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Fault detection of event based control system

M.A Sid, S. Aberkane, D. Maquin, D. Sauter

Abstract— A framework for the joint design of on-
line sensor scheduling and fault detection is proposed.
First, the synthesis of fault detection filter under any
event triggering mechanism is given. The proposed
filter can be viewed as a special structure of the
Bayesian filter. To demonstrate its performance, this
filter is tested under mixed event triggering mech-
anism designed to satisfy control requirements. A
numerical example illustrates the effectiveness of the
proposed approach.

I. INTRODUCTION

Most of the research in control theory and engineering
considers periodic or time-driven control systems where
continuous-time signals are represented by their sampled
values at a fixed sample frequency [20]. To economize
energy and bandwidth capacity in networked control sys-
tems, measurements can be taken and transmitted only
when an event occurs rather than each periodic sampling
time [19], [18]. However, this fact raises the complexity
of the FD problems considerably, mainly in the situation
when no measurement is received any more. In con-
trol problem some event-triggering mechanism (ETM)
invokes transmission of the outputs in a node when the
difference between the current values of the outputs in
the node and their previously transmitted values (inno-
vation) becomes greater than a given constant. In the
sensor/control networking community the magnitude-
driven/level-crossing sampling is known as the send-on-
delta or Lebesque sampling [10], [9]. Using the same
terminology logic, the classical periodic scheme is called
Riemann sampling. For dealing with abrupt changes in
the output signal due to perturbations, the integral of
the innovation signal can be used for event generation [1],
this technique is named ń integral sampling ż. In a recent
work [16] the transmission occurs when the innovated
difference is ’large’ compared with the current value of
the sensor. An additional threshold is added in [2] to
avoid Zeno phenomenon when the sensor node performs
an infinite number of sampling operations in a finite time.
Another solution to this problem is the periodic event
triggered (ET) control as given in [3]. In [5] robust ET
control strategy is designed to minimize the noise effect
on the system performance. There are few works that
deal with event triggered state estimation, the interested
reader is referred to the recent works [15], [17], [4].

It is clear that the new developed sampling techniques
require specific FDI algorithm design, but according to
our best knowledge the only works that had considered

this issue are [7], [12], [8]. In this paper we will consider
FD filter design problem.

First, we present an event triggered fault detection
algorithm (ETFD) that is compatible with any given
ETM. Then, this algorithm is used for fault detection of
networked control system operating under a predefined
ETM, more precisely the mixed ETM. We find similar de-
sign problem when the FD algorithm is co-implemented
with the control algorithm at the same processor. In
this case the ETM is specifically designed to insure the
control performance.

The rest of the paper is organized as follow: section II
gives the problem formulation and introduce the con-
cept of the ETM algorithm. In section III, the general
event based fault detection (ETFD) filter is given under
any ETM scheme. To illustrate the effectiveness of the
proposed method, we apply ETFD algorithm under a
specific ETM namely the mixed ETM in section IV.
A numerical example is given in section V. Finally,
we provide some conclusions and some future research
directions in section VI.

II. Problem formulation
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Fig. 1. Event triggered FD

Consider a faulty networked control system illustrated as
in Fig 1., where the linear continuous-time dynamics is
described by

�
ẋ(t) = A x(t) + B u(t) + F Υ(t) + w(t)
y(t) = C x(t) + v(t)

(1)

x(t) ∈ �n is the state vector, u(t) is the control input,
F = [f1, f2, ..., fq] ∈ �n×q is the fault distribution
matrix, Υ(t) = [Υ1, Υ2, ..., Υq]T ∈ �q is the fault



vector and y(t) ∈ �m is the measurement signals vector.
We assume that each component of the output vector
yi ∈ �mi with i ∈ {1, 2, .., ns} and

�ns

1 mi = m
represent an intelligent sensor node equipped with event
triggered mechanism (ETM). The initial state vector x0,
process noise w(t) and measurement noise v(t) are un-
correlated, white Gaussian random processes with x0 ∼
N (x0, x̄0, P̄0), w(t) ∼ N (w, 0, W ) and v(t) ∼ N (v, 0, V )
respectively, where P̄0, W and R are symmetric, positive
definite matrices. The Gaussian function (shortly noted
as Gaussian) of vectors x ∈ �n, µ ∈ �nand P ∈ �n×nis
defined as N (x, µ, P ) : �n × �n × �n×n → �, i.e

