
HAL Id: hal-00994699
https://hal.science/hal-00994699

Submitted on 22 May 2014

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

A Logical Formalization of a Secure XML Database
Alban Gabillon

To cite this version:
Alban Gabillon. A Logical Formalization of a Secure XML Database. CESS (Journal of Computer
Engineering, System and Science) , 2006, 21 (5). �hal-00994699�

https://hal.science/hal-00994699
https://hal.archives-ouvertes.fr


A Logical Formalization of a Secure XML Database1

Alban Gabillon 

Université de Pau et des Pays de l’Adour, IUT de Mont de Marsan, LIUPPA/CSySEC, 

40 000 Mont de Marsan, France. 

alban.gabillon@univ-pau.fr

Abstract. In this paper, we first define a logical theory representing an XML 

database supporting XPath as query language and XUpdate as modification 

language. We then extend our theory with predicates allowing us to specify the 

security policy protecting the database. The security policy includes rules 

addressing the read and write privileges. We propose axioms to derive the 

database view each user is permitted to see.  We also propose axioms to derive 

the new database content after an update. 

1  Introduction 

Several discretionary access control models for eXtensible Markup Language (XML) 

documents [2] have been proposed [1][7][13][11][14]. In [10], we first reviewed most 

of the existing access control models for XML and discussed their weaknesses.  Based 

on our study, we then defined a new model suggesting a solution to cope with the 

problems that our study revealed. The model in [10] has the following characteristics: − The model is an interpretation for XML of the SQL security model (with some 

additional features). − Each user is provided with a view of the source database he or she is permitted to 

see. − The model includes a new position privilege that allows knowing about the 

existence of an XML node but not about its label. Nodes on which users hold a 

position privilege are shown with a RESTRICTED label in users’ views. Thus, 

sensitive labels are hidden while the structure of the XML document is preserved.  − The model includes various write privileges and defines the access controls for the 

write operations.  

However, the model in [10] has two drawbacks: − It is defined in an informal way. − Like the security model of SQL, it ignores interactions between the read privilege 

and the write privilege. In other words, write operations are evaluated on the 

source database and not on the user’s view. As a consequence, users can build 

some covert channels to learn about the data they are not permitted to see.   
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In [28], we updated the model defined in [10] and we obtained a new version of our 

model which did not have these drawbacks: − We investigated in details interactions between the read privilege and the write 

privilege.  − We used mathematical logic to formally define the model. With logic, we could 

homogeneously define the database, the security policy and the access controls. 

This approach enables an easy and precise way of computing the facts that users 

are authorized to see/update. 

However, due to space limitations, the logical formalization in [28] was not complete: − We could not give the logical interpretation of the query language. − We could not give the axioms allowing us to derive the various tree geometry 

relations (child, descendant, following-sibling …). − We could not describe the numbering scheme we used to assign identifiers to XML 

nodes.  

Therefore, the purpose of this paper is to give a full logical definition of an XML 

database secured with the model we first defined in [10] and later refined in [28]. In 

fact, this paper is an extended version of papers [10] and [28]. 

We have implemented a Prolog-based prototype simulating a secure XML database. 

Logical formulae given in this paper are Horn clauses and have been implemented as 

such in the prototype. This prototype can be downloaded from the following address: 
http://www.univ-pau.fr/~gabillon/xmlsecu

In section 2, we make an informal overview of our model and we underline the 

main limitations of existing security models for XML. In section 3, we define the 

logical theory representing an XML database. Since we use XPath  [4] as a query 

language and XUpdate [15] as a modification language, we give their logical 

interpretation. In section 4, we extend our theory with predicates allowing us to define 

the security policy protecting the database. The security policy includes rules 

addressing read and write privileges. We define the logical formulae allowing us to 

derive the database view each user is permitted to see. We also give the logical 

formulae allowing us to derive the new database after an update. Finally, section 5 

concludes this paper. 

2 Informal Overview of our Model 

In this section, we survey existing works and we present our approach in an informal 

way. The interested reader can also refer to [9] for a formal presentation of existing 

works. 

2.1  Subjects 

The development of an access control system requires the definition of the subjects 

and objects. There is not much to say about the subjects in existing access control 

models for XML data. In [1], subjects are simply users. In [13], they can be users or 

roles (see [17] for a description of roles). In [11], they are users who are structured 

http://www.univ-pau.fr/~gabillon/xmlsecu


into a group hierarchy. In [7], the authors take into consideration the fact that their 

access control model is to be implemented as an extension to an existing web server. 

In their model, subjects are users or IP addresses (or a combination of the two), and 

they are structured into a group hierarchy. In the model presented in this paper, 

subjects can be users or roles like in the SQL security model. 

2.2  Objects 

An object is a granule of information which can be protected. Regarding the objects, 

there are basically different approaches among existing access control models for XML 

data: − In [7][13], the smallest object is an element. Authorizations specified for an 

element are intended to be applicable to the element itself, its content (PCDATA) and 

its attributes. − In [1], the smallest object is an element or an attribute. Authorizations specified for 

an element are intended to be applicable to the element itself and its content. − In [11], an object is a node of an XPath tree (see [4] for a description of XPath and 

figure 1 for an example of an XPath tree). A node of an XPath tree can be an 

element, the content of an element or an attribute. 

We want our security model to have a high expressive power. Therefore, in our 

model, an object is a node of an XPath tree like in the model in [11].  

2.3  Security Policy 

In all the existing models, the approach is the same: the security administrator writes 

the security policy in a separate authorization sheet. The security policy consists of a 

set of authorization rules which can be either positive (grant) or negative (deny). The 

reason for having both positive and negative authorizations is to have a way to specify 

exceptions to authorizations which are applicable to sets of subjects or objects. 

Authorization rules address granules by means of Xpath expressions. Conflicts 

between the rules are solved by a conflict resolution policy. − The model in [7] supports the read privilege only. In another paper [29], the 

authors partially address the write privilege but underline the fact that current XML 

applications are mostly read-only and that no consensus has emerged up to now on 

a model for XML updates. An authorization specified on an element can be defined 

as local. In that case, it is applicable to the element itself, its content and its 

attributes. It can also be defined as recursive. In that case, the 

permission/prohibition is propagated to the sub-elements. Authorizations can be 

specified at the document-level or at the Document Type Definitions (DTDs) level. 

