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Maximum edge-cuts in cubic graphs with large girth and in random cubic graphs

We show that for every cubic graph G with sufficiently large girth there exists a probability distribution on edge-cuts in G such that each edge is in a randomly chosen cut with probability at least 0.88672. This implies that G contains an edge-cut of size at least 1.33008n, where n is the number of vertices of G, and has fractional cut covering number at most 1.127752. The lower bound on the size of maximum edge-cut also applies to random cubic graphs. Specifically, a random n-vertex cubic graph a.a.s. contains an edge cut of size 1.33008n.

Introduction

An edge-cut in a graph G = (V, E) defined by X ⊆ V is the set of edges with exactly one end vertex in X (and exactly one end vertex in V \ X).

A maximum edge-cut is an edge-cut with the maximum number of edges. The size of a maximum edge-cut is an important graph parameter intensively studied both in structural and algorithmic graph theory. From the algorithmic point of view, it attracted a lot of attention because of an approximation algorithm based on the semidefinite programming by Goemans and Williamson [START_REF] Goemans | Improved approximation algorithms for maximum cut and satisfability problems using semidefnite programming[END_REF] which achieves the best possible approximation ratio under reasonable computational complexity assumptions [START_REF] Khot | Optimal inapproximability results for MAX-CUT and other 2-variable CSPs?[END_REF]. More specifically, assuming that the Unique Games Conjecture of Koth [START_REF] Khot | On the power of unique 2-prover 1-round games[END_REF] holds, it is NPhard to approximate the size of a maximum edge-cut in a graph G within any factor greater than the approximation factor of the Goemans-Williamson algorithm. On the other hand, there exists a polynomial-time algorithm for finding a maximum edge-cut in planar graphs [START_REF] Hadlock | Finding a Maximum Cut of a Planar Graph in Polynomial Time[END_REF], and more generally in graphs embeddable in a fixed orientable surface [START_REF] Galluccio | Optimization via Enumeration: a new algorithm for the Max Cut Problem[END_REF]. In this paper, we provide new structural results on maximum cuts in cubic graphs, i.e., graphs with all vertices of degree three.

We prove a new lower bound on the size of a maximum edge-cut in a cubic graph with no short cycle and in a random cubic graph. Let us now mention earlier results. In 1990, Zýka [START_REF] Zýka | On the bipartite density of regular graphs with large girth[END_REF] proved that the size of the maximum edgecut in cubic graphs with large girth is at least 9n/7 -o(n) = 1.28571n-o(n). A better bound 1.3056n can be obtained from a recent result [START_REF] Kardoš | Volec: Fractional colorings of cubic graphs with large girth[END_REF] on independent sets in cubic graphs with large girth. The asymptotic lower bound for a maximum edge-cut in random cubic graphs of 1.32595n was given by Díaz, Do, Serna and Wormald [START_REF] Díaz | Bisection of Random Cubic Graphs[END_REF]. The experimental evidence suggests that almost all n-vertex cubic graphs contain an edge-cut of size at least 1.382n [26]. On the other hand, the best known upper bound is 0.9351m = 1.4026n which applies both to random cubic graphs and cubic graphs with large girth. The upper bound was announced by McKay [START_REF] Mckay | Maximum Bipartite Subgraphs of Regular Graphs with Large Grith[END_REF], its rigorous proof can be found in [START_REF] Hladký | Bipartite subgraphs in a random cubic graph[END_REF]. The problem could also be translated to a problem in statistical physics and applying non-rigorous methods suggests that the size of a maximum edge-cut for almost all n-vertex graphs is at most 1.386n [START_REF] Zdeborová | A conjecture on the maximum cut and bisection width in random regular graphs[END_REF].

The problems of determining the size of a maximum edge-cut in random cubic graphs (more generally in random regular graphs) and in cubic (regular) graphs with large girth are closely related. On one hand, Wormald showed in [START_REF] Wormald | The asymptotic distribution of short cycles in random regular graphs[END_REF] that a random cubic graph asymptotically almost surely (a.a.s.) contains only o(n) cycles shorter than a fixed integer g. Therefore, we can a.a.s. remove a small number (which means o(n)) of vertices to obtain a subgraph with large girth and only o(n) vertices of degree less than three.

