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ABSTRACT

This paper presents a new framework for oriented texture model-

ing. We introduce a new class of Gaussian fields, called Locally

Anisotropic Fractional Brownian Fields, with prescribed local

orientation at any point. These fields are a local version of a

specific class of anisotropic self-similar Gaussian fields with sta-

tionary increments. The simulation of such textures is obtained

using a new algorithm mixing the tangent field formulation and

a turning band method, this latter method having proved its effi-

ciency for generating stationary anisotropic textures. Numerical

experiments show the ability of the method for synthesis of tex-

tures with prescribed local orientation.

Index Terms— Prescribed orientation, anisotropic self-

similar Gaussian fields, turning bands, oriented textures

1. INTRODUCTION

Texture modeling is a challenging issue of image processing.

There is a variety of texture methods in the field of computer

vision, namely structural, statistical, model-based and transform-

based methods. Thus, identifying the perceived characteristics of

a texture in an image (regularity, roughness, frequency, content

directionality, etc.) is an important first step towards building

mathematical models for textures. We are interested in textures

presenting same similar patterns at different scales, as is often the

case for objects appearing in the nature, like clouds or mountains.

We focus on stochastic models with a property of self-similarity,

characteristic of a fractal behavior. The stochastic model behind

fractal analysis is the fractional Brownian field (FBF), which is a

multi-dimensional extension of the famous fractional Brownian

motion (FBM) introduced in 1940 by Kolmogorov [1] as a way

to generate Gaussian “spirals” in Hilbert spaces. The systematic

study of the FBM started with the seminal paper of Mandelbrot

and Van Ness [2]. The FBM has now become a standard model:

it is used in many areas such as hydrology, economics, finance,

physics and telecommunications (see, e.g., [3], [4], [5], and ref-

erences therein for more details). The FBF has also been largely

used in medical applications, with for instance the study of lesion

detectability in mammogram textures [6], assessment of breast

cancer risk [7], and the characterization of bone architecture for

the evaluation of osteoporotic fracture risk [8].
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Nevertheless, in many cases, fractal analysis with fractional

Brownian fields, which are isotropic by definition, is not com-

pletely satisfactory, in particular when the considered data dis-

play some anisotropy. Therefore, many stochastic models have

been introduced in the literature to take into account these pos-

sible additional anisotropic properties. Let us cite notably frac-

tional Brownian sheet defined in [9, 10] and anisotropic frac-

tional Brownian field (AFBF) introduced by Bonami and Estrade

in [11] which are two classical examples of Gaussian fields satis-

fying global anisotropic properties. Other models of anisotropic

textures called locally parallel textures, have also been recently

introduced in [12]. The mathematical definition and compu-

tational synthesis of anisotropic textures is an important issue,

since it provides flexible models enabling to test estimation pro-

cedures of the anisotropic characteristics of an image. Here we

focus on anisotropic local properties of Gaussian textures and

provide a new Gaussian model whose anisotropic properties are

prescribed at every point. It is a first preliminary and important

step in defining new statistical estimators of the local anisotropic

features of a given texture.

The paper is organized as follows. Section 2 briefly reviews

definitions and characterizations of a class of self-similar Gaus-

sian fields derived from the AFBF. Section 3 is devoted to the

presentation of our model, from both the theoretical and imple-

mentation point of view. Finally, we provide the synthesis of

numerical textures, for several vector fields of local orientations,

showing the ability of our approach.

2. ANISOTROPIC SELF-SIMILAR GAUSSIAN FIELDS

2.1. The fractional Brownian field

Let 0 < H < 1. The fractional Brownian field with Hurst

index H , denoted by BH = {BH(x);x ∈ R
2}, is the unique

real-valued centered Gaussian field satisfying the following

properties: – almost surely BH(0) = 0,

– BH admits stationary increments, i.e, for every z ∈ R
2,

BH(·+ z)−BH(z)
L
= BH(·)−BH(0),

– BH is H self-similar, i.e, ∀λ ∈ R
⋆, BH(λ·)

L
= λHBH(·),

– BH is isotropic, i.e, for every rotation R in R
2, BH ◦ R

L
=

BH ,

where
L
= denotes equality for all finite dimensional distributions.

