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Introduction

In this article we are interested in recovering an unobservable signal x * based on observations y(t i ) = F (x * )(t i ) + δ i ,

where F : X → Y is a linear functional, with X , Y Hilbert spaces and t i , i = 1, . . . , n is a fixed observation scheme. Moreover, x * : R → R is the unknown function to be recovered from the data y(t i ), i = 1, . . . , n. The regularity condition over the unknown parameter of interest is expressed through the assumption x * ∈ X and will be made precise later in Section 3. We assume that the observations y(t i ) ∈ R and that the observation noise δ i are i.i.d. realizations of a certain random variable δ. We assume F is Fréchet differentiable and ill-posed in the sense that our noise corrupted observations might lead to large deviations when trying to estimate x * . In a deterministic framework, the statistical model ( 1) is formulated as the problem of approximating the solution in x of F (x) = y, when y is not known, and is only available through an approximation y δ , yy δ δ.

It is important to remark that whereas in this case consistency of the estimators depends on the approximation parameter δ, in [START_REF] Abramovich | Wavelet decomposition approaches to statistical inverse problems[END_REF] the noise level depends on the number of observations n, hence we will consider asymptotic results when the number of observations increases.

In the linear case, the best L 2 approximation of x * is x † = F † y, where F † is the Moore-Penrose (generalized) inverse of F . We will say the problem is ill-posed if F † is unbounded. This might entail, and is generally the case, that F † (y δ ) is not close to x † . Hence, the inverse operator needs to be, in some sense, regularized.

Regularization methods replace an ill-posed problem by a family of well-posed problems. Their solution, called regularized solutions, are used as approximations of the desired solution of the inverse problem. These methods always involve some parameter measuring the closeness of the regularized and the original (unregularized) inverse problem. Rules (and algorithms) for the choice of these regularization parameters as well as convergence properties of the regularized solutions are central points in the theory of these methods, since they allow to find the right balance between stability and accuracy. Hence there exist a wide range of possible estimators for inverse problems, each method with their advantages and their inconvenience. For a complete review on regularization methods for inverse problems, we refer to [START_REF] Cavalier | Inverse problems in statistics[END_REF] and references therein. A natural idea is thus to look for a new, improved estimator constructed by combining such suitable estimators in a proper way. Such an estimator is called an aggregate and its construction is called aggregation. Aggregation of estimators have been studied within a large number of frameworks (we refer for instance to [START_REF] Birgé | Model selection via testing: an alternative to (penalized) maximum likelihood estimators[END_REF], [START_REF] Yang | Aggregating regression procedures to improve performance[END_REF] [5] and references therein). Here we study linear aggregation for inverse problems.

Actually one of the main differences between direct and indirect problems comes from the fact that two spaces are at hand: the space of the observations Y and the space where the function will be estimated, namely X , the operator mapping one space into another, F : X → Y. Hence to build a statistical procedure, a choice must be made which will determine the whole methodology. This question is at the core of the inverse problem structure and is encountered in many cases. When trying to build basis well adapted to the operator, two strategies can be chosen, either expanding the function onto a wavelet basis of the space X and taking the image of the basis by the operator as stated in [START_REF] Donoho | Nonlinear solution of linear inverse problems by wavelet-vaguelette decomposition[END_REF], or expanding the image of the function onto a wavelet basis of Y and looking at the image of the basis by the inverse of the operator, studied in [START_REF] Abramovich | Wavelet decomposition approaches to statistical inverse problems[END_REF]. For the estimation problem with model selection theory, estimators can be obtained either by considering sieves on (Y m ) m ⊂ Y with their counterpart X m := F ⋆ Y m ⊂ X or sieves on (X m ) m ⊂ X and their image Y m := F X m ⊂ Y (see for instance in [START_REF] Loubes | Adaptive complexity regularization for linear inverse problems[END_REF][START_REF] Loubes | Model selection for non linear inverse problems[END_REF]) where F ⋆ states for the adjoint of F . In this paper we provide an aggregation procedure based on an ℓ 1 penalty which aggregates functions in the functional space X . We prove that the choice of a penalty taking into account the ill-posedness of the inverse problem enables to recover an oracle inequality which warrants the good behavior of the estimate.

The paper falls into the following parts. Section 1 describes the inverse problem model we are dealing with. The main result concerning the behavior of the aggregation procedure is stated in Section 2 while all the proofs and auxiliary results are postponed to the Appendix B. The gap between the functional model and the functional observation model is tackled in the Appendix A.

