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1 Introduction

Fullerenes are polyhedral molecules made entirely of carbon atoms. They come in

wide variety of sizes and shapes. The most symmetric is the famous buckminster-

fullerene, C60, whose discovery in 1985 marked the birth of fullerene chemistry [40].

The name was a homage to Richard Buckminster Fuller, whose geodetic dome it re-

sembles. Since 1991, when the Science magazine pronounced the buckminsterfullerene

for the “Molecule of the year”, fullerenes have been attracting attention of diverse

research communities. The experimental work was paralleled by theoretical investiga-

tions, applying the methods of graph theory to the mathematical models of fullerene

molecules called fullerene graphs.One of the main driving forces behind that work has

1Partially supported by Slovenian ARRS Program P1-00383 and Creative Core - FISNM - 3330-
13-500033.



been a desire to identify structural properties characteristical for stable and reactive

fullerenes, i.e., for fullerene isomers verified in macroscopic quantities.

Ante Graovac also found fullerenes as an interesting topic to study [27, 36, 44], he

connected the well known topological indices with the fullerene structures [23, 30].

1.1 Fullerene graphs

Fullerenes can also be seen as graphs, vertices represent atoms, and edges represent

bonds between atoms. A fullerene graph is a 3-connected 3-regular planar graph

with only pentagonal and hexagonal faces. By Euler’s formula, it follows that the

number of pentagonal faces is always twelve. Grűnbaum and Motzkin [34] showed that

fullerene graphs with n vertices exist for all even n ≥ 24 and for n = 20. Although

the number of pentagonal faces is negligible compared to the number of hexagonal

faces, their layout is crucial for the shape of a fullerene graph. There are fullerene

graphs where no two pentagons are adjacent, i.e., each pentagon is surrounded by

five hexagons. Those fullerene graphs satisfy the isolated pentagon rule or shortly

IPR, and they are the most stable fullerene compounds [41]. If all pentagonal faces

are equally distributed, we obtain fullerene graphs of icosahedral symmetry, whose

smallest representative is the dodecahedron. The dodecahedron is the only icosahedral

fullerene that does not satisfy the IPR. On the other hand, if the pentagonal faces

are grouped in two clusters by six, we obtain nanotubical fullerene graphs.

1.1.1 Icosahedral fullerene graphs

The common feature of all icosahedral fullerenes is their geometrical shape. The

simplest icosahedral fullerene graph is the dodecahedron, C20. Caspar and Klug [6]

and Coxeter [7] suggested a method that works with the icosahedral fullerene graph

dual: geodesic domes, i.e., triangulations of the sphere with vertices of degree 5 and

6.

Goldberg [29] observed that all icosahedral fullerene graphes can be obtained by

mapping (a part of) the hexagonal grid onto the triangular faces of an icosahedron.

He also showed that the number of vertices n in a polyhedron of icosahedral symmetry

can be determined by two integers i and j by the following equation, conveniently



called the Goldberg equation

n = 20(i2 + ij + j2). (1)

The integers i and j in the Goldberg equation are in fact the components of a two-

dimensional Goldberg vector ~G = (i, j), sometimes also called Coxeter coordinates.

To avoid the mirror effect, we always assume that 0 ≤ i ≤ j and 0 < j.

A

C

B

~G = (2, 3)

Figure 1: Construction of a (2, 3)-triangle, a metaface of a (2, 3)-icosahedral fullerene
graph. The vertices of the equilateral triangle ABC are centers of pentagons.

This vector determines the distance and positions of the vertices of the (i, j)-

triangle in the hexagonal lattice. See Figure 1 for a construction method of an (2, 3)-

triangle. Precisely 20 such (i, j)-triangles produce an (i, j)-icosahedral fullerene in

a manner shown on Figure 2. The vertices of the triangles are centers of the 12

pentagons of the fullerene graph. The pair of the triangles ABC and EB′C ′, as

shown on Figure 2, is a pair of opposite triangles. There are exactly 10 such pairs.

The pentagons with centers in A and E (Figure 2) are called antipodal pentagons

(similarly, the pentagons with centers in B and B′, as well as those with centers C

and C ′ are antipodal).

The icosahedral group I is the group of rotational symmetries of the icosahedron

and dodecahedron, of order 60. This group is isomorphic to A5, the alternating group

of even permutations of five objects. The full icosahedral group Ih, is the point group

of all symmetries of the icosahedron and dodecahedron. This group is equivalent to

the group direct product A5 × Z2 of the alternating group A5 and cyclic group Z2.