The FBM is wholly characterized by its covariance function,
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Fig. 1. Examples of FBF with (a) H = 0.3, (b) H = 0.7.

which is given, for every x,y ∈ R
2 by

Cov(BH(x), BH(y)) = cH(‖x‖2H+‖y‖2H−‖x−y‖2H) ,

cH being a well-known nonnegative constant depending on H .

Following [3], the FBM can also be defined by its harmonizable

representation:

BH(x) =

∫

R2

eix·ξ − 1

‖ξ‖H+1
dŴ (ξ), (1)

where dŴ is a complex Brownian measure and x · ξ denotes

the dot-product on R
2. The Hurst index H is a fundamental

parameter of the FBF, as an indicator of the texture roughness.

The greater H is, the smoother the resulting texture is, as can be

seen in Fig. 1.

2.2. General anisotropic self-similar Gaussian fields

In order to introduce anisotropy in this model, Bonami and

Estrade [11] replaced the Hurst index H in (1) by a function of

the direction of ξ and then derived a new class of Anisotropic

Fractional Brownian Field (AFBF) by:

X(x) =

∫

R2

eix·ξ − 1

‖ξ‖h(arg ξ)+1
dŴ (ξ). (2)

More generally, a larger class of anisotropic models can be de-

fined as

X(x) =

∫

R2

(eix·ξ − 1)f1/2(ξ) dŴ (ξ), (3)

where the spectral density f is of the form

f1/2(ξ) = c(arg ξ)‖ξ‖−h(arg ξ)−1. (4)

Here, c and h are two π-periodic functions, defined on the inter-

val (−π/2, π/2] with ranges satisfying c((−π/2, π/2]) ⊂ R
+

and h((−π/2, π/2]) ⊂ (0, 1). When c and h are both constant,

we recover a FBF of order H ≡ h.

To define stationary anisotropic models with global orienta-

tion α0, one can set h ≡ H in (4) and:

cα0,α(arg(ξ)) = 1[−α,α](arg(ξ)− α0), (5)

(a) (b)

Fig. 2. AFBF with H = 0.5, α0 = 0 and (a) α = π/6, (b)

α = π/24.

for some 0 < α 6 π/2. Note that we then recover the elemen-

tary fields of [13], which are a particular case of AFBF. When

α = π/2, this model corresponds to the usual isotropic FBF of

Hurst index H (Fig. 1), but as soon as 0 < α < π/2, the field is

no longer isotropic, since the non-zero frequency arguments are

restricted between −α+ α0 and α+ α0.

Simulation algorithms for Gaussian fields use the covariance

function [14]. But their high complexity is a real problem to

produce large textures, and the covariance function is not explic-

itly known in general case. With respect to the AFBF, a recent

fast method has been proposed in [13], called the turning band

method, and used here to simulate the textures of Fig. 2, with

global orientation α0 = 0. Remark that the more the sector α
decreases to 0, the more the frequencies concentrate along the

horizontal axis, so the resulting texture appears vertically ori-

ented, as a consequence of the Fourier transform properties. For

small α, we obtain a strongly stationary oriented texture in the

direction orthogonal to α0 = 0 like in Fig. 2 (b).

3. A NEW CLASS OF GAUSSIAN FIELD WITH

PRESCRIBED ORIENTATION

3.1. Definition

We now define our new Gaussian model as a local version of

the elementary field defined in (3) with density given by (4) with

h ≡ H and c as in (5). More precisely, we define the follow-

ing Gaussian field, that we call Locally Anisotropic Fractional

Brownian Field (LAFBF):

X(x) =

∫

R2

(eix·ξ − 1)f1/2(x, ξ) dŴ (ξ), (6)

with

f1/2(x, ξ) = cα0,α(x, arg ξ)‖ξ‖
−H−1, (7)

cα0,α(x, arg ξ) = 1[−α,α](arg(ξ)− α0(x)), (8)

α0 being now a differentiable function on R
2. Our Gaussian

field is derived from AFBF in a similar way than Multifractional

Brownian Motion (MBM) from FBM, since we replace the ori-

entation parameter α0 with a function depending on the spatial

location x, whereas in the case of MBM the Hurst index H of

FBM was allowed to vary spatially [15].
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Fig. 3. (a) Texture resulting from the vector field orientation ~V 1
(x,y) in yellow, (b) zoom around the red point x0 = (x, y) that

shows locally an oriented elementary field, (c) diagram illustrating each parameter of the LAFBF model.