Inverse problem model

Consider the following inverse model:

y i = F (x * )(t i ) + δ i , i = 1, . . . , n. (2) 
F : X → Y is a known operator. Set Q n the empirical measure of the covariates. The L 2 (Q n )-norm of a function y ∈ Y is then given by

y n = y 2 dQ n 1/2 = 1 n n i=1 y 2 (t i ) 1 2 
, and the empirical scalar product by < y, y ′ > n = 1 n n i=1 y ′ (t i )y(t i ) for any y ′ ∈ Y. This model is the discretized version of the inverse continuous model

Y (g) = (F x * , g) + δ(g), g ∈ Y (3) 
where δ(g) is a centered Gaussian variable with variance g 2 := (g, g).

In the following, if F is a linear operator, we will denote F ⋆ its adjoint. As often F is not of full rank, so the singular value decomposition (SVD) of the operator is then a useful tool. Let (b j ; ϕ j , ψ j ) j 1 be a singular system for a linear operator F , that is, F ψ j = b j ϕ j and F ⋆ ϕ j = b j ψ j ; where {b 2 j } j 1 are the non zero eigenvalues of the selfadjoint operator F ⋆ F (and also of F F ⋆ ), considered in decreasing order. Furthermore, {ψ j } j=1,...,n and {ϕ j } j=1,...,n are a corresponding complete orthonormal system with respect to . n of eigenvectors of F ⋆ F and F F ⋆ , respectively. For general linear operators with an SVD decomposition, we can write for any x ∈ X and y ∈ Y

F x = n j=1 b j (x, ψ j )ϕ j (4) 
F ⋆ y = n j=1 b j (y, ϕ j )ψ j . (5) 
For y in the domain of F † , D(F † ), the best L 2 -approximate solution has the expression

F † y = n j=1 (y, ϕ j ) b j ψ j = n j=1 (F ⋆ y, ψ j ) b 2 j ψ j .
Note that for large j, the term 1/b j grows to infinity. Thus, the high frequency errors are strongly amplified. This amplification measures the difficulty of the inverse problem, the faster the decay of the eigenvalues, the more difficult is the inverse problem. In this paper we will tackle the problem of polynomial decay of eigenvalues. So we assume that there exists an index t such that b j = O(j -t/2 ) for some t > 0. The parameter t is called the index of ill-posedness of the operator F , following notations in [START_REF] Engl | Regularization of inverse problems[END_REF].

2 Aggregation with ℓ 1 penalty for inverse problems Let C = {x 1 , ..., x M }, with 2 M n, be a collection of functions in X , independent from the observations. The x m 's can be viewed as preliminary estimators of x * , constructed from some training sample. Aggregation procedures aim to build an estimator of x * by combining in a suitable way the functions x 1 , ..., x M (we refer to [START_REF] Nemirovski | Topics in non-parametric statistics[END_REF][START_REF] Tsybakov | Optimal rates of aggregation[END_REF][START_REF] Catoni | Statistical Learning Theory and Stochastic Optimization[END_REF][START_REF] Yang | Aggregating regression procedures to improve performance[END_REF] for relevant references in aggregation). The purpose is to filter out irrelevant elements in the collection x 1 , ..., x M as well as to combine several possibly competing estimators. Thus, an estimator is sought as a linear combination of the x m 's, called aggregate, and noted

x λ = M m=1 λ m x m , for λ = (λ 1 , ..., λ M ) ⊤ lying in some subset Λ of R M .
As in many inverse problems, two points of view can be considered : either finding an approximation of the data in the operator space, or looking at the best possible aggregation in X .

Let γ(.) denote the following loss function

γ(v) = n j=1 | < y -F v, ϕ j b j > n | 2 , v ∈ X .
This criterion corresponds to a quadratic loss between the image by the operator of a candidate function v and the observed data. Note that, this corresponds to inverting the operator F in the sense that

b -1 j < y, ϕ j > n =< x, ψ j > n +b -1 j δ(ϕ j ). ( 6 
)
Viewing the preliminary estimators x 1 , ..., x M as a collection of regressors, a natural solution to the aggregation problem would be to consider the least square estimator, obtained by minimizing λ → γ(x λ ) over R M . However, this solution is known to be inefficient if the number of regressors is too large. For this reason, penalized procedures, favoring low-dimensional values of λ are often preferred to classical least square. For a given penalty pen(λ), the penalized aggregation estimator x = x λ is built by minimizing over

