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A particular interesting plasmonic system is that of metallic nanostructures interacting with metal films. 

As the LSPR behavior of gold nanostructures (Au NPs) on the top of a gold thin film is exquisitely sensitive to 

the spacer distance of the film-Au NPs, we investigate in the present work the influence of a few-layered 

graphene spacer on the LSPR behavior of the NPs. The idea is to evidence the role of few-layered graphene as 

one of the thinnest possible spacer. We first show that the coupling to the Au film induces a strong lowering at 

around 507nm and sharpening of the main LSPR of the Au NPs. Moreover, a blue shift in the main LSP 

resonance of about 13 nm is observed in the presence of a few-layered graphene spacer when compared to the 

case where gold nanostructures are directly linked to a gold thin film. Numerical simulations suggest that this 

LSP mode is dipolar and that the hot spots of the electric field are pushed to the top corners of the NPs, which 

makes it very sensitive to surrounding medium optical index changes and thus appealing for sensing 

applications. A figure of merit (FoM) of such a system (gold/graphene/ Au NPs) is 2.8, as compared to 2.1 for 

gold/Au NPs either a 33% sensitivity gain and opens up new sensing strategies.  

 

The phenomenon of localized surface plasmon resonance (LSPR) has been extensively studied over the 

last decade (Mayer and H. Hafner, 2011, Szunerits and Boukherroub, 2012). Because of intense local electrical 

field enhancements and sharp resonance excitation peaks, metallic nanoparticles are of great interest for the 

development of chemical and biological sensors as well as their use as signal enhancers in surface-based 

spectroscopies (Haes and Van Duyne, 2002, Xu et al., 2012b). A particular interesting plasmonic system that has 

received somewhat less attention is that of metallic nanostructures interacting with metal films (He et al., 2004, 

Tokareva et al., 2004, Cesario et al., 2005, Leveque and Martin, 2006, Levêque and Martin, 2006, Mock et al., 

2008, Chu and Crozier, 2009, Hohenau and Krenn, 2010, Mock et al., 2012). This system has been predicted to 

display a wealth of interesting optical phenomena due to the complex interaction of the confined LSPR 

properties of the particles with the delocalized thin film surface plasmon polariton. Numerical (Leveque and 

Martin, 2006, Levêque and Martin, 2006) as well as experimental results have been presented by several groups 

showing the distance-dependent plasmon resonant coupling (Mock et al., 2008, Mock et al., 2012). Mock and 

collaborators investigated the distance-dependent coupling between spherical Au NPs (60  nm in diameter) and a 

gold film (45 nm in thickness) by using polyelectrolyte assemblies with varying thickness (0-22.5 nm) as the 

spacer between the Au film and the Au NPs (Mock et al., 2008). By characterizing the scattering of a single 

nanoparticle, it was shown that when the nanoparticle is in close proximity to the metal surface, damping of the 

horizontal (parallel to the Au film surface) particle LSPR mode results in vertically (perpendicular to the Au film 
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surface) polarized NP scattering and a doughnut-shaped far field image. Cesario et al. showed with transmission 

measurements performed on a Au film coated with  an indium tin oxide (ITO) spacer layer of  20 nm, onto 

which an ordered array of  Au NPs (20 nm in diameter) was deposited, that two plasmonic modes are apparent: a 

band at lower wavelength (around 700nm) attributed to the LSPR of the isolated NPs and a second plasmonic 

band at higher wavelength (above 800nm) resulting from the excitation of the surface plasmon polariton (SPP) 

branch (1,0) by grating coupling (Cesario et al., 2005). These results were confirmed by reflection light 

extinction measurements on a similar system using a SiO2 spacer, which in addition put into evidence a LSPR 

mode at shorter wavelength,  independent of the NPs’ diameter and attributed to the excitation of the (1,1) SPP 

mode of the Au film (Chu and Crozier, 2009). Recently, Krenn and co-workers revealed a period independent 

extinction band at 520 nm in addition to a band at 600 nm, which shifts to larger wavelengths for larger array 

periods on an interface consisting of rectangular Au NP grating directly deposited onto a 25 nm thick gold film 

(Hohenau and Krenn, 2010). Numerical simulations indicated that for such small array periods with interparticle 

distance inferior to 500 nm, symmetric SPP modes cannot be excited. The LSPR mode at 520 nm mode was thus 

attributed to a combination of vertically oriented dipole LSPR located at the NPs and scattering to high-energy 

SPP.  