The order of the full icosahedral group of symmetries is 120. The (i, i)- and (0, i)-
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Figure 2: A (2, 3)-icosahedral fullerene. Its triangular faces are constructed as on
Figure 1. The vertices with a same name coincide. The vertices of each triangular
are centers of the pentagons. The pentagons with center A and center E are antipodal
pentagons, and the triangles ABC and EB′C ′ form a pair of opposite triangles.

icosahedral fullerene graphs, i > 0, have full icosahedral symmetry group, i.e., every

element of this class of graphs has a symmetry group Ih.

The idea of Goldberg was then used by Coxeter [7] and Graver [31] to classify

highly symmetric fullerene graphs.

1.1.2 Nanotubical fullerene graphs

While the icosahedral fullerens have “ spherical” shape, there is a class of fullerene

graphs of tubular shapes, called nanotubical graphs or simply nanotubes. They are

cylindrical in shape, with the two ends capped with a subgraph containing six pen-

tagons and possibly some hexagons. The cylindrical part of the nanotube can be

obtained by rolling a planar hexagonal grid. The way the grid is wrapped is repre-

sented by a Goldberg vector (i, j), called also the type of the nanotube. See Figure 3

for an example of the construction of the cylindrical part of a nanotube.

Nanotube fullerene graphs exist for all vectors (i, j) with i + j ≥ 6 and for the

vector (0, 5). A (0, 5) nanotube is depicted on Figure 5.

Nanotubes with i = 0 are called zig-zag nanotubes, and the ones with i = j

are called armchair nanotubes. These are the only types of nanotubes where the

cylindrical part has a mirror symmetry.



A

A

4−→a1

2−→a2

B

B

C

C

Figure 3: An example of a (2, 4) nanotube. The hexagons denoted equally overlap.

The Buckminsterfullerene C60 can be viewed as the smallest nanotube of type

(5, 5), see Figure 4. It is the smallest nanotube with the caps satisfying the IPR.

There are such nanotubes for all types (i, j) with i + j ≥ 11 and for (5, 5), (0, 9),

(0, 10), (1, 9), and (2, 8).

=

+

+

Figure 4: Buckminsterfullerene is the smallest nanotube of type (5, 5).

2 Structural properties of fullerene graphs

As we already mentioned earlier, each fullerene graph has 12 pentagonal faces, all the

other faces are hexagons. The distribution of the pentagons determines the shape of

the corresponding polyhedron/molecule. If the pentagons are distributed uniformly,

the polyhedron is spherical, with the pentagons being the source of the curvature.



2.1 Cyclic edge-cuts in fullerene graphs

Recall that an edge-cut C of G is cyclic if each component of G − C contains a

cycle. A graph is cyclically k-edge-connected if at least k edges must be removed

to disconnect it into two components such that each contains a cycle. For fullerene

graphs, Došlić [11] proved the following theorem.

Theorem 2.1. Every fullerene graph F is cyclically 5-edge-connected.

Clearly, the result is best possible, since each pentagonal face is separated from the

rest of the graph by 5 edges. We say that a cyclic 5-edge cut is trivial, if it separates

only one pentagonal face. Kardoš and Škrekovski [38] proved that fullerenes which

are not cyclically 6-edge-connected are of unique type.

Theorem 2.2. A (0, 5)-nanotube is the only fullerene graph with a nontrivial cyclic

5-edge-cut.

A (0, 5)-nanotube is depicted on Figure 5. Observe that every nontrivial cyclic

5-edge-cut of a (0, 5)-nanotube separates the two caps (containing 6 pentagonal faces

each) from each other.

Figure 5: A (0, 5)-nanotube.

Similarly, for each nanotube of type (i, j) there are cyclic (i+j)-edge cuts separat-

ing the two caps from each other. However, the nanotubes are not the only fullerene

graphs with such edge-cuts. An example of a fullerene graph, in which the 12 pentag-

onal faces are partitioned into four clusters containing 1, 2, 4, and 5 pentagons each,

is depicted on Figure 6. It is easy to see that this graph is not a nanotube.



Figure 6: A half of a fullerene graph, which is not a nanotube, but it is possible
to separate six pentagonal face from the other six. To obtain the whole graph, the
depicted graph is to be glued with its mirror copy along the dashed line.

3 Possible stability predictors

Fullerenes were studied from different perspective. The study from graph theoretical

point of view has been motivated by a search for invariants that will correlate with

their stability as a compound. Banhart et al. [4] observed that molecular structures

with sharp edges and facets are less stable than the structures with smooth curvature.

In this sense, the more molecule graph is spherical, the more it should be stable.