N (x, µ, P ) = 1�
(2π)n|P |

e−0.5(x−µ)T P −1(x−µ)

If p(x) = N (x, µ, P ) then by definition it holds that
E(x) = µ and cov(x) = P .
In our case we will consider two problems: the first one
is a system with a predefined ETM this case is coherent
to the system architecture where the fault diagnosis
scheme and the controller are implemented in the same
computer. In this case, the ETM is dedicated only for
improving control performances. In the second design
problem, the ETM is designed for improving the FD
performance. For simplicity, we ignore transmission delay
and other communication constraints.

Event triggered mechanism (ETM)

The ETM is an algorithm that allows the sensor node to
transmit recent measurement to the estimator node only
if its value verifies the event triggering condition. This
method has been explored and applied by researchers
because of its efficiency in the network bandwidth im-
provement. The sensor measurements are processed and
the event triggering conditions are checked in discrete
instants tn = n h where h > 0 is the sampling period.
At each synchronous time tn and for each sensor ’i’ we
define the ET condition as follows

yi(tn) /∈ Si
n ⊂ �mi (2)

where Si
n is the ET set which is a specific designed

bounded set that relies on the used event triggering
technique. The transmission instances for the sensor i
are given by the recursion

t̄ i
k = inf{tn > t̄ i

k−1 | the condition (2) is verified} (3)

If the ETM is verified at tn = t̄ i
k then the sensor

measurement is directly transmitted to the controller

tn = t̄ i
k ⇔ ȳi(t̄ i

k) = yi(tn)

In this case we say that sensor node ’i’ applies an event
sampling method for obtaining the kth event sampled
measurement ȳi(t̄i

k). After being transmitted, this mea-
surement is then used for estimating x(tn) according

to a Gaussian probability density function (PDF). This
estimated state is characterized by some mean x̂n|n and
error-covariance Pn|n. For monitoring the system, an
estimate of the state is required synchronously in time
rather than at event occurrence instants. To that extent,
let us define Ti

e to be the set of event instants for the ith

sensor node and T the set of synchronous instants. Then
we can write

Ti
e = {t̄ i

k|k ∈ N}; and T = {c h | c ∈ N}

As illustrated in Fig 2. it is clear that Ti
e ⊂ T.
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Fig. 2. Synchronous and event instants

At each synchronous time tn and from ET condition
(2) we can define the Borel set Yi

n ∈ �mi for each
i ∈ {1, . . . , ns} as follows

Yi
n =

�
ȳi(t̄ i

k) = yi(tn) if tn = t̄ i
k

Si
n otherwise

(4)

The Borel set that corresponds to all measurement
vector y(tn) is denoted Yn. This set is available to the
controller at each synchronous time tn and can be used
for fault detection.

Remark 1. For scalar measurement sensors (mi = 1)
the Borel set Yi

n can be considered as bounded interval
with uniform probability distribution over its values.

III. Event Triggered Fault Detection

Algorithm

As illustrated in Figure 1, a fault detection filter is used
for generating the residual signal en. More specifically,
this filter uses a bunch of set-measurements Y0:n for
the state vector estimation based on Bayesian approach,
developed to deal with such type of measurements.

The ETFD algorithm is described by the following steps:

1) Prediction of the state based on the
system model(1) and the last updated state
x̂n−1|n−1;

2) Generation and evaluation of the output
residual en;

3) Formulation of the likelihood p(Yn|xn) as
a summation of N Gaussians;



4) Calculation of the updated estimation
result as a summation of N Gaussians;

5) Approximation of the resulting p(xn|Y0:n)
as a single Gaussian;

More details about these steps are given in the sequel.

A. Recursive Bayes filter

The estimation of the state vector x(tn) given the set-
measurement is equivalent to finding the following PDF
function

p(x(tn)|y(0) ∈ Y0, y(1) ∈ Y1, . ., y(tn) ∈ Yn) (5)

For brevity of notation we denote �(tn) as �n where �
can represent x, y, ȳ. We denote also (5) as p(xn|Y0:n).