Authorizations specified at the DTD-level propagate to all XML documents that are 

instances of that DTD. The conflict resolution policy applies “the most specific 

object takes precedence” principle. According to this principle instance-level 

authorizations override DTD-level authorizations and a recursive authorization 

propagates until overridden by a conflicting authorization on a more specific 

object. For conflicts which cannot be solved by this principle, the authors suggest 



to apply other principles like “the most specific subject takes precedence” or 

“denial takes precedence” …etc. − The model in [1] supports two kinds of privileges: browsing (read) and authoring 

(write). Authorizations are specified along with propagation options. Depending 

on its propagation option, an authorization referring to an element may propagate 

to all the direct and indirect sub-elements, propagate to all the direct sub-elements 

only, or not propagate at all. Like in the previous model, authorizations can be 

specified at the DTD-level or at the instance-level. The conflict resolution policy is 

similar to the previous one. − The model in [13] supports read and write privileges. The authors define three 

types of propagation policies: no propagation, propagation up (an authorization 

referring to an element is propagated to all its parent elements) or propagation 

down (an authorization referring to an element is propagated to all its sub-

elements). The conflict resolution policy is either “denials take precedence” or 

“permissions take precedence”. The main contribution of this paper is to propose a 

provisional authorization model. A provisional authorization is more than a simple 

permission/denial. Typically, a provisional authorization specifies that a user has to 

perform a given action (obligation) before he/she is granted a given privilege − The model in [11] supports the read privilege only. The authors do not define any 

propagation policy. The conflict resolution policy is based on the priority of the 

different rules.   − The model in [14] is based on the model defined in [7]. The authors add write 

privileges and suggest a technique for efficiently managing access controls in a 

web environment which emphasizes the integrity of the documents (i.e. validity 

with respect to DTDs). They consider XQuery update operators but these operators 

are not standardized yet [20][3]. 

The model presented in this paper supports read and write privileges. We assume 

that security rules are issued in the chronological order. In case of a conflict between 

two rules, the last issued rule has the highest priority. The default policy is always 

“denial”. 

2.4 View Access Control 

Most of the existing security models for XML define a view-based access control 

strategy for handling the read privilege. However, these models suffer from problems 

that were pointed out in [18]: − Regarding the model in [11], if access to a node is denied then the user is not 

allowed to access the entire sub-tree under that node even if access to part of the 

sub-tree is permitted, therefore limiting the availability of data. − Regarding the model in [7], in order to preserve the structure of the document, the 

authors allow elements with negative authorizations (i.e. access denied) to be 

released if the element has a descendant with a positive authorization (access 

permitted), thus making the semantics of the negative authorization unclear.  

These two problems are illustrated in figures 1 and 2. Let us assume tag + represents 

permission and tag – represents denial for a given user s.  



Figure 1 is related to the model in [11]. Recall that this model allows node-level 

security granularity. The left tree represents a sample medical files database which 

has been tagged according to the authorizations applying to a given user s. The right 

tree corresponds to the view user s is permitted to see. This view has been computed 

according to the access control strategy defined in [11]. One can see that the sub-tree 

of which element node /robert is the root is not visible at all although user s has the 

permission to see some of the descendant nodes. As it is said in [18], this access 

control strategy reduces the availability of data. One could argue that such a situation 

comes from a bad security design. Nevertheless, it should be possible to deny access 

to an internal node while granting access to its descendant nodes.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2 is related to the model in [7]. Recall that this model allows element-level 

security granularity. The left tree represents the source tree which has been tagged 

according to the authorizations applying to user s. The right tree corresponds to the 

view user s is permitted to see. This view has been computed according to the access 

control strategy defined in [7]. One can see that element /robert is visible in the 

view. This makes the semantics of the negative authorization unclear. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 1. View Access Control in [11]
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Fig. 2. View Access Control in [7]  
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In order to solve the problems mentioned in [18], we introduced in [10] a special 

privilege protecting the existence of nodes. Therefore, our model includes two kinds 

of read privileges: one privilege which allows knowing about the existence of a node 

(we call it the position privilege) and another privilege which allows knowing both 

the existence and the label (we call it simply the read privilege). The security 

designer has now two options: − if user s is forbidden to know about the existence of node n then the security 

designer denies both position and read privileges on node n to user s. In that case 

node n and possible descendant nodes (even those for which the user has 

permission to read) are not shown in the view user s is permitted to see. − if only the label of node n is sensitive then the security designer grants to user s 

the position privilege on node n (without granting the read privilege). Node n is 

shown in the view with RESTRICTED label and descendant nodes for which the user 

has permission to see are also shown in the view. Label RESTRICTED was first used 

by Sandhu and Jajodia in the context of multilevel databases [19]. Its semantics is 

“the label exists but you are not allowed to see it”. 

 
In figure 3, tag r (respectively p) attached to a node represents the fact that user s 

holds the read (respectively position) privilege on that node. Right tree represents 

the view user s is permitted to see. User s is permitted to read illnesses (most 

probably for statistical purpose) but she is forbidden to see patients’ names. 

2.5 Write Access Controls 

Some of the existing security models for XML consider the write privilege but, − they do not clearly indicate in which framework the different update operations for 

XML are supported, − the access control strategy that they use for handling the write privilege is not 

clearly described, − interactions between read access controls and write access controls are not 

investigated. 

Fig. 3. View Access Control in [10] 
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In fact, these security models were designed to be implemented as extensions to 

existing web servers.  

SQL ignores interactions between the read privilege and the write privilege. Indeed, 

if a user submits a write operation (via one of the standard SQL commands:  INSERT, 

UPDATE or DELETE) then this operation is evaluated on the source database and not on 

the data the user is permitted to read. As a consequence, users can easily learn about 

the data they are not permitted to see. For example, consider user_A who is the owner 

of the employee table and who has granted to user_B the sole update privilege on 

employee.  

user_B is not permitted to see user_A’s employee table, 

SQL> SELECT * FROM user_A.employee; 
ERROR ORA-01031: insufficient privilege 

but user_B is permitted to update user_A’s employee table: 

SQL> UPDATE user_A.employee SET salary=salary+100 WHERE salary > 3000; 
2 rows updated 

Although user_B is not permitted to see user_A’s employee table, she has been 

able to learn, through an update command, that there are two employees with a salary 

greater than 3000. The UPDATE command was evaluated on data user_B was not 

permitted to see. Note, in particular, that the WHERE clause performed a read operation 

on the employee table. We could show various examples exploiting this vulnerability.  