A number of graph-theoretical invariants were examined as potential stability

predictors with various degrees of success [19, 12]. Among the promising candidates

for stability predictors are: the bipartite edge frustration, the independence number,

the saturation number, the number of perfect matchings, etc. As a result of those

investigations, we have achieved a fairly thorough understanding of fullerene graphs

and their properties. However, some problems and questions still remain open [8, 43,

25]. Special place among them have several interesting conjectures made by Graffiti,

a conjecture making software [18]. Here we consider several of those open questions

starting from our results on the fullerene diameters and a recent result on the bipartite

edge frustration [17, 20].

3.1 Diameter of fullerene graphs

For large enough fullerene graphs of spherical shape, the diameter diam(G) (the

maximum length of the shortest path between two vertices) is proportional to the

radius of the sphere, whereas the number of vertices n is proportional to its surface.

Hence, one could expect the diameter of such graphs to be of order Θ(
√
n). On the



other hand, for a nanotubical fullerene graph of type (i, j), the diameter diam(G) is

proportional to the length of the cylindrical part of the graph, whereas the number of

vertices n is proportional to the product of the length of the tube and its circumference

i+ j. In this case, one could expect the diameter of such graphs to be of order Θ(n).

A well known result on the degree-diameter problem states that the number of

vertices in a planar graph with maximum degree 3 grows at most exponentially with

diameter [26].

Proposition 3.1. Let G be a planar graph with maximum degree 3. Then, G has at

most 2diam(G)+1 − 1 vertices.

This results gives a logarithmic lower bound on the diameter in terms of the

number of vertices.

The logarithmic character of the bound can be attributed to the presence of faces

of large size. It would be reasonable to expect that better lower bounds exist for

polyhedral graphs with bounded face size.

As mentioned above, fullerene graphs only have pentagonal and hexagonal faces,

and this fact can be used to show that the diameter is of order Ω(
√
n) indeed.

The following theorem gives the lower bound for the diameter of fullerenes [1].

Theorem 3.2. Let G be a fullerene graph. Then,

diam(G) ≥
√
24n− 15− 3

6
.

For fullerene graphs with full icosahedral symmetry the diameter has been deter-

mined exactly in [3]:

Theorem 3.3. Let G be a (0, i)-icosahedral fullerene graph, with i > 0. Then

diam(G) = 6i− 1 =
√

9
5
n− 1.

Theorem 3.4. Let G be an (i, i)-icosahedral fullerene graph, with i > 0. Then

diam(G) = 10i− 1 =
√

5
3
n− 1.

As we believe that the icosahedral fullerenes have the smallest diameter, it leads

us to conjecture the following.



Conjecture 3.1. Let G be a fullerene graph on n vertices. Then

diam(G) ≥
⌊

√

5

3
n

⌋

− 1.

As far as upper bound is concerned, the nanotubes of small circumference are the

extremal graphs, as says the following theorem [1].

Theorem 3.5. Let F be a fullerene graph with n vertices. Then,

diam(F ) ≤ n

6
+

5

2
,

unless F is a (0, 5)-nanotube. In that case, we have n = 10 k, k ≥ 3 and

diam(F ) =

{

n

5
, k ∈ {3, 4} ;

n

5
− 1, k ≥ 5.

3.2 Bipartite edge frustration

The bipartite edge frustration of a graph G, denoted by ϕ(G), is the smallest cardi-

nality of a set of edges of G that need to be removed from G in order to obtain a

bipartite spanning subgraph. Bipartite edge frustration of a fullerene graph G can be

efficiently computed by finding a minimum-weight perfect matching in the pentagon-

distance graph of G [16]. In the same reference it was shown that ϕ(G) ≥ 6 for any

fullerene graph G and that this bound is sharp. Furthermore, it was shown that the

bipartite edge frustration of fullerene graphs with icosahedral symmetry is propor-

tional to the square root of the number of vertices ([16], Proposition 11 and Corollary

12). The numerical computations suggested that it cannot behave worse than that,

and prompted the authors to state the following conjecture.

Conjecture 3.2. Let G be a fullerene graph with n vertices. Then, ϕ(G) ≤
√

12
5
n.

First, Dvořák, Lidický, and Škrekovski [17] proved a theorem with a weaker mul-

tiplicative constant. Later Faria, Klein and Stehĺık proved the following theorem,

which implies Conjecture 3.2 [20].

Theorem 3.6. Let G be a fullerene graph with n vertices. Then, ϕ(G) ≤
√

12
5
n.