According to Bayes formula we can write the following

p(xn|Y0:n) = p(xn|Y0:n−1)p(Yn|xn)´
�n

p(xn|Y0:n−1)p(Yn|xn)dxn
(6)

where the prediction PDF p(xn|Y0:n−1) is given by

p(xn|Y0:n−1) =
ˆ

�n

p(xn|xn−1)p(xn−1|Y0:n−1)dxn−1

(7)

Evaluating p(xn|Y0:n) is not always straightforward [21].
The developed (ETFD) algorithm uses the results given
in [15] to evaluate this integrals at each discrete instant
tn. A Bayesian Gaussian sum filter [6], [11] is used for
limiting the complexity of computations by approximat-
ing the filtering and predictive distributions by weighted
Gaussian mixtures. The result of the estimation are used
for the residual generation as shown in the sequel.

B. Prediction step

In this step, we calculate the PDF of the state
p(xn|Y0:n−1), at each synchronous time tn using the
previous updated state x̂n−1|n−1 and the system math-
ematical model. Because the state is Gaussian process,
one can write

p(xn|Y0:n−1) = N (xn, x̂n|n−1, Pn|n−1) (8)

with

x̂n|n−1 = Ahx̂n−1|n−1 + Bhun−1 (9)
Pn|n−1 = AhPn−1|n−1AT

h + EhWET
h (10)

where

Ah = eA h, Eh =
hˆ

0

eAηdη, Bh =
hˆ

0

eAηB dη

Remark 2. For the computation of Bh we suppose that
the actuators are provided with a zero-order-hold circuit
that maintains the continuous input constant until the
arrival of the new control value.

C. Residual signal generation

In model based FD, the purpose of residual generation
is to find a fault indicating signal using available input
and output information from the monitored system. The
signal ei(tn) denotes the residual for the rest of this
paper. When the measurement is available the residual
can be generated by the usual method i.e the difference
between the available measurement and the estimated
one. For the non-transmitting period, the fault effect can
be detectable or non-detectable as illustrated in the Fig
3. In the case of detectable fault the estimated output
ŷi

n based on the healthy system doesn’t belong to set of
actual possible output value of the sensor node namely
Si

n which indicates a high possibility of fault occurrence.
However, in the second case the only information that
we possess is that both the real output yi

n and estimated
output ŷi

n belongs to same set Si
n and no information

about the distance between yi
n and ŷi

n is provided. In
this case no decision about the occurrence of the fault
can be given.
During the non-transmitting period t̄ i

k−1 < tn ≤ t̄ i
k the

residual signal can be inspired from the ET condition. In
other words, we can define a vector membership function
ξS

i
n (see Appendix) such that ξS

i
n(yi

n) > 0 if yi
n ∈ Si

n

and ξS
i
n(yi

n) < 0 otherwise. The residual signal can be
given by

ei
n =

�
ξS

i
n(ŷi

n) if tn �= t̄ i
k

ȳi
k − ŷi

n if tn = t̄ i
k

(11)
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Fig. 3. Possible fault effects in the non-transmitting period

where ŷi
n = Ci x̂n|n−1 and Ci ∈ �mi×mi is the mi

row of the matrix C corresponding to the ith sensor
node. In general, the residual should be normally zero
or close to zero when no fault is present, but is distin-
guishably different from zero when a fault occurs. For our
choice of residual, we note that, between two sampling
instances, the residual signal is positive in the faulty case
and negative otherwise. The evaluation of ξS

i
n(ŷi

n) is a
way to detect the occurrence of the fault. For instance,
while transmitting, we use the classical way for residual
generation and the faulty behaviour corresponds to a
positive and distinguishably different from zero value of
the residual signal given by ȳi

k − ŷi
n.