On the other hand, Hoppen and Wormald [15] have recently developed a technique for translating many results for random r-regular graphs to rregular graphs with sufficiently large girth. In particular, they are able to translate bounds obtained by analyzing the performance of so-called locally greedy algorithms for a random regular graphs. These algorithms and their analysis provide the currently best known asymptotic bounds to many parameters of random regular graphs, for example an upper bound on the size of the smallest dominating set [START_REF] Duckworth | On the independent domination number of random regular graphs[END_REF]. The main tool for the analysis of such algorithms as well as for analysis of many other random processes is the differential equation method developed by Wormald [START_REF] Wormald | Differential Equations for random processes and random graphs[END_REF].

Bounds on maximum edge-cuts are closely related to the concept of fractional cut coverings. A fractional cut covering of a graph G is a parameter analogous to a fractional coloring of G. It was first introduced by Šámal [START_REF]On XY mappings[END_REF] under the name cubical colorings; he also related this parameter to graph homomorphisms. These ideas are further developed in [START_REF]Fractional covering by cuts[END_REF][START_REF]Cubical coloring fractional covering by cuts[END_REF]. The aim is to assign non-negative weights to edge-cuts in G in such a way that for each edge e of G the sum of weights of the cuts containing e is at least one. The fractional cut covering number is the minimum sum of weights of cuts forming a fractional cut covering. Our approach in this paper gives also an upper bound for the fractional cut covering number of cubic graphs with sufficiently large girth.

New results

The main result of this paper is the following. Theorem 1. There exists an absolute constant g 0 such that the following holds. If G is a cubic graph with girth at least g 0 , then there exists a probability distribution on edge-cuts in G such that each edge of G is contained in an edge-cut drawn according to this distribution with probability at least 0.88672.

Proof of the Theorem 1 actually provides that g 0 ≤ 637 789. Before presenting the proof of Theorem 1, let us state four corollaries of this theorem. First, by considering the expected size of an edge-cut drawn according to the distribution from Theorem 1, we get the following.

Corollary 2. There exists an absolute constant g 0 such that every n-vertex cubic graph with girth at least g 0 contains an edge-cut of size at least 1.33008n.

We can also translate Theorem 1 to subcubic graphs with large girth. Corollary 3. There exists an absolute constant g 0 such that the following holds. If G is a graph with maximum degree at most three and girth at least g 0 , then there exists a probability distribution on edge-cuts in G such that each edge of G is contained in an edge-cut drawn according to this distribution with probability at least 0.88672. In particular, G contains an edge-cut of size at least 0.88672m, where m is the number of edges of G.

Proof. Fix g 0 to be the constant given by Theorem 1, and let n 1 and n 2 be the numbers of vertices of G with degree one and two, respectively. Clearly, we may assume that G has no isolated vertices. Let R be a (2n 1 + n 2 )-regular graph with girth at least g 0 . There exists such a graph, since a random cubic graph has with positive probability girth at least g 0 for every fixed value of g 0 , which was proven by Bollobás [START_REF] Bollobás | A probabilistic proof of an asymptotic formula for the number of labelled regular graphs[END_REF] and independently by Wormald [START_REF] Wormald | The asymptotic distribution of short cycles in random regular graphs[END_REF]. Replace each vertex of R with a copy of G in such a way that the edges of R are incident with vertices of degree one and two in the copies of G and the resulting graph is cubic. Observe that the obtained graph H has girth at least g 0 .

Consider the probability distribution D given by Theorem 1 on edge-cuts in H and fix an arbitrary copy G ′ of the graph G in H. For every edge-cut C ⊆ E(G) in G, we set the probability p(C) to be the probability that the edge-cut in G ′ induced by a random edge-cut in H drawn according to D is equal to C. This yields a probability distribution on edge-cuts in G with the required property.

Since a random cubic graph asymptotically almost surely contains only o(n) cycles shorter than a fixed integer g [START_REF] Wormald | The asymptotic distribution of short cycles in random regular graphs[END_REF], the lower bound on the size of an edge-cut also translates to random cubic graphs. Proof. Again, fix g 0 to be the constant given by Theorem 1 and let G be a randomly chosen n-vertex cubic graph. The results of [START_REF] Wormald | The asymptotic distribution of short cycles in random regular graphs[END_REF] imply then we can a.a.s. remove o(n) vertices and obtain a subgraph G ′ with girth at least g 0 .

Therefore, G ′ has at least 1.5no(n) edges and by Corollary 3, there exists an edge-cut C ′ in G ′ of size at least 1.33008no(n). Suppose that X ⊆ V (G ′ ) is one of the sides of C ′ and let Y be the vertices removed from G. The edge-cut in G with one side being X ∪ Y has size at least 1.33008no(n).