 

Motivated by previous work showing that the LSPR behavior of metallic nanostructures on the top of a 

metal thin film is exquisitely sensitive to the spacer distance of the film-NPs (Mock et al., 2008), we investigate 

in the present work the influence of a few-layered graphene spacer. The interest of graphene for plasmonic 

devices has been highlighted in several recent papers (Salihoglu et al., 2011, Reed et al., 2012, Xu et al., 2012a, 

Szunerits et al., 2013). Graphene has been considered as an alternative coating for silver (Choi et al., 2011, 

Szunerits et al., 2013) and gold (Wu et al., 2010) based SPR as it is believed to have several advantages: (i) 

graphene has a very high surface to volume ratio, which is expected to be beneficial for efficient adsorption of 

biomolecules as compared to naked gold; (ii) graphene is expected to increase the adsorption of organic and 

biological molecules as their carbon-based ring structure allows π-stacking interaction with the hexagonal cells 

of graphene; (iii) controlling the number of graphene layers transferred onto the metal interface should allow 

tuning the SPR response and the sensitivity of SPR measurements (Wu et al., 2010). However, the LSPR 

behaviour of metallic nanostructures on the top of a metal thin film with a graphene spacer in-between has not 

been investigated so far. In this work, we take advantage of the two-dimensional structure of graphene with a 

thickness of 0.34 nm (Gupta et al., 2006) as a high optical index non dielectric spacer between a flat Au film and 

a Au NP array. The plasmonic properties of this interface are compared to Au NPs directly onto a 50 nm thick 

Au film. Moreover, the potential of such substrates for sensing applications is assessed and trilayer graphene is 

evidenced to enhance sensitivities of LSP sensors 

 

The newly designed interface consists of Au NP gratings, produced by e-beam lithography (EBL), 

deposited onto graphene coated 50 nm Au film (Fig. 1A). The plasmonic properties of this interface are 

compared to similar Au NPs directly deposited onto a 50 nm Au film (Fig. 1B). Structural characterizations as 

well as SPR measurements evidenced good quality of transferred graphene and a thickness of 1.02nm which 

corresponds to three monolayers (see Supporting Information, Figure S1 and S2). 

 

(A)      (B) 

                  
 Fig. 1 Schematic illustration of the different interfaces investigated: (A) graphene coated Au thin film decorated 

with Au NPs array; (B) Au NPs array directly deposited onto thin Au film without the graphene spacer layer. 

 

The graphene-modified SPR interface was in the following decorated with an ordered array of Au NPs via 

electron beam lithography (EBL) (McCord and Rooks, 1997). On top of a chromium adhesion layer (d=3 nm), 

Au NPs of 50 nm in height, with a centre-to-centre distance of 300 nm and varying particle diameter (80 nm, 110 

nm and 140 nm) were formed by EBL. The lithographically fabricated particles have roughly a cylindrical shape 

as seen from the scanning electron microscopy (SEM) images in Fig. 2.  
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Fig. 2. SEM images of graphene-based SPR decorated with Au NPs by EBL with center-to-center distance of 

300 nm. The particles are 50 nm in height and 80 nm (A), 110 nm (B), 140 nm (C) in diameter. 
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Fig. 3: (A) Set up for optical measurements. (B) Extinction spectra measured in air of the Au surface (dashed 

lines) and graphene-modified Au surface (full lines) decorated with Au NPs of 50 nm (black), 80 nm (blue), 110 

nm (green) and 140 nm (red) in diameter, 50 nm in height and center-to-center distance of 300 nm. The signal 

was collected with a ×10 objective with a numerical aperture of NA = 0.15. The reference for calculating the 

extinction is taking on the gold film outside the arrays. The optical extinction spectrum of 80 nm Au NPs 

directly fabricated on Au film could not be resolved. 

 



The extinction spectra of the systems have been measured with a transmission optical microscope 

coupled to a micro-spectrometer using a multimode optical fibre as confocal filtering, as schematically described 

in Fig. 3A. A ×10 objective lens (NA=0.15) allows for a detection area of ≈50 µm
2
. Fig. 3B displays the 

extinction spectra under normal incidence for the different gratings fabricated onto graphene coated Au surface 

(full lines). Each of the curves is characterized by a sharp resonance peak at λ1= 507 nm and a second band at 

higher wavelength, λ2= 770 nm, which is however rather broad and not well defined for all the investigated 

interfaces. The position of the resonance band at shorter wavelength, λ1, is size-independent due to the gold 

interband transitions and its full width at half maximum (fwhm) is decreasing with increasing the diameter of the 

NPs to reach fwhm≈50 nm for NPs of 140 nm in diameter. For comparison, the peak fwhm for the band at λ2 is 

about 250 nm for this array. The position of the λ1=507nm peak is a low wavelength mode compared to the one 

expected for Au NP gratings on glass substrates.  