Moreover, the equality holds if and only if G is an (i, i)-icosahedral fullerene graph.



The bipartite edge frustration is a very reliable predictor of molecular stability: If

ϕ(G) is close to the upper bound, it means that there is no way to partition the 12

pentagonal faces into six pairs in such a way that the pentagons within the pairs are

close to each other.

On the other way, a small value for ϕ(G) does not say much about the structure

of the fullerene graph and about the shape of the molecule. The smallest possible

value of ϕ(G) is attained for any fullerene graph where the 12 pentagonal faces can be

partitioned into 6 pairs, adjacent to each other. Those pairs of pentagonal faces can

be distributed in a widely varied list of possible configurations, leading to molecules

of different shapes, including nanotubes of all possible types.

3.3 Independence number

Another invariant tested as a possible stability predictor is the independence number

[19]. A set I ⊆ V (G) is independent if no two vertices from I are adjacent in G. The

cardinality of any largest independent set in G is called the independence number

of G and denoted by α(G). Independence number of fullerene graphs attracted a

lot of attention also in the context of study of independent sets as possible models

for addition of bulky segregated groups such as free radicals or halogen atoms [5].

Sharp upper bounds on the independence number of n/2 − 2 for general fullerenes

and n/2 − 4 for those with isolated pentagons follow by simple counting argument

[22]. Lower bounds were gradually improved from (almost) trivial α(G) ≥ n/3 valid

for all 3-chromatic graphs to α(G) ≥ 3
8
n [35] valid for all triangle-free planar cubic

graphs. A better lower bound of type α(G) ≥ n

2
− C

√
n, for some constant C, was

first established for icosahedral fullerenes [32].

This observation was formalized in a pair of conjectures in a recent Ph.D. thesis by

S. Daugherty ([8, pp. 96]). The first one states that the minimum possible indepen-

dence number is achieved on the icosahedral fullerenes that also figure prominently

in Conjecture 3.2. The second one [8, Conjecture 5.5.2] states the precise form of the

conjectured lower bound. Notice that the constant 3/
√
15 is exactly one half of the

constant
√

12/5 of Conjecture 3.2.



Conjecture 3.3. Let G be a fullerene graph with n vertices. Then

α(G) ≥ n

2
− 3

√

n/15.

The first result that approaches the conjecture is due to Andova et al.[1].

Theorem 3.7. Let G be a fullerene graph with n vertices. Then

α(G) ≥ n

2
− 78.58

√
n .

Finally, using Theorem 3.6, Conjecture 3.3 was confirmed it the following form.

Theorem 3.8. Let G be a fullerene graph with n vertices. Then,

α(G) ≥ n

2
−

√

3

5
n .

Moreover, the equality holds if and only if G is an (i, i)-icosahedral fullerene graph.

Similarly to the bipartite edge frustration, a small value of independence number

means that the corresponding polyhedron/molecule is close to being of a spherical

shape. On the other hand, a value of α(G) close to n/2 does not say much about the

structure or the shape of the molecule.

The relations between diameter and the independence number of fullerenes appear

in Conjecture 912 of Graffiti [25]. This conjecture was established in [1] for large

fullerenes using Theorems 3.5 and 3.7.

Conjecture 3.4. If G is a fullerene graph, then

α(G) ≥ 2(diam(G)− 1).

Finally, Theorem 3.5 and Theorem 3.8 together confirm the conjecture in the

affirmative.

3.4 Upper bound on the smallest eigenvalue

Another invariant investigated for its stability-predicting potential is the smallest

eigenvalue of a fullerene graph. In [24] it was proven that the dodecahedron has

maximum smallest eigenvalue among all fullerene graphs and it is equal to −
√
5. It



was also shown that the buckminsterfullerene C60 has the maximum smallest eigen-

value among all IPR fullerene graphs. This observation lead the authors to state the

following conjecture on the smallest eigenvalue of fullerene graphs with at least 60

vertices.

Conjecture 3.5. Among all fullerene graphs with at least 60 vertices, the buckminster

fullerene has the maximum smallest eigenvalue.

The Conjectures 3.2 and 3.5 are connected via a result on Laplacian eigenvalues

from the monograph by Godsil and Royle ([28, pp. 293]).

Theorem 3.9. Let G be a graph with n vertices. Then bip(G) ≤ n

4
µ∞(G).

Here bip(G) denotes the maximum number of edges in a bipartite spanning sub-

graph of G (hence the number of edges in G minus the bipartite edge frustration),

and µ∞(G) is the largest Laplacian eigenvalue of G.

