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May 22, 2014

Abstract
In the framework of inverse problems, we consider the question of aggregating
estimators taken from a given collection. Extending usual results for the direct case,
we propose a new penalty to achieve the best aggregation. An oracle inequality
provides the asymptotic behavior of this estimator. We investigate here the price
for considering indirect observations.

Introduction

In this article we are interested in recovering an unobservable signal z* based on
observations
y(t:) = F(x*) () + 6, (1)
where ' : X — ) is a linear functional, with X', Y Hilbert spaces and ¢;,7 = 1,...,n
is a fixed observation scheme. Moreover, z* : R — R is the unknown function to be
recovered from the data y(¢;), ¢ = 1,...,n. The regularity condition over the unknown
parameter of interest is expressed through the assumption z* € X and will be made
precise later in Section 3. We assume that the observations y(t;) € R and that the
observation noise d; are i.i.d. realizations of a certain random variable . We assume F
is Fréchet differentiable and ill-posed in the sense that our noise corrupted observations
might lead to large deviations when trying to estimate z*. In a deterministic framework,
the statistical model (1) is formulated as the problem of approximating the solution in x
of

F(x) =y,

when y is not known, and is only available through an approximation y°,

ly —°|| < 6.
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It is important to remark that whereas in this case consistency of the estimators depends
on the approximation parameter ¢, in (1) the noise level depends on the number of ob-
servations n, hence we will consider asymptotic results when the number of observations
increases.

In the linear case, the best L? approximation of z* is ' = FTy, where FT is the
Moore-Penrose (generalized) inverse of F. We will say the problem is ill-posed if F' is
unbounded. This might entail, and is generally the case, that F'(y°) is not close to .
Hence, the inverse operator needs to be, in some sense, regularized.

Regularization methods replace an ill-posed problem by a family of well-posed prob-
lems. Their solution, called regularized solutions, are used as approximations of the
desired solution of the inverse problem. These methods always involve some parameter
measuring the closeness of the regularized and the original (unregularized) inverse prob-
lem. Rules (and algorithms) for the choice of these regularization parameters as well as
convergence properties of the regularized solutions are central points in the theory of these
methods, since they allow to find the right balance between stability and accuracy.
Hence there exist a wide range of possible estimators for inverse problems, each method
with their advantages and their inconvenience. For a complete review on regularization
methods for inverse problems, we refer to [8] and references therein. A natural idea is
thus to look for a new, improved estimator constructed by combining such suitable esti-
mators in a proper way. Such an estimator is called an aggregate and its construction is
called aggregation. Aggregation of estimators have been studied within a large number
of frameworks (we refer for instance to [3], [22] [5] and references therein). Here we study
linear aggregation for inverse problems.

Actually one of the main differences between direct and indirect problems comes from
the fact that two spaces are at hand: the space of the observations ) and the space where
the function will be estimated, namely X, the operator mapping one space into another,
F: X — Y. Hence to build a statistical procedure, a choice must be made which will
determine the whole methodology. This question is at the core of the inverse problem
structure and is encountered in many cases. When trying to build basis well adapted to
the operator, two strategies can be chosen, either expanding the function onto a wavelet
basis of the space X and taking the image of the basis by the operator as stated in [11], or
expanding the image of the function onto a wavelet basis of ) and looking at the image
of the basis by the inverse of the operator, studied in [1]. For the estimation problem
with model selection theory, estimators can be obtained either by considering sieves on
(Yi)m C Y with their counterpart X, := F*Y,, C X or sieves on (X,,),, C X and their
image Y,, := F'X,, C Y (see for instance in [17, 16]) where F™* states for the adjoint of F'.
In this paper we provide an aggregation procedure based on an ¢! penalty which aggregates
functions in the functional space X'. We prove that the choice of a penalty taking into
account the ill-posedness of the inverse problem enables to recover an oracle inequality
which warrants the good behavior of the estimate.



The paper falls into the following parts. Section 1 describes the inverse problem
model we are dealing with. The main result concerning the behavior of the aggregation
procedure is stated in Section 2 while all the proofs and auxiliary results are postponed to
the Appendix B. The gap between the functional model and the functional observation
model is tackled in the Appendix A.

1 Inverse problem model
Consider the following inverse model:

F . X — Y is a known operator. Set (), the empirical measure of the covariates. The
Ly(Qy)-norm of a function y € Y is then given by

il = ([ vae.) " = (% Zzn;y%m) g

and the empirical scalar product by < y,y" >,= = >°" | 4/(t;)y(t;) for any y' € Y. This
model is the discretized version of the inverse continuous model

Y(g) = (Fz*,g) +0(9), g€ Y (3)

where 6(g) is a centered Gaussian variable with variance ||g||* := (g, g).