R M λ → γ(x λ ) + pen(λ) := L n (λ). ( 7 
)
Since we promote sparsity, the penalty that is used in the present paper is defined as

pen(λ) = M m=1 r n,m |λ m |, (8) 
with the notation r n,m = r n σ m with

r n = 3 2(log M 2 n)/n and σ 2 m = 1 n n i=1 x 2 m (t i ) b 2 i
. This penalty is highly inspired of the ℓ 1 -penalty used in [START_REF] Bunea | Aggregation for Gaussian regression[END_REF] and enjoys the property of detection of relevant elements in the collection of functions C. The term r n plays the role of the usual model selection penalty to prevent the aggregation of a too large number of functions. The term in σ m is here an extra-term coming from the ill-posedness of the operator since it depends on the regularity of the functions with regards to the decay of the eigenvalues of the operator. In this way, it can be viewed as a source type condition as pointed out in [START_REF] Cavalier | Nonparametric statistical inverse problems[END_REF] or [START_REF] Engl | Regularization of inverse problems[END_REF]. Such a penalty, somewhat involving the ℓ 1 -norm of the parameter λ, are closely related to soft-thresholding, as discussed in [START_REF] Loubes | Adaptive estimation with soft thresholding penalties[END_REF] or [START_REF] Loubes | l 1 penalty for ill-posed inverse problems[END_REF]. We introduce some more notation : let X be the n × M design matrix with (i, m)-th component equals x m (t i ) for i = 1, . . . n and m = 1, . . . , M. Moreover, for q ∈ N * , let | • | q and | • | ∞ denote respectively the ℓ q -norm and the ℓ ∞ -norm in R M ; that is, for a given vector a ∈ R M , we write |a| q q = M m=1 |a m | q and |a| ∞ = sup m=1,...M |a m |. We also set the semi-norm |a| 0 = M m=1 1 {am =0} , where 1 {•} stands for the indicator function. Finally, for any subset S of {1, . . . , M} and for a given vector a ∈ R M , we introduce the notation a S for the vector of size M whose components coincide with a in S, and equal 0 otherwise. We also denote by |S| the cardinality of the set S.

We now state an assumption required to establish the theoretical result in this part. Note that with our notation, we have

1 x δ 2 n = δ ⊤ X ⊤ Xδ n
, where X is the matrix whose 1 We refer the reader to Appendix A for details on this equality columns are X m = (x m (t 1 ), . . . , x m (t n )) ⊤ (with m = 1, . . . , M) and then the above assumption can be interpreted as a positive definiteness assumption of square sub-matrices of the Gram matrix X ⊤ X with size smaller than s. This assumption has first been introduced in [START_REF] Bickel | Simultaneous analysis of lasso and Dantzig selector[END_REF]. Some recent developments [START_REF] Sun | Scaled sparse linear regression[END_REF][START_REF] Dalalyan | On the prediction performance of the Lasso[END_REF] introduce other assumptions, weaker than Assumption RE, which also can be used in our framework. We prefer to use the more common Assumption RE to reduce extra technical arguments which would make the paper harder to read. Finally, we point out the book [START_REF] Buehlmann | Statistics for High-Dimensional Data: Methods, Theory and Applications[END_REF] for a complete display of the assumptions needed for ℓ 1 -regularized methods.

Most controls on ℓ 1 -regularized methods are established with high probability. To the best of our knowledge, the sharpest oracle inequalities for the Lasso (ℓ 1 -penalized least squares estimator) available in the literature are the ones presented in [START_REF] Sun | Scaled sparse linear regression[END_REF][START_REF] Dalalyan | On the prediction performance of the Lasso[END_REF]. In what follows, we will exploit these results to improve them and develop a control on the error of the ℓ 1 -penalized least-square estimator ( 7)-( 8) in expectation :

Theorem 2.1 Fix some integer 1 s M. Under the assumption Assumption RE(s), the penalized estimator x obtained x = x λ = M m=1 λm x m , with

λ = arg min λ∈R M γ(x λ ) + 3 2 log M 2 n n M m=1 σ m |λ m | satisfies, E x -x * 2 n inf λ∈R M : |S|=s s x λ -x * 2 n + 25 36 r 2 n φ -2 (s) m∈S σ 2 m + 4 x * 2 n + 12b -2 max Mn + 6b -2 max (M + 1) n exp - n 8 ,
where the set S is defined as S = {m ∈ {1, . . . , M} :

λ m = 0} and b -2 max = max m=1,...,M b -2 m .
The following theorem provides an oracle inequality that controls the aggregation procedure. The inequality is sharp, that is, the leading constant in front of the main term is 1. Morover, several quantities are of interest in the above bound.