D. Likelihood formulation

The probability p(yn ∈ Yn|xn), named also the likeli-
hood, can be seen as a quantized measurement charac-
terized by the set Yn. This section gives a unified formula
of the PDF p(yn ∈ Yn|xn) as a uniform distribution for
all yn ∈ Yn such that

p(yn ∈ Yn|xn) =
ˆ

�m

p(yn|xn) p(yn ∈ Yn) dy (12)

where

p(yn|xn)= N (yn, C xn, V )

To find an expression for the second PDF, i.e, p(yn ∈
Yn) , let us define ∧C(yn) as a uniform distribution of
yn ∈ �m, which is constant within the set C ⊂ �m

and zero outside C. Therefore, ∧Yn(y) is the desired
uniform distribution of p(yn ∈ Yn), which can further be
rewritten for each sensor node ’i’ and for t̄ i

k−1 < tn ≤ t̄ i
k

as follows

p(yi
n ∈ Yi

n) =
�

δ(yi
n − ȳi

k) if tn = t̄ i
k ∈ Te

∧Yi
n

(yi
n) otherwise

(13)

where δ is the Dirac delta function.
This distribution can be approximated by a sum of N
Gaussian distributions as follows
if tn = t̄ i

k ∈ Te then

p(yi
n ∈ Yi

n) = lim
Ṽ i

n→0

1
N

N�

j=1
N (yi

n, ȳi
k, Ṽ i

n)

if tn �= t̄ i
k then

p(yi
n ∈ Yi

n) = ∧Yi
n

(yi
n) ≈ 1

N

N�

j=1
N (yi

n, µ̄i
n,j , V̄ i

n)

by substitution into (12) we get

p(yn ∈ Yn|xn) ≈
1
N

N�

j=1

ˆ

�m

N (yn, C xn, V ) N (yn, µn,j , Vn) dyn

(14)

where

µn,j ∈ �m such that µi
n,j =

�
ȳi

k if tn = t̄ i
k

µ̄i
n,j otherwise

Vn = diag
�
V 1

n , . . . , V ns
n

�
∈ �m×m

V i
n =

�
0mi×mi if tn = t̄ i

k

V̄ i
n otherwise

Proposition 1. [6]An explicit solution of the integral
(14) is given by

p(yn ∈ Yn|xn) ≈ 1
N

N�

j=1
N (µn,j , C xn, Rn) (15)

where

Rn = V + Vn (16)

Proof . The proof of this proposition can be found in [13].

�

E. State update

An approximation of the product p(xn|Y0:n−1) p(Yn|xn)
can be given by

p(xn|Y0:n−1) p(Yn|xn) ≈ 1
N

N�

j=1
N (xn, x̂n|n−1, Pn|n−1)

× N (µn,j , C xn, Rn)

Using again the approximation of a Gaussian product,
the above summation of Gaussian products becomes

p(xn|Y0:n−1) p(Yn|xn) ≈ 1
N

N�

j=1
ωn,j N (xn, θ̂n,j , Θn)

(17)

with

Θn = (P −1
n|n−1 + CT R−1

n C)−1 (18)

θ̂n,j = Θn (P −1
n|n−1x̂n|n−1 + CT R−1

n µn,j) (19)
ωn,j = N (µn,j , C x̂n|n−1, C Pn|n−1CT + Rn) (20)

Now, the updated PDF p(xn|Y0:n) of (6) can be estab-
lished. Note that the characterization presented in (6)
has the expression of (17) in its nominator, while its de-
nominator is the integral of (17) over xn. As this integral

equals 1
N

N�
j=1

ωn,j , the explicit formula of p(xn|Y0:n) is

given by

p(xn|Y0:n) ≈
N�

j=1

ωn,j

N�
j=1

ωn,j

N (xn, θ̂n,j , Θn) (21)

F. State approximation

Proposition 2. In this step the sum given in (21) is
approximated by a single Gaussian that has the same
expectation and covariance matrix, hence:

p(xn|Y0:n) ≈ N (xn, x̂n|n, Pn|n) (22)



where

x̂n|n =
N�

j=1

ωn,j

N�
j=1

ωn,j

θ̂n,j (23)

Pn|n =
N�

j=1

ωn,j

N�
j=1

ωn,j

�
Θn + (x̂n|n − θ̂n,j) (x̂n|n − θ̂n,j)T

�

(24)

Proof . The proof of this proposition can be found in [13].