In the following, if F' is a linear operator, we will denote F™* its adjoint. As often F' is
not of full rank, so the singular value decomposition (SVD) of the operator is then a useful
tool. Let (b;;¢;,1;);>1 be a singular system for a linear operator F, that is, F'y; = b;p;
and [*@; = bj1;; where {b?}j>1 are the non zero eigenvalues of the selfadjoint operator
F*F (and also of F'F™), considered in decreasing order. Furthermore, {t;};=1, , and
{¢j}j=1,.n are a corresponding complete orthonormal system with respect to |.||,, of
eigenvectors of F*F and F'F*, respectively. For general linear operators with an SVD
decomposition, we can write for any x € X and y € Y

Fo = ij(%?/)j)% (4)
Fry = ij(y,%)?/ﬁ- (5)



For y in the domain of FT, D(FT), the best L2-approximate solution has the expression

n

Ply=%" (y,%‘)wj -y (F*?b/é ?/Jj)%.
j J

b
J j=1

J=1

Note that for large j, the term 1/b; grows to infinity. Thus, the high frequency errors
are strongly amplified. This amplification measures the difficulty of the inverse problem,
the faster the decay of the eigenvalues, the more difficult is the inverse problem. In this
paper we will tackle the problem of polynomial decay of eigenvalues. So we assume that

there exists an index t such that b; = O(j7%?) for some ¢ > 0. The parameter ¢ is called
the index of ill-posedness of the operator F, following notations in [12].

2 Aggregation with ¢! penalty for inverse problems

Let C = {zy,...,xp}, with 2 < M < n, be a collection of functions in X, independent
from the observations. The z,,’s can be viewed as preliminary estimators of z*, con-
structed from some training sample. Aggregation procedures aim to build an estimator of
x* by combining in a suitable way the functions x1, ...,z (we refer to [19, 21, 6, 22] for
relevant references in aggregation). The purpose is to filter out irrelevant elements in the
collection z1, ...,y as well as to combine several possibly competing estimators. Thus,
an estimator is sought as a linear combination of the x,,’s, called aggregate, and noted

M
T = E )\mxma
m=1

for X = (A1, ..., \r) " lying in some subset A of R,

As in many inverse problems, two points of view can be considered : either find-
ing an approximation of the data in the operator space, or looking at the best possible
aggregation in X.

Let v(.) denote the following loss function

v——g <y—Fv,—>,|",veX.

This criterion corresponds to a quadratic loss between the image by the operator of a
candidate function v and the observed data. Note that, this corresponds to inverting the
operator F'in the sense that

byt <y, 05 >p=<z,0; >n +b;10(p)). (6)



Viewing the preliminary estimators zy, ...,z as a collection of regressors, a natural
solution to the aggregation problem would be to consider the least square estimator,
obtained by minimizing A — ~v(zx) over R¥. However, this solution is known to be
inefficient if the number of regressors is too large. For this reason, penalized procedures,
favoring low-dimensional values of A are often preferred to classical least square.

For a given penalty pen(\), the penalized aggregation estimator & = x5 is built by
minimizing over R

A= vy(zy) + pen(A) := L, (A). (7)
Since we promote sparsity, the penalty that is used in the present paper is defined as
M
pen(A) = Z Tn,m| Aml, (8)
m=1

with the notation , ,, = r,, 0., with r,, = 31/2(log M?n)/n and o2, = % S % This
penalty is highly inspired of the ¢!-penalty used in [5] and enjoys the property of detection
of relevant elements in the collection of functions C. The term r,, plays the role of the usual
model selection penalty to prevent the aggregation of a too large number of functions.
The term in o, is here an extra-term coming from the ill-posedness of the operator since
it depends on the regularity of the functions with regards to the decay of the eigenvalues
of the operator. In this way, it can be viewed as a source type condition as pointed out
in [7] or [12]. Such a penalty, somewhat involving the ¢!-norm of the parameter A, are
closely related to soft-thresholding, as discussed in [18] or [15].
We introduce some more notation : let X be the n x M design matrix with (i, m)-th
component equals x,(¢;) fori =1,...nand m =1,..., M. Moreover, for g € N*, let |- |,
and | - | denote respectively the f9-norm and the ¢*-norm in RM ; that is, for a given
vector @ € RM, we write |a|? = Zi‘fil lam|? and |@|o = sup,,—1__ s lam|. We also set the
semi-norm |alyp = Z%zl 144,, 20}, where 1 stands for the indicator function. Finally, for
any subset S of {1,..., M} and for a given vector a € R, we introduce the notation ag
for the vector of size M whose components coincide with a in S, and equal 0 otherwise.
We also denote by |S| the cardinality of the set S.