The model in [10] has the same vulnerability since it is an interpretation for XML of 

the SQL security model. In [10], an operation updating XML data is evaluated on the 

source database regardless of the read privileges held by the user submitting the 

operation. 

In [28], we investigated interactions between the read privilege and the write 

privilege and we modified our model as follows: since a write operation is a process 

running on behalf of a user, it should have the privileges and the limitations of the 

user. In particular the write operation should not be able to read the data the user is 

not permitted to see. Conceptually, this means that write operations have to be 

evaluated on users’ views and not on the source database.  In order to retrieve the 

corresponding database node from a given view node, we assign one identifier to each 

database node. Identifiers are obtained by applying a numbering scheme 

[6][24][8][12][21][25][26]. If a user submits a write operation then the nodes to 

update are first selected from the view she is permitted to see. Thanks to the 

identifiers, corresponding database nodes are then retrieved and updated. 

Our model supports three kinds of write privileges (insert, delete and update). 

We give the exact semantics of each of these privileges. We state the privileges that 

each XUpdate operation requires for completion and we formally define the access 

controls for each of the XUpdate operations. 

3. XML Database 

Mathematical logic has been used to formalize databases in two main directions. 

These directions are usually called the proof theoretic approach and the model 

theoretic approach. The former represents a database as a logical theory; the latter 



represents a database as an interpretation of a logical theory [16]. In this paper, we 

adopt the proof theoretic approach, that is, each database is associated with its logical 

theory db. We also make the closed world assumption. The closed world assumption 

holds that anything that we cannot show to be true is false. 

3.1 XML documents modeled as trees 

For the sake of simplicity, we shall not consider the type of XML nodes. An XML 

document is a tree of nodes. Each node is the parent of zero or more child nodes. 

Each node has one and only one parent except one fundamental node which has no 

parent and which is called the document node. We state that each node is associated 

with a unique identifier and a label: − Node identifiers are obtained by applying a numbering scheme (see section 3.2).  − Labels are the data. Labels are small for nodes of type element (in the XML 

terminology they are referred to as names) and they can be very large for nodes of 

type text (in the XML terminology they are referred to as values or PCDATA). 

Figure 4 shows an XML document which we shall use throughout the remainder of this 

paper. Strings patients, franck, service, otolarynology … are labels. n , n , 

n

1 2

3, … denote numbers identifying nodes. The document node has identifier / and 

label /. The document node has only one child node which is called the root element 

node. Identifier of the root element is n1 and label is patients.  

 

3.2 Numbering Scheme 

Several numbering schemes have been proposed [6][24][8][12][21][25][26]. They all 

support the representation of ancestor and sibling relationships between nodes i.e. one 

can derive the relationship between any two given nodes by looking at their unique 

numbers. 

Fig. 4. XML document 
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Some numbering schemes are persistent [12][8][25][26]. A persistent numbering 

scheme does not require renumbering after an update i.e. numbers assigned to existing 

nodes remain the same even after an update modifying the tree structure.  

The scheme presented in this section is the scheme we defined in [12]. It is a very 

simple persistent numbering scheme which supports an infinite number of insertions 

without renumbering. It does not require a space of reserved identifiers like in [25]. It 

is based on the fact that there exist an infinite number of rational numbers within an 

interval [a,b], a, b being rational numbers. 

3.2.1 Static Numbering Step 

We identify nodes by using rational numbers. We represent a rational number by a 

pair which consists of a signed integer and a strictly positive integer, e.g. we represent 

rational number 5/2 by the pair (5,2) and the rational number -5/2 by the pair        

(-5,2). 

Our numbering scheme needs modest storage capacities. We assign a quintuple of 

integers (l,(n ,d ),(n,d))p p  to each node:  − l is the level of the node in the tree.  − (n,d) is the local code of the node. Pair (n,d) represents the n/d rational number. − (n ,d )p p  is the local label of the parent node.  

For a given level, local codes are unique. 

We assign the special identifier (0,/,(1,1)) to the root node. 0 is the level. / is 

the code of the parent node (i.e. the document node).(1,1) is the local code.  

Given a level l, if we assume that nodes are visited from left to right then the local 

code of a node is (i,1), with i being the position of the node at level l. 

After the static numbering step, node identifiers of the tree in figure 4 are the 

followings: 

( )( ) ( ) ( )( ) ( ) ( )( ) ( ) ( )( ) ( ) ( )( )

( ) ( )( ) ( ) ( )( )

1 2 7 3 5

4 6

n 0,/, 1,1 , n 1, 1,1 , 1,1 , n 1, 1,1 , 2,1 , n 2, 1,1 , 1,1 , n 2, 1,1 , 2,1 ,

n 3, 1,1 , 1,1 , n 3, 2,1 , 2,1

⎧ ⎫⎪ ⎪= = = = =⎪ ⎪⎪ ⎪⎨ ⎬⎪ ⎪= =⎪ ⎪⎪ ⎪⎩ ⎭
 

3.2.2 Dynamic Numbering Step 

In this section, we show how a newly inserted node is dynamically numbered without 

changing the number of existing nodes.  

Rules for creating identifiers for new nodes − If v is the first node to be inserted at level l then its local code is (1,1)  − If v is inserted immediately before the node of local code (i,j) and if there is no 

other node before (i,j) then the local code of v is (i-j,j).  − If v is inserted immediately after the node of local code (i,j) and if there is no 

other node after (i,j) then the local code of v is (i+j,j).  − If v is inserted immediately before the node of local code (i,j) and immediately 

after the node of local code (k,h) then the local code of v is (a,b) with 

a=(i.h+k.j)\d and b=2.h.j\d. \ denotes the integer division. d is the highest 

common factor of (i.h+k.j) and 2.h.j. 

If, for example, node /albert is inserted between node /franck and node /robert, 

then its identifier will be (1,(1,1),(3,2)). 



3.3 Language 

Language L of theory db is based on first-order logic with equality. For the sake of 

simplifying our logical formulae, we shall consider that the database may contain only 

one document. We shall use the following two-place predicate to represent the 

database content: −  reads “there is a node with label ( )node n, v v identified by number n” 

We shall also use the following predicate to learn about the database tree geometry: − , reads “node(child x, y) 2 x is a child of node y” 

There are also other tree geometry predicates like parent, descendant, 

descendant_or_self,  ancestor, following_sibling …

3.4 Axioms 

Set of axioms A of theory db includes the classical axiom schemata of first order logic 

with equality plus some proper axioms. We divide these proper axioms into the 

following two sets: − the set F of atomic facts recorded in the database. − the set of formulae allowing us to derive facts belonging to the tree geometry 

predicates. 