The main term is given by inf

λ x λ -x * 2 n + 25 36 r 2 n φ -2 (s) m∈S σ 2 m .
It is composed of a bias term and an additional term where m∈S σ 2 m plays the role of the sparsity index. The rate is penalized on the one hand by r 2 n and on the other hand by

σ 2 m = 1 n n i=1 x 2 m (t i ) b 2 i
for all the different functions x m that are selected in the aggregation set S. This term can be seen as a source condition that links the smoothness of the functions to the decay of the eigenvalues of the inverse operator. It is bounded under the usual source condition assumption. Then if there exists a λ * such that x λ * = x * , and given the definition of r 2 n , the rate of convergence is log(M 2 n) n m∈S * σ 2 m , where S * is the true sparsity index. Compared to the usual rate of convergence, we accepted here to lose a log factor (log(M 2 n) instead of log(M)) in order to provide a bound in expectation.

The remainder term is made of two parts. An exponential bound which is negligible and a second term of order b -2 max /Mn which is the price to pay for using aggregation in an inverse problem settings. Hence when the problem is mildly ill-posed, i.e when the coefficients of the SVD decay at a polynomial rate b j = Cj -t/2 for t the index of illposedness, this term is of order n t-1 . Note that this term goes to zero when t is smaller than 1, yet hampering the consistency rate. In other cases and in the severely ill-posed setting, this term becomes dominant in the upper bound.

Hence aggregation methods for inverse problems have the same kind of drawbacks than ℓ 1 penalization procedure since they cannot handle too badly ill-posed inverse problems.

Appendix A

The definition of the aggregation estimator given in [START_REF] Cavalier | Nonparametric statistical inverse problems[END_REF] or ( 8) is based on a vectorial model while the observation Model (2) is functional. One then needs to establish links between them and to show how the observational model can be written into a sequential one.

We recall that the model is given in ( 6) by the following equation b -1 j < y, ϕ j > n =< x * , ψ j > n +b -1 j δ(ϕ j ), with δ(ϕ j ) =< δ, ϕ j > n . Hence define z ∈ X as z j = z(ψ j ) := b -1 j < y, ϕ j > n . This function will be observed with an heteroscedatic observation noise ε = (ε 1 , . . . , ε n ) ⊤ defined as ε j = b -1 j δ(ϕ j ). Hence, Model (2) can be written as an heteroscedastic model z(ψ j ) =< x * , ψ j > n +ε j , j = 1, . . . , n

where ε ∈ R n is a Gaussian noise with heterogeneous variance Σ given by the diagonal terms Var(ε j ) = b -2 j , growing to infinity while j → +∞. Moreover, if we denote by z the vector z = (z 1 , . . . , z n ) ⊤ whose components are z j := z(ψ j ) given above, the model becomes

z = x * + ε, (10) 
where x * is the vector in R n with j-th component equal < x * , ψ j > n , j = 1, . . . , n. Both above models are not observed and then are unusable. However, their introduction is motived by technical arguments and make calculation more synthetic. It also illustrates how our inverse problem can be summarized into an heteroscedastic linear problem. Now consider the aggregate estimator considered in this paper and recall its definition

x λ = M m=1 λ m x m
for some λ ∈ Λ. Then for any function h in X we can write

h, x λ n = h ⊤ X λ n ,
where X is the design matrix whose components are the x m (t i ) and h is the vector in R n whose j-th coordinate is h(ψ j ).

Appendix B

Proof of Theorem 2.1. This theorem is a control on the prediction error in expectation.