�
In the next section, we will examine the efficiency of
the proposed algorithm by applying it to an event based
control system in wich the ETM is designed to ensure
high performances with less number of measurements
transmission;

Before applying of the ETFD, we need to define the used
ETM and the corresponding sum of Gaussian approxima-
tion as proceeded in the sequel.

IV. FD under predefined ETM

The mixed output based ETM is one of the most al-
ternative methods in event triggered control literature.
The transmission is only possible if the following ET
condition is verified.

�yi
n − ȳi

k−1�2 > σi�yi
n�2 + �i (25)

The parameters σi and �i can be designed to insure the
system stability with very less number of measurement
transmissions as given in [3].
We can also define the ETM by the next membership
function by

ξS
i
n(yi

n) = ξi(yi
n, ȳi

k−1) =�yi
n − ȳi

k−1�2 − σi�yi
n�2 − �i

The scalars ȳi ∈ � (mi = 1) represents the transmitted
measurements and t̄ i

k is the kth event instant.

The ETFD estimates xn given the bunch of received ob-
servations until time tn. Notice that due to the definition
of event sampling, we can extract information of all the
measurement sets Yn. If ETM condition is not verified
at the time interval t̄ i

k−1 < tn ≤ t̄ i
k then the output yi

n

remains in a finite subset given by

m̄i(t̄ i
k) − ∆i(t̄ i

k) < yi
n < m̄i(t̄ i

k) + ∆i(t̄ i
k)

where m̄i(t̄ i
k) = ȳi

k
1−σi and ∆i(t̄ i

k) =
√

σi (ȳi
k

)2+�i−�i σi

1−σi .
It is clear that

Si
n =

�
m̄i(t̄ i

k) − ∆i(t̄ i
k), m̄i(t̄ i

k) + ∆i(t̄ i
k)

�
(26)

While no-transmitting, the values m̄i(t̄ i
k) − ∆i(t̄ i

k) and
m̄i(t̄ i

k)+∆i(t̄ i
k) represent the upper and the lower bound

of the measurement yi
n, respectively.

For the Gaussian approximation one can write:

p(yn ∈ Yn) = 1
N

N�

j=1
N (yn, µ̄n,j , V̄ n) (27)

such that

µn,j ∈ �m

µi
n,j =

�
ȳi

k if tn = t̄ i
k

µ̄i
n,j otherwise

Vn = diag[V 1
n , . . . , V m

n ] ∈ �m×m

V i
n =

�
0 if tn = t̄ i

k

V̄ i
n otherwise

where µ̄i
n,j and V̄ i

n are given by :

µ̄i
n,j = m̄i(t̄ i

k) − (N − 2(j − 1) − 1) N−1∆i(t̄ i
k)

V̄ i
n = (∆i(t̄ i

k))2N−2
�

1 − 0.2e
−4(N−1)

15 − 0.32e
−4(N−1)

180

�

More details of this approximation are presented in the
Appendix.
In model based FD the purpose of residual generation is
to generate a fault indicating signal, using available input
and output information from the monitored system. In
the sequel, the signal ei(tn) is used as fault indicator.
This signal inspired from the mixed ET condition is given
by

ei
n =

�
ξi(ŷi

n, ȳi
k−1) =�ŷi

n − ȳi
k−1�2 − σi�ŷi

n�2 − �i if tn �= t̄ i
k

ȳi
k − ŷi

n if tn = t̄ i
k

with

ŷi
n = Ci x̂n|n−1 and Ci is the ith row of the matrix C.

V. Illustrative example

Consider the following continuous time system

A =





−10 0 1 22
0 −35 1 −0.4
1 0 −8 1
0 1 0.4 −3



 , B =





0 −1
0 0.25
1 0

−1 0.5



 ,

C =





1 0.6 0.1 0
1 0.4 0 0

0.5 0 1 0.1
0 0 0 −1



 , F =





−1 1
1 0
0 −1
1 1



 ,

W =





0.95 0 0 0
0 0.88 0 0
0 0 0.59 0
0 0 0 0.87



 ; V = I4

The fault associated to the first column of the matrix
F occurs at time intervals [20, 40] and [70, 100] with
Υ1 = 12; while the second fault (associated to the



second column of F ) occurs at time interval [20, 40] with
Υ1 = 12. Figures Fig .4 and Fig .5 depict the residual
signal e1

n with its corresponding ETM state (1 activated,
0 not activated) in both healthy and faulty case. We omit
the plot of the rest of residual signals e2

n, e3
n, e4

n because
they show similar behaviour as e1

n.
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Fig. 4. The residual e1
n in the healthy case
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Fig. 5. The residual e1
n in the faulty case