The sample database we shall use throughout this paper includes the document in 

figure 4:  

( ) ( ) ( )

( ) ( ) ( ) ( )

1 2 3

4 5 6 7

node(/,/), node n ,patients , node n ,franck , node n ,service ,
F

node n ,otolarynology ,node n ,diagnosis , node n ,tonsillitis , node n ,robert ,

⎧ ⎫⎪ ⎪⎪ ⎪⎪ ⎪= ⎨ ⎬⎪ ⎪⎪ ⎪⎪ ⎪⎩ ⎭…
 (1) 

Axioms allowing us to derive tree geometry facts depend on the numbering 

scheme. In appendix A, we give the axioms for deriving relations child, 

descendant, descendant_or_self, preceding_sibling, and 

immediate_preceding_sibling. These axioms are based on the scheme defined in 

section 3.2. 

The following child relation can be derived from these axioms: 

( ) ( ) ( ) ( ) ( ) ( ){ }1 2 1 3 2 5 2 4 3 6 5 7 1child(n ,/), child n , n ,  child n , n , child n , n , child n , n ,child n , n , child n , n ,…  

3.5  XPath and XUpdate 

We use the following three place xpath predicate to logically interpret XPath 

expressions: − ( )xpath p,n,v , reads “node with label v identified by number n is addressed by 

path p” 

                                                           
2 More precisely, it should read, “node identified by number x is a child of node identified by 

number y”. 



Since semantics of XPath is well known, axioms interpreting the xpath predicate are 

given in appendix only (appendix B). 

Updating XML data is still a research issue (e.g. see [22][20][3]). Today, XUpdate is 

a solution to update XML data. The reader may refer to [15] for a complete description 

of XUpdate.  

Throughout this section, we shall use the following notations: − From the logical point of view, whenever we update the database we obtain a new 

logical theory representing the updated database. Let dbnew be the new logical 

theory representing the updated database. − Let predicatedb representing the predicate predicate in the theory db. Let 

representing the same predicate in the theory dbdbnew
predicate new. 

For each XUpdate operation, we shall give the logical formulae that allow us to derive 

the theory dbnew from the theory db.   

3.5.1 Updating node operations 

There are two XUpdate instructions for updating XML nodes: xupdate:update and 

xupdate:rename. xupdate:update can be used to update the content of existing 

element nodes. xupdate:rename allows attribute or element nodes to be renamed. 

Both operations need two parameters: the path PATH selecting the nodes to update and 

the new label VNEW.  

xupdate:rename: The following two formulae allow us to derive facts belonging to 

the new set F after an xupdate:rename operation.  
( ) ( ) ( )db db dbnew

n v,node n, v xpath , n, v node n, v∀ ∀ ∧ ¬ →PATH  (2) 

Label of nodes which are not addressed by PATH are not updated. 

( ) ( )db dbnew
n v, xpath , n, v node n,∀ ∀ → NEWPATH V  (3) 

Label of nodes which are addressed by PATH are updated to VNEW. 

Example: 

Let us consider the operation xupdate:rename which renames all nodes service in 

department:  
- PATH = //service 
- VNEW = department 

From formulae 2 and 3, we can derive the new set F: 

( ) ( ) ( )

( ) ( ) ( ) ( )

1 2 3

4 5 6 7

node(/,/), node n ,patients , node n ,franck , node n , ,
F

node n ,otolarynology ,node n ,diagnosis , node n ,tonsillitis , node n ,robert ,

⎧ ⎫⎪ ⎪⎪ ⎪⎪ ⎪= ⎨ ⎬⎪ ⎪⎪ ⎪⎪ ⎪⎩ ⎭

department

…
 

xupdate:update: The following two formulae allow us to derive facts belonging to 

the new set F after an xupdate:update operation.  

( ) ( ) ( )( ) ( )db db db dbnew
n v,node n, v n v , xpath , n , v child n, n node n, v′ ′ ′ ′ ′∀ ∀ ∧ ¬∃ ∃ ∧ →PATH  (4) 

Children of nodes which are not addressed by PATH are not updated. 

( ) ( ) ( )db db dbnew
n n v , xpath ,n , v child n, n node n,′ ′ ′ ′ ′∀ ∀ ∀ ∧ → NEWPATH V  (5) 

Children of nodes which are addressed by PATH are updated to VNEW. 

Example: 

Let us consider the operation xupdate:update which updates diagnosis of franck in 

pharyngitis:  
- PATH = /patients/franck/diagnosis 



- VNEW = pharyngitis 

From formulae 2 and 3, we can derive the new set F: 

( ) ( ) ( )

( ) ( ) ( ) ( )

1 2 3

4 5 6 7

node(/,/), node n ,patients , node n ,franck , node n ,service ,
F

node n ,otolarynology ,node n ,diagnosis , node n , , node n ,robert ,

⎧ ⎫⎪ ⎪⎪ ⎪⎪ ⎪= ⎨ ⎬⎪ ⎪⎪ ⎪⎪ ⎪⎩ ⎭pharyngitis …
 

3.5.2  Creating node operations 

There are three XUpdate instructions for creating XML fragments: xupdate:insert-

before, xupdate:insert-after and xupdate:append. xupdate:insert-before can 

be used to insert a new tree as the immediate preceding sibling of existing nodes. 

xupdate:insert-after can be used to insert a new tree as the immediate following 

sibling of existing nodes. xupdate:append can be used to insert a new tree as the last 

child of existing nodes. All these operations need two parameters: a path PATH 

selecting some nodes and the tree TREE to insert. Let us assume nodeTREE be the two-

place predicate used to represent the tree to insert.  

( ) ( )db dbnew
n v,node n, v node n, v∀ ∀ →  (6) 

If a node belongs to the original document then it belongs to the final document. 

Recall that, thanks to our persistent numbering scheme, identifiers of existing nodes 

remain the same after an insertion or a deletion. 