 

To understand the origin of the  plasmonic band blue shift, a similar system without any spacing layer 

(graphene) between the Au NP gratings and the Au film was constructed (Fig. 1B) and the experimentally 

obtained extinction spectra are displayed in Fig. 3B. In the case of the λ 1 plasmon band the peak position is not 

size independent any longer, since the LSP resonance is at 505 nm for 50 nm NPs, 514 nm for 110 nm NPs and 

520 nm for 140 nm NPs. The optical extinction spectrum of 80 nm Au NPs directly fabricated on Au film could 

not be resolved. However, the low wavelength LSP mode seems to be quite similar in both cases. Note that the 

graphene layers leads to little sharpening of the λ 1 plasmon band since its width is increased to 64 nm for Au 

NPs deposited directly on the Au film without any graphene spacer. 
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Fig. 4: (A) Computed extinction spectra of a single cylinder particle, diameter 80 nm (blue), 110 nm (green) and 

140 nm (red), thickness 50 nm, placed on the Au surface (solid lines), or on the graphene-modified Au surface 

(dashed lines). (B) Computed distribution of the electric field inside a vertical section of the 110-nm-diameter 

particle on the Au substrate, at the resonant wavelength λ = 524 nm. Color scale: electric-field time-averaged 

amplitude, normalized to the incident plane wave amplitude; green vectors: electric-field real part; cyan vectors: 



electric-field imaginary part. (C) Computed distribution of the electric field in a horizontal section 25 nm above 

the Au interface, same wavelength. 

 

In order to get a better physical understanding of the origin of the low wavelength mode presented in 

Fig. 3B, numerical simulations were performed using the Green’s tensor method on a single Au NP, deposited 

either onto glass coated with 50 nm Au film or on glass coated with 50 nm Au and post-coated with graphene 

(glass/Au/graphene) with illumination in normal incidence to the substrate. The thickness of the graphene layer 

was chosen as 1 nm since experimentally we determined ≈3 monolayers. The optical constants of Au were taken 

from Johnson and Christy (Johnson and Christy, 1972). The numerical extinction spectra for the different 

interfaces with Au NPs of 50 nm in height and varying particle diameter (80 nm, 110 nm and 140 nm) are seen 

in Fig. 4 for the systems with and without graphene spacer.  

 

Fig. 4A displays a sharp peak at λ=520 nm for both systems independent on the presence of graphene as 

spacer. The electric field maps (Fig. 4B and 4C) indicate that this mode corresponds to a dipolar localized 

surface plasmon whose hot spots (zones of high near-field intensities) are “pushed” to the top corners of the NPs, 

thus at the interface with air. The lower optical index of air compared to that of substrates made of higher index 

dielectric materials (such as glass) would then explain why this mode exhibits a lower resonance wavelength 

compared to similar gratings fabricated onto SiO2 substrates (Viste et al., 2010). It has been shown that when 

NPs lie on a dielectric substrate the hot spots of the LSP mode are localized at the low corners of the particles, 

that is at the substrate surface (Hutter et al., 2013). We believe that the Au film plays a role similar to a mirror on 

the mode field distribution and that this effect stems from the interference between the field scattered by the NP 

gratings and the reflection of this very same scattered field by the Au film.  However, the numerical simulations 

did not provide any optical based explanation about the blue shifted plasmon band. It is currently believed that 

the blue-shift induced by graphene comes from charge transfer between graphene and the Au NPs, which would 

modify the LSP frequency through a modified free carrier density and plasma frequency. 

 

Motivated by the sharpness of the LSPR mode at 507 nm observed on glass/Au/graphene/Au NPs and 

its localization at the interface to the surrounding medium, the possibility to use it for sensing applications was 

investigated. As predicted by Hohenau and Krenn, the LSPR peak sharpness should lead to highly sensitive 

sensors (Hohenau and Krenn, 2010). The refractive index sensing of the Au NPs/graphene/Au film interface was 

investigated by recording the wavelength shift when immersed in water/glycerol mixtures at different 

proportions giving different refractive indexes (n=1.33 for water to 1.47 for glycerol, inbetween water/glycerol 

mixtures). Fig. 5A shows that the position of λ1 is shifting to higher wavelengths with increasing the refractive 

index. The change in the position of λ1,Δλ1, shows a linear dependency as a function of the refractive index of 

the surrounding medium. The sensitivity, defined as the ratio of the change in the position of the plasmon band 

over the change in the refractive index, dλ/dn, is determined from the slope of Fig. 5B and increases as the 

thickness/diameter ratio of the plasmonic interface decreases. Graphene-modified Au films coated with Au NPs 

of 140 nm in diameter exhibit a sensitivity of 139 nm/RIU, whereas the same systems coated with Au NPs of 