We now state an assumption required to establish the theoretical result in this part.
Fix s € N*:

Assumption RE(s): Let S be a subset of {1,..., M}, and define I's the set I's = {§ €
RM : Y o Oml|0m| < 5,5 0m|om|}. We the assume that

o(s) == min sl

= > 0.
SC{l,....M}:|S|<s 8#0: 6€l's |dg|o

d'XTXs
n

Note that with our notation, we have! ||xs]|? = , where X is the matrix whose

'We refer the reader to Appendix A for details on this equality



columns are X,, = (z(t1), ..., Tm(t,))" (with m = 1,..., M) and then the above as-
sumption can be interpreted as a positive definiteness assumption of square sub-matrices
of the Gram matrix XX with size smaller than s. This assumption has first been in-
troduced in [2]. Some recent developments [20, 10] introduce other assumptions, weaker
than Assumption RFE, which also can be used in our framework. We prefer to use the
more common Assumption RE to reduce extra technical arguments which would make
the paper harder to read. Finally, we point out the book [4] for a complete display of the
assumptions needed for ¢!-regularized methods.

Most controls on £*-regularized methods are established with high probability. To the
best of our knowledge, the sharpest oracle inequalities for the Lasso (¢!- penalized least
squares estimator) available in the literature are the ones presented in [20, 10]. In what
follows, we will exploit these results to improve them and develop a control on the error
of the ¢'-penalized least-square estimator (7)-(8) in expectation :

Theorem 2.1 Fix some integer 1 < s < M. Under the assumption Assumption RE(s),
the penalized estimator & obtained & = x5 = ZM AT, With

m=1
< ) log M?n M
A =arg Jmin, {fy(:c)\) + 34/ QT ;amp\m\
satisfies,
Ble -2 < il lea- a2+ 226 s) Y o
T XERM! |§)=s<s "36 " e

All=* |2 + 1202, | 6b,0 (M +1) n
+ + exp (%) .
Mn n 8

max

where the set S is defined as S ={m e {1,...,M}: A\, #0} and b,?, = max b, >

IEREE)

The following theorem provides an oracle inequality that controls the aggregation proce-
dure. The inequality is sharp, that is, the leading constant in front of the main term is 1.
Morover, several quantities are of interest in the above bound.

25,2 ;-2

The main term is given by infy {|lzx — z*||2 + 212 ¢7%(s) >,.c5 0% }- It is composed of

a bias term and an additional term where ) o o2 plays the role of the sparsity index.
The rate is penalized on the one hand by r2 and on the other hand by o2, = % > i %%m
for all the different functions x,, that are selected in the aggregation set S. This term
can be seen as a source condition that links the smoothness of the functions to the decay
of the eigenvalues of the inverse operator. It is bounded under the usual source condition
assumption. Then if there exists a A* such that zx- = 2*, and given the definition of 72,



the rate of convergence is M > mess 0oy, Where S* is the true sparsity index. Com-
pared to the usual rate of convergence, we accepted here to lose a log factor (log(M?n)
instead of log(M)) in order to provide a bound in expectation.

The remainder term is made of two parts. An exponential bound which is negligible
and a second term of order b2 /Mn which is the price to pay for using aggregation in
an inverse problem settings. Hence when the problem is mildly ill-posed, i.e when the
coefficients of the SVD decay at a polynomial rate b, = C 5742 for t the index of ill-
posedness, this term is of order n‘~!. Note that this term goes to zero when ¢ is smaller
than 1, yet hampering the consistency rate. In other cases and in the severely ill-posed
setting, this term becomes dominant in the upper bound.

Hence aggregation methods for inverse problems have the same kind of drawbacks than

¢! penalization procedure since they cannot handle too badly ill-posed inverse problems.

Appendix A

The definition of the aggregation estimator given in (7) or (8) is based on a vectorial
model while the observation Model (2) is functional. One then needs to establish links
between them and to show how the observational model can be written into a sequential
one.