( ) ( )

( )

db

dbnew

n v n v n o, xpath , n, v create_ number(n, n , o, n '')

node n , v

′ ′ ′′ ′ ′ ′∀ ∀ ∀ ∀ ∀ ∀ ∧ ∧

′′ ′→

TREEnode n , v PATH
 

(7) 

The tree to insert shall be inserted as the last subtree of each node selected by PATH 

(append), or as a new preceding-sibling tree of each node selected by PATH (insert-

before), or as a new following-sibling tree of each node selected by PATH (insert-

after). Therefore, each node n’ belonging to the tree to insert is inserted at as many 

places as nodes addressed by PATH. Created numbers n’’ assigned to inserted nodes 

are given by the create_number predicate.  − , reads “node n’ is inserted with number n’’ by 

operation o on node n”. o can be append, insert-before or insert-after.  

(create_number n,n ,o,n′ ′′)

Axioms for deriving facts belonging to the create_number predicate depend on the 

numbering scheme which is used. Axioms implementing the dynamic numbering 

procedure described in section 3.2.2 are not given in this paper. 

Example: 

Let us consider the operation xupdate:insert-before which inserts a new medical 

record:  
− PATH = /patients/robert 

− The tree TREE to insert is the following: 

( ) ( ) ( ) ({ }1 2 3 4node n ,albert , node n ,service , node n ,cardiology ,node n ,diagnosis ,′ ′ ′ ′ )   

From formulae 6 and 7, we can derive the new set F: 

( ) ( ) ( )

( ) ( ) ( )

( ) ( ) ( ) (

1 2 3

4 5 6

1 2 3 4

7

node(/,/), node n ,patients , node n ,franck , node n ,service ,

node n ,otolarynology ,node n ,diagnosis , node n ,tonsillitis
F

node n ,albert , node n ,service , node n ,cardiology ,node n ,diagnosis ,

node n ,rob

=
′′ ′′ ′′ ′′

( )ert ,

⎧ ⎫⎪ ⎪⎪ ⎪⎪ ⎪⎪ ⎪⎪ ⎪⎪ ⎪⎪ ⎪⎪ ⎪⎨ ⎬⎪ ⎪⎪ ⎪⎪ ⎪⎪ ⎪⎪ ⎪⎪ ⎪⎪ ⎪⎪ ⎪⎩ ⎭…

)
 



From the tree geometry axioms we can derive: 

   
( ) ( ) ( ) ( )

1 7 2 1 2 4

1 1 2 1 3 2 4 1

preceding_sibling(n , n ), preceding_sibling(n , n ), preceding_sibling(n , n ),

child n ,n , child n ,n , child n ,n , child n , n

⎧ ⎫′′ ′′ ′′ ′′⎪ ⎪⎪ ⎪⎪ ⎪⎨ ⎬⎪ ⎪′′ ′′ ′′ ′′ ′′ ′′ ′′⎪ ⎪⎪ ⎪⎩ ⎭
From the dynamic numbering procedure defined in section 3.2.2, we obtain3:  

( ) ( )( ) ( ) ( )( ) ( ) ( )( ) ( ) ( )( ){ }1 2 4 3n 1, 1,1 , 3,2 , n 2, 3,2 , 7, 3 , n 2, 3,2 , 8, 3 , n 3, 7, 3 , 5,2′′ ′′ ′′ ′′= = = =  

3.5.3  Deleting node operations 

There is one XUpdate instruction for deleting XML nodes: xupdate:remove. 

xupdate:remove can be used to delete existing subtrees. It requires one parameter: the 

path PATH selecting subtrees to delete. 

The following formula allows us to derive facts belonging to the new set F after an 

xupdate:remove operation.  

( ) ( ) ( )db dbnew
n v, node n, v undeleted n node n, v∀ ∀ ∧ →  (8) 

If a node belongs to the original document and if it does not belong to a deleted 

subtree then it belongs to the final document. − , reads “node n does not belong to a deleted subtree” ( )undeleted n

We can derive facts belonging to the undeleted predicate from the following 

formulae: 

( )
( )

( )
( )

db

db

db

descendant_or_self n, n
n v,node n, v n v , undeleted n

xpath , n , v

⎛ ⎞′ ⎟⎜ ⎟⎜ ⎟′ ′ ⎜∀ ∀ ∧ ¬∃ ∃ →⎟⎜ ⎟⎜ ⎟′ ′∧ ⎟⎜⎝ ⎠PATH
 (9) 

This formula says that nodes which are not deleted are the nodes which do not 

belong to a subtree whose root node is addressed by path PATH. 

Example: 

Let us consider the xupdate:remove operation which removes element diagnosis from 

franck’s medical file: 
− PATH = /patients/franck/diagnosis 

From formula 8 and 9, we can derive the new set F: 

( ) ( ) ( ) ( ) ( )

( )

1 2 3 4

7

node /,/ , node n ,patients , node n ,franck , node n ,service ,node n ,otolarynology , 
F

node n ,robert ,

⎧ ⎫⎪ ⎪⎪ ⎪⎪ ⎪= ⎨ ⎬⎪ ⎪⎪ ⎪⎪ ⎪⎩ ⎭…
 

4.   Secure XML database 

We extend the logical theory db to represent a secure XML database. 

                                                           
3 The procedure in section 3.2.2 describes the insertion of one single node. For the sake of 

simplicity, we did not give the rule specifying how identifiers are generated when there is a 

simultaneous insertion of several consecutive nodes at a given level (e.g identifiers n”  2 and 

n”4)  



4.1  Extended theory 

We extend the language with predicates subject and isa for representing the subject 

hierarchy, − , reads “s is a subject” ( )subject s

− , reads “subject s is a subject s’” ( )isa s,s′

We also introduce the predicate rule for writing the security policy: − , reads “subject s is granted privilege r on nodes addressed by 

path p”. t is the priority of the rule. 

(rule accept,r,p,s,t)

− ( )rule deny,r,p,s,t , reads “subject s is denied privilege r on nodes addressed by 

path p”. t is the priority of the rule. 

Since accept and deny rules may conflict with each other, we define predicate perm to 

represent the actual privileges held by the subjects: − ( )perm s,r,n , reads “subject s is (definitely) granted privilege r on node n” 

We extend our theory with the following sets: − the set S of formulae representing the subjects recorded in the database, − the set RS of formulae allowing us to derive the subject hierarchy, − the set P of atomic formulae representing the security policy, − the set RP of formulae allowing us to solve conflicts between security rules, 

4.2  Subjects 

Let us consider the subjects hierarchy at figure 5. In each tree, internal nodes are roles 

[17] and external nodes are users.   