110 nm and 80 nm display sensitivities of 66 nm/RIU and 34 nm/RIU, respectively. The observed sensitivity of 

139 nm/RIU is comparable to other plasmonic structures with a resonance band between 500-600 nm (Malinsky 

et al., 2001, Mock et al., 2003, Sherry et al., 2005, Khalavka et al., 2009). The 520 nm mode of the system 

without any spacer exhibits a somewhat lower sensitivity (124 nm/RIU) and a larger peak width (fwhm = 64 

nm). It has become common to compare the sensing characterization of a LSPR mode by its figure-of-merit 

(FoM) defined by the ratio between the sensitivity and the full width at half maximum of the resonance peak 

(FoM= (dλ/dn)/fwhm) with high values of FoM being an indicator for good sensor performance and good 

readability. For the interface with Au NPs of 140 nm in diameter with graphene spacer, the fwhm=50 nm and 

results in FoM=2.8 when fitted by a Lorentzian function as compared to only 2.1 without spacer. Thus, it is 

evident that the graphene spacer enhances both sensitivity and FoM of Au NPs coupled to Au film systems. 

Moreover, this FoM is higher than those reported for silver triangles (λpeak=564 nm; FoM=1.8) (Malinsky et al., 

2001), silver cubes (λpeak=510 nm; FoM=1.6) (Sherry et al., 2005), silver spheres (λpeak=520 nm; FoM=2.2) 

(Mock et al., 2003) or gold spheres (λpeak=530 nm; FoM=1.5) (Underwood and Mulvaney, 1994).  It ranks this 

interface among the highly sensitive LSPR sensors with plasmon band in the visible at 500 nm (Zalyubovskiy et 

al., 2012). Indeed, most of the interfaces with high FoM (4-16.5) (Verellen et al., 2011, Lodewijks et al., 2012) 

take advantage of the fact that higher sensitivities are achieved with plasmon bands in the near-infrared of the 

spectrum (850-1200 nm).  
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Fig. 5: (A) Extinction spectra of the graphene-modified SPR surface decorated with Au NPs array of 140 nm in 

diameter for different refractive indexes n of glycerol/water mixtures: 1.00 (black), 1.33 (grey), 1.37 (blue), 1.40 

(magenta), 1.44 (red) 1.47 (green); (B) Shift of the low wavelength LSPR peak depending on the refractive index 

of the surrounding medium. 

 

In conclusion, in this work the interaction of metallic nanoparticle gratings with gold thin films using 

graphene as spacer is investigated. Optical extinction measurements allow to evidence that the fabrication of Au 

NP gratings directly on Au film or separated with trilayered graphene leads to a sharp peak at 520 nm 

(Au/AuNPs) and 507 nm (Au/graphene/AuNPs), which is almost independent of the size of the nanoparticles. 

The position of the plasmonic band at 520 nm is in accordance with numerical simulations based on the 

electromagnetic theory and corresponds to a dipolar LSP mode, which is pushed to the top of the interface and 

the interface with air. The blue-shift induced by the trilayer graphene spacer could be induced by charge transfer 

between the graphene layer and the Au NPs gratings. The dipolar LSP mode reveals, however, to be well 

sensitive to optical index changes of the surrounding medium due to its interface with air. Moreover, the 

importance in sensing of this LSPR mode is linked to its low fwhm of 50 nm, which results in a FoM of 2.8 at λ1 

≈ 507 nm. The role of the graphene spacer in Au NPs coupled to Au film systems is clearly evidenced to both 

increase the sensitivity and decrease the FWHM of the LSPR peak which leads to a large improvement of the 

FoM from 2.1 to 2.8, that is to say about 33 %. Besides, this study provides a further understanding of systems 

based on arrays of resonant metallic NPs coupled to metallic films. From a practical point of view, it opens 

avenues to engineering in a controlled and predictable way the spectral properties of metallic NPs-based systems 

to reinforce their applicability especially for sensing applications. This first study paves thus the way for highly 

sensitive sensors and should lead to further studies in order to optimize both the number of graphene layers and 

the NP size.   

 

 

ASSOCIATED CONTENT 

Supporting Information. Supporting Information contains details about graphene preparation and transfer. 

Structural characterization of the graphene before and after its transfer was performed using Raman and XPS 

measurements (see Figure S1). SPR investigations compared to numerical simulations allowed to determine the 

number of graphene layers (see Figure S2).  
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