3.2. Tangent fields at every point

To describe the local properties and simulate our new class of

Gaussian fields, we shall use the notion of tangent fields that we

now briefly review. Recall that the random field X is locally

asymptotically self-similar of order H ∈ (0, 1) if for any h ∈
R
2 the random field

X(x0 + ρh)−X(x0)

ρH
,

admits a non-trivial limit in law Yx0
as ρ → 0 (see [16], and

[17, 18] for a more general definition). The field Yx0
is then

called the tangent field of X at x0. Roughly speaking, the ran-

dom field X admits the tangent field Yx0
at a given point x0 if

it behaves locally as Yx0
when x → x0. This notion has been

first introduced in [16] to describe the local behavior of Multi-

fractional Brownian Motion (which behaves locally as a FBM).

We can prove that the LAFBF X of (6) admits a tangent field

Yx0
at any point x0 ∈ R

2 defined as:

Yx0
(x) =

∫

R2

(eixξ − 1)f1/2(x0, ξ) dŴ (ξ) . (9)

We observe that the tangent field Yx0
is no more and no less than

an elementary field using the terminology of [13]. This result

shall be crucial when simulating this Gaussian model as detailed

in the next section.

3.3. Simulation of Locally Anisotropic Fractional Brownian

Field

Simulation of tangent fields. The simulation of a LAFBF will

first require the simulation of a tangent field at every point x0.

We follow below the methodology of [13] using the turning

bands method.

– Discrete formulation of the tangent field

By a change of variable in polar coordinates, one can derive an

integral expression for the variogram of Yx0
:

vYx0
(x) =

1

2

∫

R2

|eix·ξ − 1|2f(x0, ξ)dξ

=
1

2
γ(H)

∫ π/2

−π/2
cα0,α(x0, θ) |x · u(θ)|

2Hdθ
,

(10)

where u(θ) = (cos θ, sin θ) and γ(H) = π
HΓ(2H) sin(Hπ) .

The integral (10) is of the form
∫ π/2
−π/2 ṽθ(x · u(θ))dθ with

ṽθ = 1
2γ(H)cα0,α(x0, θ)| · |

2H . Ignoring the factor
1
2γ(H)cα0,α(x0, θ), we recognize that ṽθ is the variogram of a

FBM of order H . Consequently, Yx0
can be viewed as a sum

of independent FBM rotating around the origin. Discretizing θ
in an ordered set (θi)16i6n of n band orientations, and let be

(λi)16i6n the associated band weights λi = θi+1 − θi, the

turning band fields take the form

Y [n]
x0

(x) = γ(H)
1

2

n∑

i=1

√
λicα0,α(x0, θi)B

H
i (x · u(θi)),

(11)

where the BH
i ’s are n independent FBM of order H . This dis-

crete version is a good approximation, provided max
i

λi 6 ε for

ε sufficiently small.

– Simulation along particular bands

In practice, we consider a discrete grid r−1
Z
2 ∩ [0, 1]2 with

r = 2k − 1, k ∈ N
⋆. Following [13], we choose θi such that

tan(θi) =
pi

qi
, with pi, qi ∈ Z, then BH

i (x · u(θi)) becomes

{
BH

i

(
k1
r

cos θi +
k2
r

sin θi

)
; 0 6 k1, k2 6 r

}
L
=

(
cos θi
rqi

)H

{BH
i (k1qi + k2pi); 0 6 k1, k2 6 r}

,

(12)

and then can be generated using the fast algorithm of Perrin et

al. [19] on a regular grid.

