founded structure.

Of course, this definition requires to define what a well-founded stucture is.

Definition 4 (Well-founded Structure). A well-founded structure (S,<) is
a set S with an order relation < such that every decreasing sequence in S has a
lower bound. For instance, (N, <) is a well-founded structure.

Corollary 1. A variant has a lower bound. We write V0L the lower bound of a
variant VL.

In this article, we will only consider variants defined on (N, <). This property
must be added to the invariant of the agent.

Definition 5 (Witness). Let L ≡ �(PL → ♦QL) a leads-to property. A wit-
ness is a property that must be true when PL is true, and remains true until QL

is true.



Notation 4 (Variant and Witness) Let L a leads-to property associated to
an agent A. We write:

– VL the variant we associate to L to prove it;

– V0L the lower bound of the variant VL;

– WL the witness we associate to L to prove it.

4.2 Sketch of the proof process

Thanks to the variant and witness we associate to a leads-to property, proving
that an agent establishes a leads-to property L consists in proving that:

1. The chosen variant is a variant:

– when it has reached its lower bound, QL is established;

– once PL has been true and untilQL becomes true, the agent must execute
its gdt.

– there is no other agent that increases the variant;

2. The chosen witness is a witness;

– it is true when PL is true;

– when WL is true, it remains true until QL becomes true.

3. The agent progresses: when the agent executes its gdt, it makes the variant
decrease or it establishes QL.

In the next parts of this section, we detail each of these steps.

4.3 The chosen variant is... a variant!

To prove that VL is a variant, we have to prove that, when it has reached its
lower bound, the desired property is satisfied. So, we have to add the following
proof obligation:

iEA ∧ (VL = V0L) → QL (1)

Moreover, we also have to prove that once PL has been true, and until QL

becomes true, the agent is activated, and thus executes its GDT. This is estab-
lished by proving the following property, where TCA is the triggering context of
the agent:

iEA ∧WL ∧ ¬QL → TCA (2)

Finally, we also have to prove that no other agent makes the variant increase
once PL has been established until QL is established. So, for each other agent
A in the system, we have to check for every action α used in a leaf goal G (we
recall that post and gpf of actions contain primed variables):

iEA ∧ CG ∧WL ∧ (postα ∨ gpfα) → pr(VL) ≤ VL (3)



4.4 The witness property... is a witness!

As explained before, we associate to our leads-to property L a witness property
WL that verify both following properties:

– Initialisation : WL must be true when PL is true;
The property that must be verified is the following:

iEA ∧ PL → WL (4)

– Finalization : WL remains true until QL becomes true.
For each agent, we have to establish that, when it modifies the environment
(that is to say, when it performs an action, whether it succeeds or not), if
the witness is true before the action, then it is still true after the action has
been performed, unless QL has become true. So, for each action α associated
to a leaf goal G of each agent A, we have to verify:

iEA ∧ CG ∧WL ∧ (postα ∨ gpfα) → pr(WL ∨QL) (5)

4.5 The agent progresses

In order to prove that each execution of the GDT of an agent defines a progress
towards the establishment of property QL, we have to prove that the execution
of the main goal performs such a progress, that is to say, the main goal of the
agent is a progress goal.

Definition 6 (Progress goal (pg)). We call Progress Goal a goal that either
makes the variant decrease or establishes property QL. For a leads-to property
L, we associate to each goal G a boolean pgLG

that is true if and only if G is a
progress goal.

Determining that a goal is a progress goal can be done by inference rules
relying on the structure of the gdt, once we know which leaf goals make progress.
Moreover, as the gdt execution depends on the success status of goals, we must
determine, for each goal, if it is a success progress goal and if it is a failure
progress goal.

Definition 7 (Success Progress Goal (spg)). We call Success Progress Goal
a goal that either makes the variant decrease or establishes property QL when it
is executed and succeeds. For a leads-to property L, we associate to each goal G
a boolean spgLG

that is true if and only if G is a success progress goal.

Definition 8 (Failure Progress Goal (fpg)). We call Failure Progress Goal
a goal that either makes the variant decrease or establishes property QL when it
is executed and fails. For a leads-to property L, we associate to each goal G a
boolean fpgLG

that is true if and only if G is a failure progress goal.

Corollary 2. A goal is a progress goal if and only if it is a success progress goal
and a failure progress goal. So, for every goal G, we have pgLG

= spgLG
∧fpgLG

.