The last corollary relates our results to the problem of fractional coverings the edges with edge-cuts. We show how to construct from the probability distribution given by Corollary 3 a fractional cut covering.

Corollary 5. There exists an absolute constant g 0 such that every n-vertex graph G with maximum degree at most three and girth at least g 0 has the fractional cut covering number at most 1.127752.

Proof. Fix g 0 to be the constant given by Theorem 1 and consider the probability distribution on edge-cuts in G given by Corollary 3. If the probability of an edge-cut C to be drawn in this distribution is p(C), assign C weight p(C)/0.88672. It is straightforward to verify that we have obtained a fractional cut covering of weight 1/0.88672 ≤ 1.127752.

Structure of the proof

Our proof is inspired by the method which was developed by Lauer and Wormald in [START_REF] Lauer | Large independent sets in regular graphs with large girth[END_REF] for finding large independent sets in regular graphs with large girth. This method was then extended by Hoppen [START_REF] Hoppen | Properties of graphs with large girth[END_REF], who improved the lower bound for independent sets and also proved a lower bound for induced forests. The latter result can also be found in [START_REF] Hoppen | Induced forests in regular graphs with large girth[END_REF].

In order to prove Theorem 1, we design a randomized procedure for obtaining an edge-cut which resembles the procedure used in [START_REF] Díaz | Bisection of Random Cubic Graphs[END_REF]. The main difference between our procedure and the procedure from [START_REF] Díaz | Bisection of Random Cubic Graphs[END_REF] is that our procedure finds an edge-cut whose parts have slightly different sizes, while the procedure from [START_REF] Díaz | Bisection of Random Cubic Graphs[END_REF] finds an edge-cut whose parts have the same size. Surprisingly, at least at the first glance, this edge-cut constructed in an asymmetric way is larger than an edge-cut from [START_REF] Díaz | Bisection of Random Cubic Graphs[END_REF].

The key tool for our analysis is the independence lemma (Lemma 7) which is given in Section 5. This lemma is used to simplify the recurrence relations appearing in the analysis. The recurrences describing the behavior of the randomized procedure are derived in Section 6. The actual performance of the procedure is based on setting up the parameters of the procedure and solving the recurrences numerically. This is discussed in Section 7.

The sought probability distribution is obtained by processing a cubic graph G = (V, E) by the procedure which produces an edge-cut in it. G is processed in a fixed number of rounds K and the required assumption on the girth of G will depend only on the number K. We will iteratively construct two disjoint subsets R ⊆ V and B ⊆ V ; the vertices contained in R are referred to as red vertices and those in B as blue ones. The aim of the procedure is to maximize the number of red-blue edges. The vertices that are neither red nor blue will be called white.

All vertices are initially white. In every round, each white vertex is recolored to red or blue with a certain probability depending on the number of its red and blue neighbors, as well as on the number of current round. Once a vertex is colored red or blue, its color stays the same in all the remaining rounds of the procedure.

Detailed description

We now describe the randomized procedure in more detail. We first introduce some notation. Let

I j := {(r, b) : r ∈ N 0 , b ∈ N 0 , r + b ≤ j}, i.e.
, the set I j contains all pairs r and b of non-negative integers such that r + b ≤ j. For example, I 2 = {(0, 0), (0, 1), (1, 0), (1, 1), (2, 0), (0, 2)}. Note that

|I j | = j+2
2 . Let G = (V, E) be a cubic graph and v a vertex of G. Throughout the analysis, r(v) will refer to the number of red neighbors of v and b(v) to the number of its blue neighbors. Therefore, 3r(v)b(v) is the number of the white neighbors of v. If the vertex v is clear from the context, we just use r and b instead of r(v) and b(v).

Our randomized procedure is parametrized by the following parameters:

• an integer K,

• probabilities P r,b k (W ) for all k ∈ [K] and (r, b) ∈ I 3 ,
• probabilities P r,b k (R) for all k ∈ [K] and (r, b) ∈ I 3 and

• probabilities P r,b k (B) for all k ∈ [K] and (r, b) ∈ I 3 . We require that P r,b k (W )+P r,b k (R)+P r,b k (B) = 1 for all k ∈ [K] and (r, b) ∈ I 3 .
The precise values of these probabilities will be defined in Section 7.

The integer K ∈ N 0 denotes the number of rounds that are performed. Throughout the procedure, vertices of the input graph G have one of the three colors: white (W), red (R) and blue (B). Let W k ⊆ V (G) denote the set of white vertices after the k-th round. Analogously, we define R k and B k as the sets of red vertices and blue vertices, respectively. As we have already mentioned, at the beginning of the process W 0 := V, R 0 := ∅ and B 0 := ∅. 