– Dynamic choice of discrete bands

Finally, the choice of the bands orientations (θi)16i6n is gov-



Fig. 4. Texture resulting from the vector field ~V2
(x,y).

erned by the global computational cost of the BH
i , within dy-

namic programming [13].

Simulation of the LAFBF. As observed in [15] for the

MBM, a Gaussian field can be simulated from its tangent fields.

The LAFBF behaving locally like its tangent fields, for every

pixel x0, we assign X(x0) = Y
[n]
x0

(x0). The pseudocode of

the algorithm is given below, and the corresponding Matlab

code is available on the webpage [20]. A preprocessing step

(instructions 1,2,3,4 in the pseudocode), which does not depend

on the expected local orientations, includes the dynamic choice

and sorting of discrete bands, and the simulation of the n FBM.

These steps are executed once and for all. The rest of the al-

gorithm is of complexity O(r2 logn). Indeed, at each point

(k1, k2), a turning band θi contributes to X(k1, k2) if and only

if cα0,α((k1, k2), θi) 6= 0, i.e |θi − α0((k1, k2))| 6 α. Thus,

since the array θi is sorted, one such index i is founded using a

binary search, and then the others in its neighborhood.

Algorithm 1 Simulation of the LAFBF

Input: r = 2k − 1, H , α0, α, ǫ
Output: X LAFBF of size (r + 1)× (r + 1)

1: (pi, qi)16i6n ← DynamicBandsChoice(r, ε)
2: Compute and sort angles (θi)16i6n : θi ← atan2(pi, qi)
3: Compute width bands (λi)16i6n : λi ← θi+1 − θi
4: Generate n FBM : BH

i ← circFBM(r(|pi|+ |qi|), H)
5: Initialization : X ← 0
6: for all (k1, k2) do

7: for i = 1 to n do

8: ωi ←
√
λiγ(H)cα0,α((k1, k2), θi)

(
cos θi
rqi

)H

9: X(k1, k2)← X(k1, k2) + ωiB
H
i (k1qi + k2pi)

10: end for

11: end for

Fig. 5. Texture resulting from the vector field ~V3
(x,y).

3.4. Oriented texture synthesis

The parameters used in simulations are r = 255, H = 0.2,

α = 10−1, and ε = 10−2. To avoid numerical artifacts

due to the discrete formula (11) we consider a regularized ver-

sion c̃α0,α of the indicator function cα0,α, typically a Gaus-

sian. For α0 constant, we recover the results of [13] (see

Fig. 2). We present now realizations of textures with pre-

scribed local orientation at each point x0, given by a vector field
~Vx0

= u(α0(x0)). Fig. 3(a) displays a texture resulting from

the vector field ~V1
(x,y) = (cos(−π/2 + y), sin(−π/2 + y)).

A zoom around a point x0 (in red, Fig. 3(b)) shows that locally

a LAFBF behaves as an elementary field. Fig. 3(c) sketchs

the local density function at x0 and the different parameters.

We then consider two others types of vector fields, ~V2
(x,y) =

(cos(cos(36xy)), sin(cos(36xy))) and ~V3
(x,y) = ∇F (x, y)

with F (x, y) = (4x− 2)e−(4x−2)2−(4y−2)2 , with the resulting

textures in Figs. 4,5. As expected, the textures obtained with

our approach present local anisotropic behavior, with a direction

orthogonal to the vector field. Moreover, the simulation of a

256× 256 texture takes only a few seconds.

4. CONCLUSION

We introduced a new stochastic model defined as a local version

of an anisotropic fractional Brownian field. We took advantage

of tangent field formulation and the turning bands method to pro-

vide an efficient algorithm to simulate textures with prescribed

local orientations. We are currently improving the method by

removing numerical artifacts which appear for greater values of

the Hurst index H. Future extensions of our model include Gaus-

sian fields whose Hurst index and local orientation may vary spa-

tially. A forthcoming work will focus on its application to natu-

ral texture characterization and classification, as well as cartoon-

texture image decomposition [21].
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