First, we see that residual signals e1, can detect the fault
even in the non transmission time interval t ∈ [20, 40].
For t ∈ [70, 100] the fault is detected using mainly set

type measurement. The ETFD filter uses the ET condi-
tion and the predicted state based on the healthy system
dynamics for the detection of the faulty behaviour. One
can see that based on the proposed method, one has the
possibility to detect fault even for non-transmission case.

VI. Conclusion

In this chapter, an FD framework for networked control
systems has been proposed. First, a general structure of
the ETFD algorithm is proposed. Then, to demonstrate
its performance, this algorithm is used for fault detection
in NCS under predefined ETM. Future directions of
research will include the design of ETM dedicated for
improving fault diagnosis performance. Self triggering
algorithm based on updating the ETM to reduce the
number of measurement transmissions and hence the
power consumption is also a possible perspective for the
on-line sensor scheduling and fault detection co-design
field.

Appendix

Membership function

For a given set S we say that ξ is a membership function
on S only if it satisfies the following:
For any element s the next statement holds true

�
ξS(s) > 0 if s ∈ S
ξS(s) < 0 otherwise

(28)

Sum of Gaussian approximation

The uniform distribution ∧iYn(yi
n) is defined as follow-

ing:

if m̄i(tn−1) − ∆i(tn−1) < yi(tn) < m̄i(tn−1) + ∆i(tn−1)

then
∧i

Yn(yi
n) = 1

2 ∆i(tn−1)

if yi(tn) < m̄i(tn−1)−∆i(tn−1) or yi(tn) > m̄i(tn−1)+∆i(tn−1)

then
∧i

Yn(yi
n) = 0

Our aim is to find an approximation of ∧iYn(yi
n) as a

sum of Gaussian distributions given by

∧i
Yn(yi

n) ≈ 1
N

N�

j=1
N (yi

n, µ̄i
n,j , V̄ i

n)

V i
n and µi

n,j are calculated in order to minimize the next
cost function



F(N,µ̄i
n,1, · · · , µ̄i

n,N , V̄ i
n)

=
+∞ˆ

−∞



∧i
Yn(yi

n) − 1
N

N�

j=1
N (yi

n, µ̄i
n,j , V̄ i

n)




2

dyi
n

For that the rectangle of ∧iYn(yi
n) is divided into N

new sub-rectangles. Meaning that a large quantization
of 2 ∆ is divided into N smaller quantization of 2∆

N .
Each quantization-section is approximated by a single
Gaussian function with a different expectation µ̄i

n,j and
equal covariances V̄ i

n . The expectation µ̄i
n,j is the center

of each quantization and is given by

µ̄i
n,j = m̄i(tn−1) − (N − 2(j − 1) − 1) N−1∆i(tn−1)

The covariance V̄ i
n is estimated as a function of ∆ and

N and due to the fact that width of a Gaussian function
is linear to the square-root of its covariance, two aspects
of this function are assumed : V̄ i

n is linear with ∆2 and
when N → ∞, V̄ i

n increases linearly with 1
N2 . With these

two assumptions V̄ i
n is further estimated using trial and

error for different values of N and ∆.

Finally, the resulting function is given by [14]

V̄ i
n = (∆i(t̄ i

k))2N−2
�

1 − 0.2e
−4(N−1)

15 − 0.32e
−4(N−1)
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Fig. 6. Sum of Gaussians approximation

It is clear that better approximation needs more num-
ber of Gaussians, or in other words if M > N then
F(N, µ̄i

n,1, . . . , µ̄i
n,N , V̄ i

n) ≥ F(M, µ̄i
n,1, . . . , µ̄i

n,N , V̄ i
n).

Figure 6 shows an example of the proposed approxi-
mation for two cases (N = 4 and N = 15) where
∆i(tn−1) = 2 and m̄i(tn−1) = 3.
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