= ∅ for all (r, b) ∈ I 3 \ {(0, 0)}.
Consider the coloring of G obtained after the k-th round. The (k + 1)-th round of the procedure is performed as follows. Let v be a vertex from W r,b k . With probability P r,b k+1 (R) we change the color of v to red, with probability P r,b k+1 (B) we recolor it to blue, and with probability P r,b k+1 (W ) it remains white. If v is after the k-th round colored red or blue, it will not change its color during the (k + 1)-th round.

Before we can proceed further, we have to introduce some additional notation. For a vertex v ∈ V (G) let T d v denote the subgraph of G induced by vertices at the distance from v at most d. Observe that if the girth of G is larger than 2d + 1, then the subgraph T d v is a tree. We show that if the girth of G is sufficiently large, then the probabilities that after the k-th round a vertex v has white, red or blue color, respectively, do not depend on the choice of v. To do so, let is start with the following proposition. Proposition 6. Let G be a cubic graph and v a vertex of G. For every k ∈ [K] the probability that the subgraph T K-k v has a certain coloring after the k-th round is determined by the coloring of T K-k+1 v after the (k -1)-th round.

Proof. The color of a vertex u ∈ T K-k v after the k-th round depends only on the colors of u and its neighbors after the (k -1)-th round. Since all the neighbors of u are contained in T K-k+1 v , the proposition follows.

Suppose that the girth of G is at least 2K. For any k ∈ [K] the structure of a subgraph T K-k v does not depend on the choice of v, i.e., it is always a tree with all inner vertices of degree three. Therefore, by a simple inductive argument on k together with Proposition 6, we conclude that all the following probabilities do not depend on the choice of v:

w k := P v ∈ W k , r k := P v ∈ R k , b k := P v ∈ B k .
Analogously, for any k ∈ [K -1] and (r, b) ∈ I 3 , the probability that after the k-th round a vertex v is white and has r red neighbors and b blue neighbors does not depend on the choice of v as well. Therefore, we can define w r,b k :

= P v ∈ W r,b k v ∈ W k .
If the girth of G is at least 2K + 1, the same reasoning as before yields the following. The probability that for an edge uv ∈ E(G) either u is red and v is blue after the k-th round, or v is red and u is blue after the k-th round does not depend on the choice of uv. This probability will be denoted by

p k := P (u ∈ R k ∧ v ∈ B k ) ∨ (u ∈ B k ∧ v ∈ R k ) .

Independence lemma

In this section we present a key tool we used in the analysis of the randomized procedure. In general, our analysis follows the approach used in [START_REF] Hoppen | Properties of graphs with large girth[END_REF].

If G is a cubic graph with girth at least 2K + 1, uv is an edge of G and d is an integer between 0 and K -1, T d v,u denotes the component of T d vu containing the vertex v. We refer to v as to the root of T d v,u . From the assumption on the girth it follows that all the subgraphs T d v,u are isomorphic to the same rooted binary tree T d of depth d.

Let k ∈ [K]. For a set V ′ ⊆ V (G) let c k (V ′
) denote the coloring of vertices V ′ after the k-th round. The set of all colorings of T K-k such that the root of the tree is white is denoted by C k . Observe that by the girth assumption and Proposition 6, for any γ ∈ C k the probability P c k T K-k v,u = γ does not depend on the edge uv.

We are ready to prove the main lemma of this section.

Lemma 7 (Independence lemma). Consider the randomized procedure with parameters K and P r,b i (C), where i ∈ [K], (r, b) ∈ I 3 and C ∈ {W, R, B}. Let G be a cubic graph with girth at least 2K + 1, uv an edge of G, k an integer smaller than K and γ u and γ v two colorings from C k . Conditioned by the event uv ⊆ W k , the events

c k T K-k v,u = γ v and c k T K-k u,v
= γ u are independent. In other words, the probabilities

P c k T K-k v,u = γ v uv ⊆ W k (1) 
and

P c k T K-k v,u = γ v v ∈ W k ∧ c k T K-k u,v = γ u (2) 
are equal.

Proof. The proof proceeds by induction on k. After the first round each vertex has a color C with probability P 0,0 1 (C) independently of the colors of the other vertices. Hence, the claim holds for k = 1.