To prove it, we establish an intermediate result where we propose a control on the error on the event A defined by

A = M m=1 {3|V m | r n,m }, with V m = X ⊤ j ε n ,
and which holds with large probability (cf. Appendix A for the definition of ε). Proof of Proposition 2.2. The proof of this result is inspired by the proof of Theorem 2 in [START_REF] Koltchinskii | Nuclear norm penalization and optimal rates for noisy low rank matrix completion[END_REF]. First of all, we notice that if xx * , xx λ n 0, then the identity

Proposition 2.2 Under the assumption of Theorem 2.1, we have on the set

A x -x * 2 n inf λ∈R M |S| s x λ -x * 2 n + 25 36 r 2 n φ -2 (s)
2 x -x * , x -x λ n = x -x * 2 n + x -x λ 2 n -x λ -x * 2 n (11) implies x -x * 2 n x λ -x * 2 n .
Then the bound in the proposition is valid. Then, let us consider the case where xx * , xx λ n > 0. Recall that we have set

r n = 3 2 log(M 2 n) n and σ 2 m = n -1 n i=1 X 2 i,m b 2 i
, where X i,m = x m (t i ) for i ∈ {1, . . . , n} and m ∈ {1, . . . , M}. In this case, we exploit the optimality condition of the minimization criterion ( 7)- [START_REF] Cavalier | Inverse problems in statistics[END_REF]. Since λ is minimizer of this criterion, the first order optimality conditions imply that

2 X ⊤ z n -2 X ⊤ X λ n ∈ r n ∂| λ| 1,σ
where for any λ, the quantity ∂|λ| 1,σ denotes the sub-differential of the weighted ℓ 1 -norm, defined for any vector a ∈ R M by |a| 1,σ = M m=1 σ m |a m |. Set S = {m : λ m = 0}, the sparsity pattern of λ. Thanks to sub-differential of the ℓ 1 -norm in R M , we deduce the set of sub-differential of the above weighted ℓ 1 -norm

∂|λ| 1,σ = {µ ∈ R M : µ m = σ m sgn(λ m ) if m ∈ S and µ m ∈ [-σ m , σ m ] if m ∈ S c },
where, for a given a ∈ R, sgn(a) equals ±1 according to the sign of a, and S c denotes the complementary set of S in {1, . . . , M} (cf. [13, page 259] for details on sub-differential tools). Based on the above statement, we can write first

2 λ⊤ X ⊤ z n -2 λ⊤ X ⊤ X λ n = r n | λ| 1,σ (12) 
where z is given by [START_REF] Dalalyan | On the prediction performance of the Lasso[END_REF] ; second for any λ ∈ R M with sparsity pattern S = {m : λ m = 0} we may write

2 λ ⊤ X ⊤ z n -2 λ ⊤ X ⊤ X λ n r n |λ| 1,σ (13) 
Subtracting ( 12) from ( 13), we get for any λ ∈ R M with sparsity pattern S = {m :

λ m = 0} 2 (λ -λ) ⊤ X ⊤ z n -2 (λ -λ) ⊤ X ⊤ X λ n r n (|λ| 1,σ -| λ| 1,σ ).
Moreover, according to [START_REF] Dalalyan | On the prediction performance of the Lasso[END_REF], we have z = x * + ε and then the above inequality becomes

2 ( λ -λ) ⊤ X ⊤ X λ n -2 ( λ -λ) ⊤ X ⊤ x * n r n (|λ| 1,σ -| λ| 1,σ ) + 2 ( λ -λ) ⊤ X ⊤ ε n .
Now, using the correspondence between vectorial and functional notations stated in Appendix A 2, this inequality states that for any λ ∈ R M with sparsity pattern S = {m :

λ m = 0} 2 x -x * , x -x λ n r n (|λ| 1,σ -| λ| 1,σ ) + 2 ( λ -λ) ⊤ X ⊤ ε n . (14) 
Considering the sparsity pattern of λ, the first term on the rhs of the above inequality can be decomposed as

r n (|λ| 1,σ -| λ| 1,σ ) = - m∈S c r n,m | λm | + m∈S r n,m |λ m | -| λm | - m∈S c r n,m | λm | + m∈S r n,m | λm -λ m |
where we set r n,m = r n σ m . Note •, • the usual scalar product in R M and let V = ε ⊤ X n for short, then (14) becomes