In the following paragraphs, we first present how we determine spg and fpg
leaf goals, and then, we show how we infer these properties for non-leaf goals.
Finally, we give proof schemas that we have to associate to non-spg and non-fpg
leaf goals.

Determining the set of spg and fpg leaf goals To determine if a goal is a
spg goal, we have to check that when this goal succeeds (and so, establishes its
satisfaction condition), it either makes the variant decrease or establishes QL.
Of course, we must only consider executions of this goal performed when PL has
been true, which is specified by the fact that WL is true. Hence the following
property that must be established by each non lazy1 spg leaf goal G:

(iEA ∧WL ∧ CG ∧ pr(scG)) → ((pr(VL) < VL ∨ pr(QL)) (6)

In the same way, a goal G is a fpg leaf goal if and only if it verifies the
following property:

(iEA ∧WL ∧ CG ∧ pr(gpf G)) → ((pr(VL) < VL ∨ pr(QL)) (7)

Please notice that, the gpf of an NS goal being false, such goals are fpg goals.

Inference of spg and fpg properties A first way to ensure that a non-leaf
goal is spg or fpg consists in demonstrating that it is a consequence of the decom-
position. In this article, we only detail this process for the SeqAnd/SyncSeqAnd
and SeqOr/SyncSeqOr operators.

SeqAnd and SyncSeqAnd : Let G a goal decomposed into G1 SeqAnd G2.
G is a spg goal, if, in all the cases where Gmay succeed, the variant decreases.

Goal G may succeed in three cases, detailed below:

– Of course, G succeeds when G1 then G2 succeed. In this case, if either G1

or G2 are spg goals, goal G makes the variant decrease.
– Because of side effects, G may also succeed even if G1 has failed. Then, G1

must be fpg.
– Finally, G may also succeed when

goal1 has succeeded, leading to the execution of G2, which has failed. In this
case, if G1 is spg or G2 is fpg, then the variant decreases.

So, we are guaranted that goal G is spg if:







spgLG1
∧ spgLG2

fpgLG1

spgLG1
∧ fpgLG2

1 In this article, we only focus on non lazy goals, that is to say goals that are al-
ways executed even if their satisfaction condition is already true when the goal is
considered.



As a consequence, here is a sufficient condition to determine that a goal is a
spg goal:

fpgLG1
∧ (spgLG1

∨ pgLG2
) → spgLG

(8)

Now, to determine if G is a fpg goal, we consider both cases where it can fail,
that is to say when its first subgoal fails or when its second subgoal fails after
the first one has succeded. Hence:

fpgLG1
∧ (spgLG1

∨ fpgLG2
) → fpgLG

(9)

SeqOr and SyncSeqOr : Let G a goal decomposed into G1 SeqOr G2.
Goal G may succeed in the three following cases:

– goal G1 succeeds;
– goal G1 fails, and then, goal G2 succeeds.
– goal G1 fails, and then, goal G2 fails but, because of side effects, goal G

succeeds anyway.

So, we have:
spgLG1

∧ (fpgLG1
∨ pgLG2

) → spgLG
(10)

The only case where Goal G may fail is when G1 and G2 fail. So, the fact
that one of theses goals is spg ensure that G is spg. Hence:

fpgLG1
∨ fpgLG2

→ fpgLG
(11)

Using satisfaction conditions to determine spg goals Inference rules 8
and 10 to determine if a goal is spg give sufficient properties, but theses properties
are not always necessary. A typical example is when the satisfaction condition
of a non-leaf goal directly establishes either QL or makes the variant decrease.
So, for every non leaf goal G that has not been characterized as a spg goal by
inference rules described above, we will also verify if property 6 is true. If this is
the case, goal G can be identified as an spg goal.

Non-fpg and non-spg leaf goals When a leaf goal G is not a spg goal, we
however must prove that this goal does not make the variant increase when it
succeeds. So, for each non-spg goal, we have to prove the following formula:

iEA ∧WL ∧ CG ∧ pr(scG) → pr(VL) ≤ VL (12)

In the same way, for each goal G that is not a fpg goal, we must prove:

iEA ∧WL ∧ CG ∧ gpf G → pr(VL) ≤ VL (13)

Indeed, this is necessary to guarantee that between two steps during which
the agent makes the variant decrease, it is not increased in another way.