Assume now that k > 1. By the definition of the conditional probability and the fact that the event uv ⊆ W k immediately implies that the event uv ⊆ W k-1 occurs, ( 1) is equal to

P c k T K-k v,u = γ v ∧ u ∈ W k uv ⊆ W k-1 P uv ⊆ W k uv ⊆ W k-1 . (3) 
Analogously, ( 2) is equal to

P c k T K-k v,u = γ v ∧ c k T K-k u,v = γ u uv ⊆ W k-1 P v ∈ W k ∧ c k T K-k u,v = γ u uv ⊆ W k-1 . (4) 
We now expand the numerator of (3).

γ ′ u ∈C k-1 γ ′ v ∈C k-1 P c k-1 T K-k+1 u,v = γ ′ u uv ⊆ W k-1 × P c k-1 T K-k+1 v,u = γ ′ v v ∈ W k-1 ∧ c k-1 T K-k+1 u,v = γ ′ u × P u ∈ W k c k-1 T K-k+1 u,v = γ ′ u ∧ c k-1 T K-k+1 v,u = γ ′ v × P c k T K-k v,u = γ v c k-1 T K-k+1 u,v = γ ′ u ∧ c k-1 T K-k+1 v,u = γ ′ v ∧ u ∈ W k .
By the induction hypothesis, for any two colorings γ ′ u , γ ′ v ∈ C k-1 the probabilities

P c k-1 T K-k+1 v,u = γ ′ v v ∈ W k-1 ∧ c k-1 T K-k+1 u,v = γ ′ u and P c k-1 T K-k+1 v,u = γ ′ v uv ⊆ W k-1 are equal.
Since the new color of u is determined only by the colors of the neighbors of u, it follows that the probabilities

P u ∈ W k c k-1 T K-k+1 u,v = γ ′ u ∧ c k-1 T K-k+1 v,u = γ ′ v and P u ∈ W k c k-1 T K-k+1 u,v = γ ′ u ∧ v ∈ W k-1 are also equal.
Analogously, for any vertex w ∈ T K-k v,u \ {v} the new color of w does not depend on γ ′ u at all. Applying the same reasoning for v yields that the probabilities

P c k T K-k v,u = γ v c k-1 T K-k+1 u,v = γ ′ u ∧ c k-1 T K-k+1 v,u = γ ′ v ∧ u ∈ W k and P c k T K-k v,u = γ v c k-1 T K-k+1 v,u = γ ′ v ∧ u ∈ W k-1
are equal as well. Note that in the last equality we have also used that the random choices of new colors for two arbitrary vertices in the (k + 1)-th round are independent.

By changing the order of summation, we conclude that the numerator of ( 3) is equal to

γ ′ u ∈C k-1 P c k-1 T K-k+1 u,v = γ ′ u uv ⊆ W k-1 × P u ∈ W k c k-1 T K-k+1 u,v = γ ′ u ∧ v ∈ W k-1 × γ ′ v ∈C k-1 P c k-1 T K-k+1 v,u = γ ′ v uv ⊆ W k-1 × P c k T K-k v,u = γ v c k-1 T K-k+1 v,u = γ ′ v ∧ u ∈ W k-1 .
Along the same lines, the denominator of ( 3) is equal to

γ ′ u ∈C k-1 P c k-1 T K-k+1 u,v = γ ′ u uv ⊆ W k-1 × P u ∈ W k c k-1 T K-k+1 u,v = γ ′ u ∧ v ∈ W k-1 × γ ′ v ∈C k-1 P c k-1 T K-k+1 v,u = γ ′ v uv ⊆ W k-1 × P v ∈ W k c k-1 T K-k+1 v,u = γ ′ v ∧ u ∈ W k-1 .
Canceling out the sum over γ ′ u which is the same in both numerator and denominator of (3), we derive that ( 1) is equal to

γ ′ v ∈C k-1 P c k-1 T K-k+1 v,u = γ ′ v uv ⊆ W k-1 × P c k T K-k v,u = γ v c k-1 T K-k+1 v,u = γ ′ v ∧ u ∈ W k-1 × γ ′ v ∈C k-1 P c k-1 T K-k+1 v,u = γ ′ v uv ⊆ W k-1 × P v ∈ W k c k-1 T K-k+1 v,u = γ ′ v ∧ u ∈ W k-1 -1 . ( 5 
)
We apply the same trimming to the numerator and denominator of ( 4). The numerator is first expanded to

γ ′ u ∈C k-1 P c k-1 T K-k+1 u,v = γ ′ u uv ⊆ W k-1 × P c k T K-k u,v = γ u c k-1 T K-k+1 u,v = γ ′ u ∧ v ∈ W k-1 × γ ′ v ∈C k-1 P c k-1 T K-k+1 v,u = γ ′ v uv ⊆ W k-1 × P c k T K-k v,u = γ v c k-1 T K-k+1 v,u = γ ′ v ∧ u ∈ W k-1
and the denominator is then expanded to