2 x -x * , x -x λ n + m∈S c r n,m | λm | m∈S r n,m | λm -λ m | + 2 V, λ -λ .
Thanks to [START_REF] Donoho | Nonlinear solution of linear inverse problems by wavelet-vaguelette decomposition[END_REF], the above inequality gives us the fundamental results

x -

x * 2 n + x -x λ 2 n + m∈S c r n,m | λm | x λ -x * 2 n + m∈S r n,m | λm -λ m | + 2 V, λ -λ .
(15) Once we established this last major inequality, we will first use it to show that λλ belongs to the set Γ S in Assumption RE(s). Then we will use it again to establish the bound announced in the proposition. First, since λ m = 0 for m ∈ S c , (15) implies that

m∈S c r n,m | λm | m∈S r n,m | λm -λ m | + 2 m∈S |V m || λm -λ m | + 2 m∈S c |V m || λm | ⇔ m∈S c (r n,m -|V m |)| λm | m∈S (r n,m + |V m |)| λm -λ m |. (16) 
On the set A := M m=1 {3|V m | r n,m }, we easily obtain m∈S c σ m | λm | 5 m∈S σ m | λmλ m | and then the vector λ-λ belongs to Γ S as announced above. Since s s, Assumption RE(s) implies Assumption RE(s), and as a consequence (thanks to Assumption RE(s)), we can write

|( λ -λ) S | 2 φ -1 (s) x -x λ n .
Combining this last inequality, with [START_REF] Loubes | l 1 penalty for ill-posed inverse problems[END_REF] and the fact that on the set A, r n,m 3|V m | (and then r n,m -2|V m | r n,m /3) for all m ∈ {1, . . . , M}, we have

x -x * 2 n + x -x λ 2 n + m∈S c r n,m 3 | λm | x λ -x * 2 n + 1 + 2 3 m∈S r n,m | λm -λ m | x λ -x * 2 n + 5 3 r n m∈S σ 2 m |( λ -λ) S | 2 x λ -x * 2 n + 5 3 r n m∈S σ 2 m φ -1 (s) x -x λ n x λ -x * 2 n + 25 36 r 2 n φ -2 (s) m∈S σ 2 m + x -x λ 2 n .
where we used, for the first inequality, similar reasoning as those exploited to get [START_REF] Loubes | Model selection for non linear inverse problems[END_REF]. We also used Cauchy-Schwarz Inequality and the fact that r n,m = r n σ m , ∀m ∈ {1, . . . , M} for the second inequality, and the relation 2ab a since φ -2 (s) φ -2 (s) for all s s. This finishes the proof of Proposition 2.2. Now, let's go back to the proof of the theorem. It remains to deal with error when the event A c occurs. By definition, γ( x) + pen( λ) γ(x λ ) + pen(λ) for all λ ∈ R M . Taking λ = 0, we deduce that γ( x) 0.Moreover, using the definition of γ we find

x -x * 2 n x * 2 n + 2| x, ε n | x * 2 n + 2 x n ε n x * 2 n + 2 ε n ( x -x * n + x * n )
x * 2 n +

xx * 2 
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m∈S σ 2 m,

 2 for any s s, where S = {m ∈ {1, . . . , M} : λ m = 0}.

2 + b 2 ( 2 n

 222 for any positive reals a and b) in the last one. Subtracting xx λ to both sides leads to the result in the propositionE xx * 2 n 1 A inf λ∈R M |S| s x λx * 2 n

n 2 + x * 2 n + 3 ε 2 n 2 n 4 8 ,

 222248 using the inequality 2ab θa 2 + θ -1 b 2 successively for θ = 1/2 and θ = 1. The random variable W = n Σ -1/2 ε 2 n has Chi-square distribution with M degrees of freedom and satisfies b-2 max W/n ε 2 n where b -2 max = max m=1,...,M b 2 m . Thus, xx *Following the proof in[START_REF] Bunea | Aggregation for Gaussian regression[END_REF], we now introduce the event B = {W 2n}. Remark thatE(W 1 A c ) 2nP(A c ) + E(W 1 B c ), where the second term can be bounded byE(W 1 B c ) E(W 2 ) P(B c ),by Cauchy-Schwarz's inequality. Since W has χ 2 (M) distribution (with M n, it satisfies in particular E(W 2 ) (M + 1) 2 and P(W > 2n) P(χ 2 (n) > 2n) exp(-n/8) (for the second statement, see[START_REF] Cavalier | Oracle inequalities for inverse problems[END_REF], page 857). Moreover, since V m ∼ N (0, n -1 σ 2 m ), a standard tail bound for Gaussian distributions givesP(A c ) P M m=1{3|V m | > r n,m } which completes the proof.