 
The following set S represents this hierarchy: 

( ) ( ) ( ) ( )

( ) ( ) ( )

subject staff , subject secretary , subject doctor , subject epidemiologist ,

subject patient , subject beaufort , subject laporte , subject(richard),

S subject(robert), subject(franck), isa(secretary, staff), isa(doctor, staff=

( )

( )

),

isa epidemiologist, staff , isa(laporte, doctor), isa(beaufort, secretary),  

isa richard,epidemiologist , isa(robert, patient), isa(franck, patient)

⎧ ⎫⎪ ⎪⎪ ⎪⎪ ⎪⎪ ⎪⎪ ⎪⎪ ⎪⎪ ⎪⎪ ⎪⎪ ⎪⎪ ⎪⎨ ⎬⎪ ⎪⎪ ⎪⎪ ⎪⎪ ⎪⎪ ⎪⎪ ⎪⎪ ⎪⎪ ⎪⎪ ⎪⎪ ⎪⎩ ⎭

 

(10) 

Set RS includes the two following axioms allowing us to derive the reflexive and 

transitive closure of the isa relation: 
( ) ( )s,  subject s isa s, s∀ →  (11) 

Fig. 5. Subject Hierarchy 

staff patient 

secretary doctor 

laporte 

epidemiologist robert franck 

beaufort richard



( ) ( ) ( )s s s , isa s,s isa s ,s  isa s,s′ ′′ ′ ′ ′′ ′′∀ ∀ ∀ ∧ →  (12) 

4.3 Security Policy 

The security policy may refer to the following privileges:  
{position, read, delete, insert, update} − if user s holds the position privilege on node n then user s has the right to know 

the existence of  n. − if user s holds the read privilege on node n then user s has the right to see node n. − if user s holds the insert privilege on node n then user s has the right to add a new 

sub-tree to node  n. − if user s holds the update privilege on node n then user s has the right to update 

node n (i.e. change its label). − if user s holds the delete privilege on node n then user s has the right to delete the 

sub-tree of which node n is the root. 

Privileges should not be confused with operations. Operations need privileges to 

complete. For example, both xupdate:append and xupdate:insert-before need the 

insert privilege to complete.  

Let us now consider the example of security policy defined by axiom 13. First rule 

states that staff members have the privilege to read the whole document. Second rule 

partially denies that right from secretaries. Indeed, secretaries are denied the right to 

see diagnosis. However, rule 3 states that secretaries may know whether the patient 

was diagnosed or not. Rule 4 and rule 5 state that patients may access their own 

medical file ($USER is a variable containing the session user login name). Rule 6 and 

rule 7 state that epidemiologists are forbidden to see patient names. Rule 8 states that 

secretaries may insert new medical files. Rule 9 states that secretaries may update 

patient names. Rules 10, rule 11 and rule 12 state that doctors can pose/update/delete a 

diagnosis.  

1. rule(accept,read,//*,staff,10),

2. rule(deny,read,//diagnosis/*,secretary,11),

3. rule(accept,position,//diagnosis/*,secretary,12),

4. rule(accept,read,/patients,patient,13), 

5. rule(accept,read,/pa

P=

[ ]

( )

( )

tients/descendant-or-self::* $USER ,patient,14)

6. rule deny,read,/patients/*,epidemiologist,15

7. rule accept,position,/patients/*,epidemiologist,16

8. rule(accept,insert,/patients,secretary,17),

9. rule(accept,update,/patients/*,secretary,18),

10. rule(accept,insert,//diagnosis,doctor,19),

11. rule(accept,update,//diagnosis/*,doctor,20),

12. rule(accept,delete,//diagnosis/*,doctor,21)

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪

⎨

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪ ⎪⎪ ⎪⎪ ⎪⎪ ⎪⎪ ⎪⎬⎪ ⎪⎪ ⎪⎪ ⎪⎪ ⎪⎪ ⎪⎪ ⎪⎪ ⎪⎪ ⎪⎪ ⎪⎪ ⎪⎪ ⎪⎪ ⎪⎪ ⎪⎪ ⎪⎪ ⎪⎪ ⎪⎪ ⎪⎪ ⎪⎪ ⎪⎪ ⎪⎪ ⎪⎪ ⎪⎪ ⎪⎪ ⎪⎪ ⎪⎩ ⎭

 
(13) 

From practical point of view, we assume that the security administrator inserts 

these rules one by one. In case of conflict, the last issued rule has the priority over the 



previous ones. The timestamp indicating when the command was issued plays the 

priority role. For example, rule 1 which says that staff members have the permission 

to see the whole document is partially cancelled by rule 2 which partially denies that 

right to some staff members (secretaries). 

Set RP includes the following axiom allowing us to solve the conflicts between the 

rules and to derive the actual privileges held by each subject: 

( ) ( ) ( )

( ) ( )

( ) ( )
( )

s s r p t n v, isa s, s rule accept, r, p, s , t xpath p, n, v

isa s, s rule deny, r, p , s , t
s p t , perm s,n,r

xpath p , n, v t t

′ ′ ′∀ ∀ ∀ ∀ ∀ ∀ ∀ ∧ ∧

⎛ ⎞′′ ′ ′′ ′∧ ⎟⎜ ⎟⎜ ⎟′′ ′ ′ ⎜∧¬∃ ∃ ∃ →⎟⎜ ⎟⎜ ⎟′ ′∧ ∧ > ⎟⎜⎝ ⎠

 (14) 

This axiom says that if there is an accept rule applying to privilege r, subject s 

and node n and if there is no subsequent deny rule applying to privilege r, subject s 

and node n then subject s holds privilege r on node n.  

4.4  Access Controls 

The purpose of this section is only to illustrate the semantics of the security policy. In 

section 4.4.1, we state axioms allowing us to derive the view of the source document 

that users are permitted to see. In section 4.4.2, we state axioms allowing us to derive 

the new database content after an update.  

In this section we do not address the problem of how queries should actually be 

enforced. Regarding this issue, let us, however mention there are basically two 

approaches: − The first approach consists of computing and materializing the view of the source 

document the user is permitted to see [1][7][11]. Queries are then evaluated on the 

view. − The second approach [23][30][31] consists of computing the view of the data the 

user is permitted to see. The user expresses queries by looking at her view. Queries 

are then rewritten according to the privileges held by the user and evaluated on the 

source document. 