γ ′ u ∈C k-1 P c k-1 T K-k+1 u,v = γ ′ u uv ⊆ W k-1 × P c k T K-k u,v = γ u c k-1 T K-k+1 u,v = γ ′ u ∧ v ∈ W k-1 × γ ′ v ∈C k-1 P c k-1 T K-k+1 v,u = γ ′ v uv ⊆ W k-1 × P v ∈ W k c k-1 T K-k+1 v,u = γ ′ v ∧ u ∈ W k-1 .
By canceling out the sum over γ ′ u , we obtain [START_REF] Díaz | Computation of the bisection width for random d-regular graphs[END_REF]. Therefore the expressions ( 1) and ( 2) are equal.

Recurrence relations

In this section we derive recurrence relations for the probabilities describing the behavior of the randomized procedure.

Fix parameters K and P r,b k (C) for k ∈ [K], (r, b) ∈ I 3 and C ∈ {W, R, B}. We will inductively show that the probabilities describing the state of the procedure after the (k + 1)-th round can be computed using only the probabilities describing the state after the k-th round. This yields the recurrence relations for the probabilities, which is the main goal of this section.

We start with determining the probabilities after the initialization round. It is easy to see that the probabilities r 1 , b 1 , w 1 , p 1 and w r,b 1 are

r 1 = P 0,0 1 (R) , b 1 = P 0,0 1 (B) , w 1 = 1 -r 1 -b 1 , p 1 = 2 • P 0,0 1 (R) • P 0,0 1 (B) and w r,k 1 = 3 r 3 -r b • P 0,0 1 (R) r • P 0,0 1 (B) b • 1 -P 0,0 1 (R) -P 0,0 1 (B) 3-r-b for (r, b) ∈ I 3 .
Next, we show how to compute the probabilities r k+1 , b k+1 and w k+1 from r k , b k , w k and w r,b k . We start with the formula for r k+1 . If a vertex v is colored red after the (k + 1)-th round, then after the k-th round, it was either already colored red, or it was white, had r red neighbors, b blue neighbors and it was recolored to red. The latter happened with probability P r,b k+1 (R). The probability of the first event is r k and that of the second event is

w k • w r,b k • P r,b k+1 (R)
. This yields that

r k+1 = r k + w k • (r,b)∈I 3 w r,b k • P r,b k+1 (R) .
Analogously, we can compute

b k+1 = b k + w k • (r,b)∈I 3 w r,b k • P r,b k+1 (B) ,
and finally w k+1 is given by

w k+1 = 1 -r k+1 -b k+1 .
Before we proceed with the recurrences for p k+1 and w r,b k+1 , let us introduce some auxiliary notation. All of the following quantities are fully determined by w r,b k , but this notation will help to make the formulas simpler. We start with probability that a vertex v has white color after the (k + 1)-th round conditioned by the event it had white color after the k-th round. This quantity will be denoted by w →k+1 . It is straightforward to check that

w →k+1 := P v ∈ W k+1 v ∈ W k = (r,b)∈I 3 w r,b k • P r,b k+1 (W ) .
Next, we consider the probability that the vertex u is white after the k-th round conditioned by the event that a fixed neighbor v of u is white after the k-th round. This will be denoted by q W -W k . We claim that

q W -W k := P uv ⊆ W k v ∈ W k = (r,b)∈I 2 3 -r -b 3 • w r,b k .
First observe that the events v ∈ W r,b k , where (r, b) ∈ I 3 , form a partition of the event v ∈ W k , and for (r, b) ∈ I 3 \ I 2 the probability that u is white after the k-th round is equal to zero. Suppose that v ∈ W r,b k , i.e., it has r red neighbors, b blue neighbors (and 3rb white neighbors) after the k-th round. This happens with probability w r,b k . Since u is a fixed neighbor of v, it has white color after the k-th round with probability (3rb)/3.

Finally, for a color C ∈ {W, R, B} and an edge e = uv, q

(C)
→k+1 denotes the probability that u has the color C after the (k + 1)-th round conditioned The analysis just presented yields that

p k+1 = p k + w k 3 • (r,b)∈I 3 w r,b k • P r,b k+1 (R) • 2b + (3 -r -b) • q (B) →k+1 + w k 3 • (r,b)∈I 3 w r,b k • P r,b k+1 (B) • 2r + (3 -r -b) • q (R) →k+1
.