5 Application on a small example

We choose here of course a very simple example, in order to be able to present
all the principles of the proof. We consider a “multiagent system” with only one
agent modifying the variant.

Please notice that the system may contain several other agents. In this case,
as explained in section 4.3, it has to be proven that their actions do not increase
the variant. Taking into account the dynamicity of the environment relies on
the same principle, because, as explained in previous articles, the dynamicity
of the environment can be modeled by an agent modifiying the state of the
environment.

The environment contains two variables, x and d, and is specified by the
following invariant:

iE =







x ∈ N

d ∈ B

d ↔ (x > 0 ∧ x ≤ 10)
(14)

Our agent has a behaviour described by the GDT given in figure 2. In this figure,
goals names (from A to E) and their simplified satisfaction conditions are given.
By simplified SC, we mean that we did not write the part specifying that the
value of other variables are not modified. For instance, the full SC of node D is
y′ = 2 ∧ x′ = x ∧ d′ = d.

Informally, the goal of this agent is to decrease the value of the environment
variable x, by 2 if possible, and otherwise by 1.

Moreover, the triggering context of the agent, its invariant and the gpf of
node E are defined so:

TCa , d (15)

Ia , (y ∈ N) (16)

gpfE , x′ = x ∧ d′ = d (17)

gpfB , x′ = x (18)

We want to prove that this agent establishes the following leads-to property:

�(x = 10 → ♦x = 0) (19)

We will use x as the variant and d as the witness. To conform to the notation
used in the previous section, we have:

PL , (x = 10) (20)

QL , (x = 0) (21)

VL , (x) (22)

V0L , (0) (23)

WL , (d) (24)



Fig. 2. GDT of the example

This article beeing focused on the proof of liveness properties, we do not
present other proofs that must be performed to guarantee the correctness of this
specification.

Moreover, in order to give readable formulae, we do not give full contexts of
nodes and thus, hypotheses in theorems to prove are simplified.

5.1 Determining leaf progress goals

goal D As goal D is a NS goal, it is a fpg goal.
To determine if it is spg, we must establish property 6 for this goal. Thus,

we have:
WL , d

CD , d

pr(scD) , (y′ = 2)

Of course, the conjunction of these properties with the invariant does not
imply x′ < x or x′ = 0. So, D is not an spg goal. So:

spgD = false (25)

fpgD = true (26)

goal E When goal E is considered, we have:

WL , d

CE ,

{

d−2 ∧ y−1 = 2 ∧ x−1 = x−2

d−1 = d−2 ∧ y = y−1 ∧ x = x−1

pr(scE) , x′ = x− y ∧ (d′ ↔ x′ 6= 0)



The context of goal E given above is calculated by the context inference rules
of the GDT4MAS method. Itexpresses the fact that goal E is considered only
after goal D has succeeded when it has been executed in its context.

To establish that E is a spg goal, according to 6, we must demonstrate that
the conjunction of these properties imply that the variant decreases, that is to
say x′ < x. This is obvious because, from CE , we can deduce y = 2 and from
pr(scE), we can deduce x′ = x− y. So, E is a spg goal.

We also have to determing if E is a fpg goal, thanks to rule 7. Among the
hypotheses of this rule, we have gpfE (which implies x′ = x, see 18) and requires
as conclusion either x′ < x (which cannot be true!) or x′ = 0 which cannot be
guaranted because the context does not provide any knowledge about the value
of x. So, goal E is not a fpg goal.

So, we have:

spgE = true (27)

fpgE = false (28)

goal C About goal C, we have the following properties:

WL , d

CC , (d−2 ∧ x−1 = x−2 ∧ x = x−1)

pr(scC) , (x′ = x− 1 ∧ (d′ ↔ x′ 6= 0))

To establish that goal C is a spg goal, we must try to establish rule 6. This rule
requires to prove, from the conjunction of the above properties, that the variant
decreases (x′ < x) or that property QL is true. This is obvious because, from
scC , we deduce that x′ = x− 1, which implies x′ < x. So, goal C is a spg goal.
Moreover, as this goal is a NS goal, this is also a fpg goal. So we have:

spgC = true (29)

fpgC = true (30)

Conclusion As a conclusion, we know that no leaf goal make the variant in-
crease. Moreover, spg goals and fpg goals are respectively the following:

SPG = {C,E} (31)

FPG = {C,D} (32)

PG = {C} (33)



5.2 Inference of the progress property

Goal B To determine if goal B is a spg goal, we apply rule 8 that provides the
following sufficient condition to guarantee that goal B is spg:

fpgD ∧ (spgD ∨ pgE)

However, D is not a spg goal and E is not a pg goal. Thus, with this rule,
we cannot determine that goal B is spg. So, we try to apply rule 6. Considering
goal B, we have:

WL , d

CB , d

pr(scB) , x′ = x− 2

And we have to establish that the conjunction of these formulae implies either
x′ < x of x′ = 0. As scB implies x′ = x− 2, we obviously have x′ < x. So, B is
a spg goal.