Recall that the smallest eigenvalue λn(G) of a 3-regular graph G and the largest

Laplacian eigenvalue µ∞(G) of G are related via the following relation ([28, pp. 280]):

λn(G) = 3− µ∞(G).

By plugging this into Theorem 3.9 and noting that bip(G) = 3
2
n − ϕ(G) we obtain

an upper bound on λn(G) in terms of the bipartite edge frustration of G of the

form λn(G) ≤ −3 + 4
n
ϕ(G). By taking into account an upper bound on ϕ(G) we

immediately obtain the following upper bound on the smallest eigenvalue of a fullerene

graph with n vertices [20].

Theorem 3.10. Let G be a fullerene graph with n vertices. Then,

λn(G) ≤ −3 + 8

√

3

5
n .

3.5 Number of perfect matchings

Since all carbon atoms are 4-valent, for every atom precisely one of the three bonds

should be doubled. Such a set of double bonds is called a Kekulé structure in a

fullerene. It corresponds to the notion of perfect matchings in fullerene graphs: a



matching in a graph G is a set of edges of G such that no two edges in M share an

end-vertex. A matching M is perfect if any vertex of G is incident with an edge of

M .

Let M be a perfect matching in a fullerene graph G. A hexagonal face is resonant

if it is incident with three edges inM . The maximum size of a set of resonant hexagons

in G is called the Clar number of G.

The computation of the number of perfect matchings in typical fullerene graphs

with a small number of vertices [13] indicates that this number should grow exponen-

tially with n.

The first general lower bounds for the number of perfect matchings in fullerene

graphs were linear in the number of vertices [9, 10, 45]. The best of them asserts that

a fullerene graph with n vertices has at least
⌈

3(n+2)
4

⌉

different perfect matchings [45].

The number of perfect matchings was proved to be exponential for several special

classes of fullerene graphs: (0, 5)-nanotubes [42], icosahedral fullerenes [13] or those

who are obtained using specific operations [15], before the following general result

[37].

Theorem 3.11. Let G be a fullerene graph with n vertices that has no non-trivial

cyclic 5-edge-cut. The number of perfect matchings of G is at least 2
n−380

61 .

The idea of the proof is to find a perfect matching with (n−380)/61 non-adjacent

resonant hexagons. For such a perfect matching, any subset of the set of resonant

hexagons can be switched to obtain a different perfect matching.

The bound from Theorem 3.11 is far from being optimal. A little is known about

the relationship between the number of perfect matchings of a fullerene graph and

the shape of the corresponding molecule.

3.6 Saturation number

The last invariant considered here, the saturation number, is also related to matchings.

The existence of perfect (and hence maximum) matchings in fullerene graphs has been

established long time ago, and there are many papers concerned with their structural

and enumerative properties [10, 37, 39]. Another class of matchings, the maximal



matchings, have received much less attention so far, in spite of being potentially

useful as mathematical models of dimer absorption. A matching M is maximal if it

cannot be extended to a larger matching of G. The saturation number of G, denoted

by s(G), is the cardinality of any smallest maximal matching of G. The saturation

number of fullerene graph was studied in [10, 14], where the following bounds were

established.

Theorem 3.12. There exists an absolute constant C such that

3n

10
≤ s(G) ≤ n

2
− C log2 n ,

for any fullerene graph G with n vertices.

Using the lower bound on the diameter we are able to improve the logarithmic

additive correction of Theorem 3.12 and to prove the following result [1].

Theorem 3.13. Let G be a fullerene graph with n vertices. Then,

s(G) ≤ n

2
− 1

4
(diam(G)− 2) .

In particular,

s(G) ≤ n

2
−

√
24n− 15− 15

24
.

Still, this is not the best possible bound of the saturation number of the fullerene

graphs. In [2] we prove that the saturation number for fullerenes on n vertices is

essentially n/3.

Theorem 3.14. Let F be a fullerene graph on n vertices. Then,

n

3
− 2 ≤ s(F ) ≤ n

3
+O(

√
n) .

In order to prove the lower bound of this theorem we used the discharging method.

For the upper bound we first used the Theorem 3.6, and obtained a bipartite graph

F ′. Later, we establish that F ′ is an induced subgraph of a hexagonal lattice, or

an induced subgraph of a hexagonal tube (defined as on Figure 3). Then define a

maximal matching on F ′ such that from each hexagon precisely four vertices are

covered by the matching.
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[37] F. Kardoš, D. Kral’, J. Mǐskuf, J.-S. Sereni, Fullerene graphs have exponentially

many perfect matchings, J. Math. Chem. 46 (2009) 443–447.
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