The main drawback of the first approach is that it is expensive to materialize and 

maintain a large collection of views. The main drawback of the second approach is 

query rewriting itself which has proved to be a challenging problem since no solution 

addressing the full XPath language has been proposed yet. In terms of security both 

approaches should, of course, be equivalent i.e. the same query should return the same 

answer with both solutions. 

Regarding updates, we could easily figure out the two similar approaches: − The first approach consists of selecting the nodes to update from the view the user 

is permitted to see. Corresponding source nodes are then retrieved and updated. − The second approach consists of rewriting queries selecting the nodes to update 

according to the privileges held by the user. Nodes to update are then selected from 

the source document and updated. 



4.4.1 Read Access Controls 

The purpose of this section is to define link axioms allowing us to derive the view of 

the source document that subjects are permitted to see. Each view is represented by a 

logical theory. Let us denote by s the current session user. Let us denote by view the 

theory representing the view that user s is permitted to see. The view access control 

strategy of our model can be informally described as follows: − If user s holds either a read or a position privilege on node n and the parent of 

node n is itself a selected node then node n is selected by the view access control 

mechanism. Axioms 15, 16 and 17 implement that principle. The fact that a node 

requires its parent to be selected, in order for it to be selected, shows that the view 

is a pruned version of the source document.  − A selected node for which user s holds only the position privilege is shown with 

the RESTRICTED label. Axiom 17 implements that principle.  

Note that selected nodes are not renumbered in the view. This cannot lead to 

inference channels since numbers are for internal processing only and are not visible 

to users. 

The following formula allows us to derive facts belonging to the view user s is 

permitted to see: 

( )viewnode /,/  (15) 

This formula says that  always belong to the view regardless of user 

privileges. 

( )viewnode /,/

( ) ( ) ( ) ( )

( )

db db view

view

n v n v s, node n, v logged(s) perm s, n, read child n, n ' node n , v

node n, v

′ ′ ′ ′∀ ∀ ∀ ∀ ∀ ∧ ∧ ∧ ∧

→
 (16) 

This formula says that if the current session user has the permission to read node n 

with label v and if the parent of node n is itself a selected node then the access control 

mechanism selects node n with label v. 

( ) ( )

( ) ( ) ( ) ( )

db

db view view

n v n v s, node n, v logged(s) perm s, n, position

perm s, n, read child n, n ' node n , v node n,RESTRICTED

′ ′∀ ∀ ∀ ∀ ∀ ∧ ∧

′ ′∧¬ ∧ ∧ →
 (17) 

This formula says that if current session user has the permission to know the 

existence of node n and if the parent of node n is itself a selected node then the access 

control mechanism selects node n with label RESTRICTED. If the session user also 

holds the read privilege then this axiom does not apply. − , reads “s is the current session user” ( )logged s

Axioms 15, 16 and 17 can, of course, be implemented by a tree traversal algorithm. In 

[10], we give such an algorithm. 

We can now derive the view of the sample source database (see axiom 1) each 

subject is permitted to see.  

View for secretaries is the following: 

( ) ( ) ( ) ( ) ( )

( ) ( )

1 2 3 4

5 6 7

node /,/ , node n ,patients , node n ,franck , node n ,service ,node n ,otolarynology ,

node n ,diagnosis ,node(n ,RESTRICTED), node n ,robert ,

⎧ ⎫⎪ ⎪⎪ ⎪⎪ ⎪⎨ ⎬⎪ ⎪⎪ ⎪⎪ ⎪⎩ ⎭…
 

Secretaries can see everything except the content of diagnosis elements. If the 

diagnosis is posed, then they are provided with the RESTRICTED label.  

View for patient Robert is the following: 



( ) ( ) ( ) ( ) ( )

( ) ( )

1 7 8 9

10 11

node /,/ , node n ,patients , node n ,robert , node n ,service ,node n ,pneumology ,

node n ,diagnosis , node n ,penumonia

⎧ ⎫⎪ ⎪⎪ ⎪⎪ ⎪⎨ ⎬⎪ ⎪⎪ ⎪⎪ ⎪⎩ ⎭
  

Robert is the current session user. As a patient he has access to its medical file 

only.  

View for epidemiologists is the following:  

( ) ( ) ( ) ( )

( ) ( ) ( )

1 2 3

4 5 6 7

node /,/ , node n ,patients , node n ,RESTRICTED ,node n ,service ,

node(n ,otolarynology), node n ,diagnosis , node n ,tonsillitis , node n ,RESTRICTED

⎧ ⎫⎪ ⎪⎪ ⎪⎪ ⎪⎨ ⎬⎪ ⎪⎪ ⎪⎪ ⎪⎩ ⎭…
 

Epidemiologists can see everything except patient names. 

Doctors can see everything without restriction. Therefore, view for doctors 

includes the whole database represented by axiom 1. 

4.4.2  Write Access Controls 

The purpose of this section is to define the link axioms allowing us to derive the new 

database content after an update. The link axioms must take into account the 

privileges of the user performing the update. 

Each XUpdate operation requires the path PATH parameter to select nodes to update. 

In order to avoid the vulnerability we described in section 2.5, nodes to update are 

selected from the view the user is permitted to see. This has the following 

implications: − Users cannot perform write operations on nodes they cannot see. − Since users express XUpdate operations by looking at their view, PATH parameter 

might include some node tests equal to RESTRICTED. 

Note that only the “selecting nodes” step is performed on the view. Thanks to their 

identifiers, corresponding database nodes are then retrieved and updated. 

Let s be the current session user submitting the XUpdate operation. Let n be one of 

the nodes selected by PATH.  − xupdate:rename: user s needs the update privilege on node n. − xupdate:update: user s needs the update privilege on the child node of node n. − xupdate:append: user s needs the insert privilege on node n. − xupdate:insert-before: user s needs the insert privilege on the parent of 

node n. − xupdate:insert-after: user s needs the insert privilege on the parent of node n. − xupdate:remove: user s needs the delete privilege on node n. 

Before defining the link axioms allowing us to derive the new database after an 

update, we need to consider the following issues: − Each XUpdate operation may address several nodes via the PATH parameter.  