We now have to determine if goal B is a fpg goal, applying rule 9:

fpgD ∧ (spgD ∨ fpgE)

As goal E is not a fpg goal and D is not a spg goal, we can deduce that goal
B is not a fpg goal. So we have:

spgB = true (34)

fpgB = false (35)

Goal A To determine if goal A is a spg goal, we apply rule 10, which gives:

spgB ∧ (fpgB ∨ pgC)) → spgA

As we have established before that goal B is spg (34) and that goal C is
pg (33), we can establish that goal A is a spg goal.

Conclusion Goal A being a NS goal and a spg goal, we now know that each
execution of the GDT of the agent makes the variant decrease.

5.3 The chosen variant is a variant

Correctness According to equation 1, to prove that the chosen variant is ef-
fectively a variant, we have to prove:

iEA ∧ x = 0 → x = 0

This is obviously true !



Activation According to equation 2, we have to prove:

iEA ∧ d ∧ ¬(x = 0) → (x = 10 ∨ d)

Once again, this formula is obviously true.

5.4 the witness is a witness

Initialisation From formula 4, weh have to verify:

x = 10 ∧ (d ↔ (x > 0 ∧ x ≤ 10)) → d

This is still an obviously true formula.

Finalization We have to apply proof schema 5 for every leaf goal (and we recall
here that, according to GDT4MAS principles, the gpf of an NS action is false).

Goal D The NS action δ associated to goal D is defined by:

postδ , y′ = 2 ∧ d′ = d

gpfδ , false

So, with the context of goal D given above, we must establish:

iEA ∧ d ∧ d ∧ ((d′ = d ∧ y
′ = 2) ∨ false) → pr(d ∨ x = 0)

That can be simplified into:

iEA ∧ d ∧ d
′ = d ∧ y

′ = 2 → d
′
∨ x

′ = 0

This property is obviously true (as d and d′ = d can be found among the
hypotheses).

Goal E The action η associated to goal E is defined by:

postη , x′ = x− y ∧ (d′ ↔ x′ 6= 0)

gpfη , x′ = x ∧ d′ = d

Using CE given above, applying proof schema 5, we obtain the following
proof obligation:

iEA ∧ d−2 ∧ y−1 = 2 ∧ x−1 = x−2

d−1 = d−2 ∧ y = y−1 ∧ x = x−1 ∧ d

((x′ = x− y ∧ (d′ ↔ x′ 6= 0)) ∨ (x′ = x ∧ d′ = d))
→ pr(d ∨ x = 0)



In order to simplify the explanation of the demonstration (that can be how-
ever easily performed by an automatic prover), we remove useless hypotheses.
So, we have to prove:

(d ∧ x′ = x− y ∧ (d′ ↔ x′ 6= 0)) ∨ (d ∧ x′ = x ∧ d′ = d)
→ d′ ∨ x′ = 0

The structure of this formula being a∨b → c, we will successively demonstrate
a → c and b → c.

– (d ∧ x′ = x− y ∧ (d′ ↔ x′ 6= 0)) → d′ ∨ x′ = 0

We use a proof-by-case on the value of d′. Either d′ is true, and so, the goal
is true, or d′ is false. In the latter case, according hypothesis 2, x′ = 0, and
so the goal is true. QED.

– (d ∧ x′ = x ∧ d′ = d) → d′ ∨ x′ = 0

As d and d′ = d are hypotheses, we obviously deduce d′. QED.

So the proof obligation generated by applying proof schema 5 to goal E is
true.