We finish this section with the recurrence relations for the probabilities w r,b k+1 . Observe that

w r,b k+1 = P v ∈ W r,b k+1 P v ∈ W k+1 = P v ∈ W r,b k+1 v ∈ W k P v ∈ W k+1 v ∈ W k . ( 6 
)
The second equality holds because each of the events v ∈ W k+1 and v ∈ W r,b k+1 immediately implies that the event v ∈ W k occurs. The denominator of ( 6) is equal to w →k+1 , so it remains to derive the formula for numerator.

Let N W k (v) denote the set of white neighbors of v after the k-th round. Using the same argument as for deriving the formula for p k+1 , the color after the (k + 1)-th round of a white neighbor u ∈ N W k (v) will be red with probability q (R) →k+1 . Analogously, it will be blue with probability q (B) →k+1 and white with probability q (W ) →k+1 . By Lemma 7 and the fact that in all rounds we recolor each white vertex independently of the others, the new color of a neighbor u 1 ∈ N W k (v) does not depend on the new color of another neighbor u 2 ∈ N W k (v). Now consider the probability that a vertex v is white and has r red and b blue neighbors after the (k+1)-th round, i.e., v ∈ W r,b k+1 , conditioned by the event v ∈ W r,b k , where r ≤ r and b ≤ b. This probability is denoted by w r,b→r,b →k+1 . We claim that w r,b→r,b →k+1 is equal to ways. The probability that all vertices in Y will be red after the (k + 1)-th round is equal to q (R) →k+1 r-r . Analogously, all vertices in Z will be blue after the (k +1)-th with probability 

P r,b k+1 (W ) • 3 -r -b r -r 3 -r -b b -b • q (R) →k+1 r-r • q (B) →k+1 b-b • q (W ) →k+1 

Setting up the parameters

In this section we set up the parameters in the procedure. In the first round, we pick a vertex with a small probability p 0 and color it either red or blue. The next rounds of the procedure are split into two phases, which consist of K 1 and K 2 rounds, respectively. Therefore, the total number of rounds K is equal to

K 1 + K 2 + 1.
In the rounds of the first phase, with probability p B (p R ), where p R ≪ p B , we color a vertex with exactly one red (blue) neighbor by blue (red). If a vertex has at least two neighbors of the same color, we color it with the other color with probability one. In all the other cases we do nothing.

With one exception, the rounds of the second phase are performed identically to the rounds of the first phase. The exception is that a white vertex with one red, one blue and one white neighbor is colored red with probability p RB /2 or blue with probability p RB /2. The choice of p RB is such that p RB ≪ p R .

Specifically, we set:

• K := K 1 + K 2 + 1, • P 0,0 1 (R) := p 0 /2 , P 0,0 1 (B) := p 0 /2 , • P r,b k (R) := 1 for (r, b) ∈ I 3 ∩ {(r, b) : b ≥ 2} for k ∈ [2, . . . , K] , • P r,b k (B) := 1 for (r, b) ∈ I 3 ∩ {(r, b) : r ≥ 2} for k ∈ [2, . . . , K] , • P 0,1 k (R) := p R , P 1,0 k (B) := p B for k ∈ [2, . . . , K] , • P 1,1 k (R) := p RB /2 , P 1,1 k (B) := p RB /2 for k ∈ [K 1 + 2, . . . , K] ,
• P r,b k (R) := 0 for all the other choices of r and b,

• P r,b k (B) := 0 for all the other choices of r and b and The choice of K 1 was made in such a way that at the end of the first phase, i.e., after the (K 1 + 1)-th round, the probability that a vertex is white and has exactly one non-white neighbor is less than 10 -7 . Analogously, the choice of K 2 was made in a way that at the end of the process, i.e., after the K-th round the probability that a vertex is white is less than 10 -7 .

• P r,b k (W ) := 1 -P r,b k (R) -P r,b ( 
The code of the C program used for the computation can be downloaded from http://iuuk.mff.cuni.cz/~volec/cubic-cut/. The output of the program with all the values of variables p k , r k , b k , w k and w r,b k for k ∈ [K] and (r, b) ∈ I 3 computed for the given choice of parameters can also be found on the web page. For the floating-point calculations, the program uses the MPFR library for a high-precision floating-point calculations with correct rounding [START_REF] Fousse | MPFR: A multiple-precision binary floating-point library with correct rounding[END_REF]. We used the running error analysis method (see, e.g., Section 2.5.1 from [START_REF] Dahlquist | Numerical Methods in Scientific Computing[END_REF], or Section 3.3 from [START_REF] Higham | Accuracy and Stability of Numerical Algorithms, Second Edition[END_REF]) to upper bound the rounding error coming from the representation of floating-point numbers. Setting the length of the mantissa of all the floating-point variables to 657400, we upper bound the rounding error for all p K , r K and b K by 2 -657400 × 10 197862 < 10 -35 .