We recall that the model is given in (6) by the following equation

bj_l <y, ©j >,=< SL’*, "ij >n +b]_15(90]>7

with §(p;) =< 6, p; >, . Hence define z € X as z; = 2(¢;) := bj_1 <y, ®j >y,. This func-
tion will be observed with an heteroscedatic observation noise € = (ey,...,e,)" defined
as e = b;'6(p;). Hence, Model (2) can be written as an heteroscedastic model

2(Y;) =< a4 > 45, 7 =1,...,n (9)
where € € R" is a Gaussian noise with heterogeneous variance ¥ given by the diagonal
terms Var(e;) = ;2, growing to infinity while 7 — 4o00. Moreover, if we denote by z
the vector z = (z1,...,2,) whose components are z; := z(1;) given above, the model
becomes

z=x"+e¢, (10)
where x* is the vector in R" with j-th component equal < 2*,1; >,, j = 1,...,n. Both
above models are not observed and then are unusable. However, their introduction is
motived by technical arguments and make calculation more synthetic. It also illustrates
how our inverse problem can be summarized into an heteroscedastic linear problem.
Now consider the aggregate estimator considered in this paper and recall its definition

M
I\ = E )\mxm
m=1
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for some A € A. Then for any function h in X we can write

hTX\
<h7 ZC’)\>n = )
n

where X is the design matrix whose components are the x,,(t;) and h is the vector in R"
whose j-th coordinate is h(1);).

Appendix B

Proof of Theorem 2.1. This theorem is a control on the prediction error in expectation.
To prove it, we establish an intermediate result where we propose a control on the error
on the event A defined by

M XTe
A= (BIVal <rum},  with V,, = o
m=1

and which holds with large probability (c¢f. Appendix A for the definition of €).

Proposition 2.2 Under the assumption of Theorem 2.1, we have on the set A

25
& -2l < | inf {Hm—w*!\i+%ri¢‘2<§>zaﬁw}v

AERM | S|
Sl meS

for any s < s, where S ={m e {1,...,M}: \, #0}.

Proof of Proposition 2.2. The proof of this result is inspired by the proof of Theorem 2
in [14]. First of all, we notice that if (& — 2*, & — z), < 0, then the identity

2( —a", & — ), = & — 2|5 + & — zall; = lza — 277 (11)

implies || — z*||? < |[za — 2*||2. Then the bound in the proposition is valid.
Then, let us consider the case where (& —2*,& — ), > 0. Recall that we have set

log(M?2n) 2 “ixn X2 ,
T = 3y/27— and o0, =n"" ) | =5, where X;,,, = xn,(t;) for i € {1,...,n} and
m e {l,...,M}. In this case, we exploit the optimality condition of the minimization
criterion (7)-(8). Since A is minimizer of this criterion, the first order optimality conditions
imply that
X'z XX\ .
2 -2 SN 8|)\‘17U
n n

where for any A, the quantity d|A|;, denotes the sub-differential of the weighted ¢'-norm,
defined for any vector @ € RM by |ali, = S0 omlam|. Set S = {m : A\, # 0}, the

8



sparsity pattern of A. Thanks to sub-differential of the /*-norm in R, we deduce the set
of sub-differential of the above weighted ¢!-norm

Ao ={pnp e R p,=o0psgn(\y) if me S and i, € [~0m, 0] if m € S},

where, for a given a € R, sgn(a) equals £1 according to the sign of a, and S°¢ denotes the
complementary set of S in {1,..., M} (c¢f. [13, page 259] for details on sub-differential
tools). Based on the above statement, we can write first

2S\TXTZ QS\TXTXS\
n n

— = 70| Ao (12)
where z is given by (10) ; second for any A € R™ with sparsity pattern S = {m : \,, # 0}
we may write

ATXT ATX XA
2 Z 9 < rul AL (13)
n

n
Subtracting (12) from (13), we get for any A € RM with sparsity pattern S = {m : \,, #
0}
A-N"X"z ,A— A)TXTXA
n n
Moreover, according to (10), we have z = x* 4+ € and then the above inequality becomes

2 < Tn(‘A|1,0 - ‘5“170)'

~

A-XN'XXA ) (A=XN)TXTx* A=XN)T"XTe

< (Ao — A1) +2
n n

2

Now, using the correspondence between vectorial and functional notations stated in Ap-
pendix A 2, this inequality states that for any A € R™ with sparsity pattern S = {m :
A # 0}

A=XN)TXTe

2(& — 2", & — x2), <7 (Ao — | Aho) + 2 (14)

Considering the sparsity pattern of A, the first term on the rhs of the above inequality
can be decomposed as