Goal C The action associated to goal C is defined by:

postγ , x′ = x− 1 ∧ (d′ ↔ x′ 6= 0)

gpfγ , false

Using CC and applying proof schema 5 to goal C, we have to prove:

iEA ∧ d−2 ∧ x−1 = x−2 ∧ x = x−1 ∧ d

((x′ = x− 1 ∧ (d′ ↔ x′ 6= 0)) ∨ false)

}

→ pr(d ∨ x = 0)

In order to simplify the explanation of the demonstration (that can be how-
ever easily performed by an automatic prover), we remove useless hypotheses.
So, we have to prove:

(d′ ↔ x′ 6= 0) → (d′ ∨ x′ = 0)

The proof is obvious: either d′ is true, and so, the goal is true, or d′ is false
and so, from hypotheses, x′ 6= 0 is false, and so, x′ = 0. QED.

5.5 Conclusion

Following the proof system described in section 4, we have been able to establish
that an agent whose behaviour is described by the gdt given in figure 2 satisfies
a liveness property that is not a part of its main goal.



6 Comparison with other works

Several formal specification languages dedicated to multiagent systems exist.
However, they are often not dedicated to the proof. This is for instance the case
of 2apl [7], that is finally more a programming language than a specification
language suited to proof. MetateM [8] gives the developer a way to specify prop-
erties, and the system controls that the execution does not violate these proper-
ties. However, this is a proof-by-construct process; this means that the proof is
performed only at the execution time, and if the initial conditions change, a new
proof (consisting in an execution of this new initial state) must be performed.

Finally, most works dealing with the verification of multiagent systems rely
on model-checking principles. One of the most recent work in this area is the
definition of AJPF [9], a model-checker relying on JPF [10] and the Agent Infras-
tructure Layer AIL. This is, as far as we know, the only system that proposes a
way to verify leads-to properties on multi-agent systems. However, a first draw-
back of the method is the time taken by the system to establish the property
(several hours for a very simple system). Of course, a more optimized model-
checker such as spin [11], may greatly reduce the time required. However, such
systems remain dedicated to small-size systems. Moreover, such systems have a
more serious drawback: also they can be used to prove a property such as the
property we have proven in section 5: �(x = 10 → ♦x = 0), they cannot be
applied when the left-hand side property (here, x = 10) characterize an infinite
number of states. For instance, if we would be interested in proving the following
leads-to property: �(x ≥ 10 → ♦x = 0), a model-checking-based method would
fail, whereas the process we propose would be as efficient as it is in the given
example.

The same problem can be found with MCMAS [12], which moreover does
not provide a way to verify leads-to properties. This model-checking technique
tries to verify formulae specified in propositionnal logic, as AJPF. The main
disadvantage of this technique is that, relying on propositionnal logic, proofs
cannot be generalized on systems of any size. For instance, in the cited article, it
is shown that the verification of the dinning cryptographers must be performed
for each number of cryptographers we are interested in. Moreover, even if the time
taken for 10 cryptographers is quite good, performances decrease dramatically
when the number of cryptographers increase. Finally, with such a technique, to
prove that the MAS work with any number of cryprgrapher, an infinite number
of verifications must be performed, requiring, of course, an infinite time.

Indeed, as model checking techniques may be applided on systems with sev-
eral millions of states, their complexity is a critical aspect that must be taken
into consideration. But with theorem proving techniques, this criterion is quite
less important. Indeed, each proof requires a very short time, and the number of
proofs is very low, compared to the number of states generated in model checking
techniques (for instance, even on a very large industrial system, less that 50,000
proofs had to be verified [13]). For instance, with the GDT4MAS model, if we
call n(t) the number of nodes of an agent type t and T the set of agent types,
the number of proofs to perform is approximately 2Σt∈Tn(t).



7 Conclusion and Perspectives

In this article, we have shown that the GDT4MAS model, that was mainly
dedicated to the proof of invariant properties, can be extended to prove live-
ness properties such as lead-to properties. As other proof obligations of the
GDT4MAS framework, the new proof obligations generated are easily proven
by an automatic theorem prover such as PVS.

This kind of proof can help in analyzing the behaviour of a MAS. In the
work presented here, we have only considered liveness properties associated to
a single agent. Of course, more general liveness properties at the system level
will have to be considered, especially properties that are established not only
by a single agent, but by a subset of the agents in the system. This is a short-
term perspective. Moreover, at it is classically performed in standard verification
systems, our proof system can only prove leads-to properties P leads− to Q for
which there is a continuous progress to Q once P has been true. In a multiagent
system where agents are fully autonomous, we also have to consider properties
for which this progress is not continuous. This is a long-term perspective for us.
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