Solving the recurrences for the above choice of parameters we have obtained that p K > 0.88672. The probability that a vertex v is colored red at the end of the process, i.e. r K , is equal to 0.491979 and the probability that b K is equal to 0.508021. In Figures 1234, we plot the evolution of the probabilities p k , r k , b k , w k , w 0,0 k , w 0,1 k and w 1,1 k . The vertical dashed line in each figure correspond to the end of the first phase. The probabilities w 0,2 k , w 0,3 k , w 1,0 k , w 1,2 k w 2,0 k , w 2,1 k and w 3,0 k are less than 10 -3 for every k ∈ [K]. The above choice of the parameters is not the best possible. In particular, setting smaller values for the parameters p RB , p R and p 0 would produce a slightly larger edge-cut at the cost of stronger assumption on the required girth. On the other hand, computer experiments on random cubic graphs of size 10 7 suggest that optimizing the parameters of this procedure cannot obtain significantly better upper bound than 0.88696. The presented method is also applicable for d-regular graphs for d ≥ 4 analogously as the Hoppen's method [START_REF] Hoppen | Properties of graphs with large girth[END_REF] could be used for translating the results of Díaz, Do, Serna and Wormald [START_REF] Díaz | Bounds on the max and min bisection of random cubic and random 4-regular graphs[END_REF] and Díaz, Serna and Wormald [START_REF] Díaz | Computation of the bisection width for random d-regular graphs[END_REF]. 

Corollary 4 .

 4 A random n-vertex cubic graph asymptotically almost surely contains an edge-cut of size at least 1.33008no(n).

  For (r, b) ∈ I 3 we define W r,b k ⊆ W k to be the set of white vertices with exactly r red neighbors and b blue neighbors. Hence the sets W r,b k forms a partition of W k for every k. Note that W 0,0 0 = V and W r,b 0

.

  Indeed, v stays white after the (k + 1)-th round with probability P r,b k+1 (W ). Next, fix two disjoint subsets Y and Z of N W k (v) of sizes rr and bb, respectively. This can be done in3-r-b 

,

  and the vertices in N W k (v)\(Y ∪ Z) will be white after the (k+1)th round with probability q for every (r, b) ∈ I 3 .

  B) for (r, b) ∈ I 3 . The recurrences presented in this chapter were solved numerically using a computer program. The particular choice of parameters used in the program was p 0 = 2 -18 , p B = 1, p R = 2 -11 , p RB = 2 -17 , K 1 = 34 919 and K 2 = 283 974 (and hence K = 318 894).
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 1 Figure 1: Evolution of p k

Figure 2 :Figure 3 :Figure 4 :

 234 Figure 2: Evolution of r k and b k
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by the event that both u and v were white after the k-th round. We infer from the definition of the conditional probability that q (R)

We are now ready to present the remaining recurrences. Let us start with p k+1 , i.e., the probability than an edge e = uv is red-blue after the (k + 1)-th round. Note that once we color a vertex x with either red or blue color, the color of x in the future rounds will stay the same. Therefore, we can split the contribution to p k+1 to the following four types.

1. e ∩ W k = ∅ : This event happens with probability p k and the colors stay the same.

2. e ∩ W k = {v} : Suppose first that u is blue after the k-th round.

The probability that we have such configuration after k-th round is

In this case, the edge e become red-blue after the (k + 1)-th round with probability P r,b k+1 (R). Analogously, if u is red after the k-th round, the contribution of this case is

3. e ∩ W k = {u} : This case is symmetric to the previous one.

4. e ⊆ W k : The probability that v has white color after the k-th round is

, v has r red neighbors, b blue neighbors, and u is white after the k-th round. The probability that v becomes red after the (k + 1)-th round is P r,b k+1 (R), and using the independence lemma (Lemma 7) the neighborhood of u does not depend on the colors of the other neighbors of v. Therefore, the probability that u becomes blue after the (k + 1)-th round is q (B) →k+1 . On the other hand, the probability that after the (k + 1)-th round v becomes red and u becomes blue is P r,b k+1 (B) • q (R) →k+1 .