Pl = Ale) = = 3 rmldnl + 3t (Al = A

meSe meS
< - Z Tn,m‘j\m‘ + Z Tn,m|5\m - )\m‘
meS¢e mesS

where we set 1, ,,, = 1, 0y,. Note (-, -) the usual scalar product in RM and let V =
for short, then (14) becomes

e'X
n

2(@ =" @ = 2aby + 3 Tamlhnl < 3 rumlAnm = A+ 2(V, A= X,

meSe meS



Thanks to (11), the above inequality gives us the fundamental results

| _"E*Hi + || _'Z‘AH?L + Z Tnm|5‘m| < s _"E*Hi + Z Tnm|5‘m — Am| +2 <V> A- A> .
meSse mes
(15)
Once we established this last major inequality, we will first use it to show that A—A
belongs to the set I's in Assumption RE(S). Then we will use it again to establish the
bound announced in the proposition.
First, since A, = 0 for m € S¢, (15) implies that

Smese fnmlbal < D b = Al 4237 Vil A = dal +2 3 Vil
mes mes mese
A Emesc(rn,m — Vil Am| - < Z(Tn,m + Vi) [Am = Al (16)
mes

On the set A := . 1{3|V | < 7}, We easily obtain )« Tl Am| < 5 Y omes Tl A —

Am| and then the vector A—) belongs to I'g as announced above. Since s < 5, Assumption
RE(5) implies Assumption RE(s), and as a consequence (thanks to Assumptlon RE(s)),
we can write

(A= N)sl2 < &7 (s) | — zalln.

Combining this last inequality, with (15) and the fact that on the set A, ry,,, = 3|Vp|
(and then 7, ., — 2|Vp| = 1y, /3) for all m € {1,..., M}, we have

~ * ~ Tn,mA *
o=l + o —aall+ 3 2l < flen = a2+ (14 3) 3 rumlin = Al

meSe meS

* 5 '\
< loa—= ||i+§7”n > oZl(A =Nl
meS
< ||56A—$||2+ 37n > 02,07 (s) & — zalln
meS

< flaa = a7+ 36 rn ¢ () Y om + |2 — Al
meS

where we used, for the first inequality, similar reasoning as those exploited to get (16). We
also used Cauchy-Schwarz Inequality and the fact that r,,,, = r,on,, Vm € {1,..., M}
for the second inequality, and the relation 2ab < a* + b? (for any positive reals a and b)
in the last one. Subtracting ||€ — z||2 to both sides leads to the result in the proposition

Ellz — 2*||?1 4 < inf xx — 2|7 + Zcr
& - i< i M{” A= 2o

meS

10



since ¢ 2(s) < ¢2(5) for all s < 5. This finishes the proof of Proposition 2.2.

Now, let’s go back to the proof of the theorem. It remains to deal with error when the
event A° occurs. By definition, (&) + pen(A) < y(xx) + pen(A) for all A € RM. Taking
A =0, we deduce that (&) < 0.Moreover, using the definition of v we find

& —2*[5 < (2|17 + 20 (@ e, | < (2[5 + 2/l nlle]l
< [l + 2lella(llE — 27l + |27]]n)
* |12 ||i_ *H% * |2 2
< l2tfln + + =715 + 3llellx

2

using the inequality 2ab < 0a® + 67b* successively for § = 1/2 and 6 = 1.
The random variable W = n||X~2¢||2 has Chi-square distribution with M degrees of

freedom and satisfies b2, W/n > ||e||2 where b2, = max,,—,_a b?,. Thus,
6b, 2
|# = ™[l < 4lla”|[ + =2 W

Following the proof in [5], we now introduce the event B = {W < 2n}. Remark that
E(W1 ) < 2nP(A°) + E(W1ge), where the second term can be bounded by

E(Wilg) < VE(W?2)\/P(B°),

by Cauchy-Schwarz’s inequality. Since W has x*(M) distribution (with M < n, it satisfies
in particular E(W?) < (M + 1)? and P(W > 2n) < P(x*(n) > 2n) < exp(—n/8) (for the
second statement, see [9], page 857). Moreover, since V,, ~ N(0,n7102), a standard tail
bound for Gaussian distributions gives

P(AY) < P(U{3|V|>rnm}> ZIP’<|V| “””)

m=1

- (ran/3) |
< _\'nm —1
< Yew{-Gemll S~

m=1 m=1

yielding
4|x* |2 + 12b,,2 6b— (M+1)

max max

. N n
B( — 2°[3040) <~ M e (<2,

which completes the proof.

11
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