Depending on the privileges held by the user submitting the operation, the XUpdate 

operation may succeed for some nodes and fail for others.  − Let us consider an xupdate:rename operation addressing a node n. Let us assume 

node n is shown in the user’s view with a RESTRICTED label. Since renaming node n 

would update the original label that the user is not permitted to see, we enforce that 

nodes which are shown with RESTRICTED label cannot be updated. − Let us consider the xupdate:update operation. This operation requires that the 

user holds the update privilege on the child of each selected node n. In fact, the 



xupdate:update operation on node n is equivalent to the xupdate:rename 

operation on the child of node n. Therefore, the child of node n has to belong to the 

user’s view with its original label, that is, the user needs to hold the read privilege 

on node n. − Let us consider an xupdate:remove operation addressing a node n. If the user 

removes node n then he actually deletes the subtree of which node n is the root. 

Some of the nodes which belong to that subtree may not be visible (i.e. may not 

belong to the user’s view). Shall we reject the operation if some nodes of the 

deleted subtree do not belong to the user’s view? On one hand, it would preserve 

the integrity of data the user is not permitted to see. On the other hand, it would 

reveal to the user the existence of data she is not permitted to see. In fact there is 

no definite answer to this question. This is typically a case of conflict between 

confidentiality and integrity. In this paper, we prefer to emphasize the 

confidentiality that is, the remove operation is accepted (see axiom 25). 

Link axioms allowing us to derive the new database after an update are given below. 

Note that for each axiom we use the xpathview predicate for selecting nodes to update 

from the view:  

xupdate:rename: We need to adapt axioms 2 and 3 as follows: 

( )
( )

( )
( )

view

db dbnew

xpath , n, v logged(s)
n v s, node n, v node n, v

perm s,n, update

⎛ ⎞∧ ⎟⎜ ⎟⎜ ⎟∀ ∀ ∀ ∧ ¬ →⎜ ⎟⎜ ⎟∧⎜ ⎟⎜⎝ ⎠

PATH
 (18) 

Label of nodes which are not addressed by PATH or for which the current session 

user does not hold the update privilege are not updated. 

( ) ( ) (view dbnew
n v s, xpath , n, v logged(s) perm s,n, update node n,∀ ∀ ∀ ∧ ∧ → NEWPATH V )  (19) 

Label of nodes which are addressed by PATH and for which the current session user 

holds the update privilege are updated to VNEW. 

xupdate:update: We need to adapt axioms 4 and 5 as follows: 

( )
( ) ( )

( )

( )

view view

db

dbnew

xpath , n , v child n, n
n v s, node n, v n v ,

logged(s) perm s, n, update perm(s, n, read)

node n, v

⎛ ⎞′ ′ ′∧ ⎟⎜ ⎟⎜ ⎟′ ′∀ ∀ ∀ ∧ ¬∃ ∃ ⎜ ⎟⎜ ⎟⎜ ⎟∧ ∧ ∧ ⎟⎜⎝ ⎠
→

PATH

 (20) 

Label of nodes whose parent is not addressed by PATH or for which the current 

session user does not hold both the update privilege and the read privilege are not 

updated.  

( ) ( )

( ) ( )

view view

dbnew

n v n v s, xpath , n , v child n, n logged(s)

perm s,n, update perm(s, n, read) node n,

′ ′ ′ ′ ′∀ ∀ ∀ ∀ ∀ ∧ ∧

∧ ∧ → NEW

PATH

V
 (21) 

Label of nodes whose parent is addressed by PATH and for which the current 

session user holds both the update and the read privilege are updated to VNEW. 

xupdate:append: We only need to adapt axiom 7: 

( ) ( ) ( )

( )

view

dbnew

n v n v n s, xpath , n, v logged(s) perm s, n, insert

create_number(n, n ,append, n '') node n , v

′ ′ ′′ ′ ′∀ ∀ ∀ ∀ ∀ ∀ ∧ ∧ ∧

′ ′′ ′→

TREEnode n , v PATH
 (22) 

The tree to insert shall appear as the last subtree of each node selected by PATH for 

which the current session user holds the insert privilege. 



xupdate:insert-before: We need to adapt axiom 7 as follows: 

( ) ( ) ( )

( )

( )

view view

dbnew

n v n v n f s, xpath , n, v child n, f

logged(s) perm s, f, insert create_number(n, n , insert-before, n '')

node n , v

′ ′ ′′ ′ ′∀ ∀ ∀ ∀ ∀ ∀ ∀ ∧ ∧

′∧ ∧ ∧

′′ ′→

TREEnode n , v PATH

 (23) 

The tree to insert shall appear as the preceding sibling subtree of each node n 

selected by PATH provided the current session user holds the insert privilege on the 

parent of node n.  

xupdate:insert-after: We need to adapt axiom 7 as follows: 

( ) ( ) ( )

( )

( )

view view

dbnew

n v n v n f s, xpath , n, v child n, f

logged(s) perm s, f, insert create_number(n, n , insert-after, n '')

node n , v

′ ′ ′′ ′ ′∀ ∀ ∀ ∀ ∀ ∀ ∀ ∧ ∧

′∧ ∧ ∧

′′ ′→

TREEnode n , v PATH

 (24) 

The tree to insert shall appear as the following sibling subtree of each node n 

selected by PATH provided the current session user holds the insert privilege on the 

parent of node n.  

xupdate:remove: We only need to adapt axiom 9: 

( )

( )

( )

( )

( )

db

db view db

descendant_or_self n, n

n v s, node n, v n v , xpath , n , v undeleted n, v

logged(s) perm s,n , delete

⎛ ⎞′ ⎟⎜ ⎟⎜ ⎟⎜ ⎟⎜ ⎟⎜ ⎟′ ′ ′ ′∀ ∀ ∀ ∧ ¬∃ ∃ ∧ →⎜ ⎟⎟⎜ ⎟⎜ ⎟⎜ ⎟⎜ ⎟′∧ ∧⎜ ⎟⎜⎝ ⎠

PATH  (25) 

This formula says that nodes which are not deleted are the nodes which do not 

belong to a subtree that the current session user has the permission to delete and 

whose root is addressed by PATH. 

5 Conclusion 

In this paper, we gave the formal definition of a secure XML database. We represented 

the database content, the query language, the modification language, the subject 

hierarchy, the security policy and the access controls.  

All the logical formulae given in this paper are Horn clauses. Based on these 

clauses, we wrote a prototype in Prolog simulating a secure XML database. The 

prototype includes a small database, an XPath and XUpdate interpreter, a sample 

subject hierarchy, a sample security policy and the access control formulae. It can be 

downloaded from http://www.univ-pau.fr/~gabillon/xmlsecu. The purpose of 

this prototype was simply to validate the correctness of the axioms given in this paper. 

Currently, the prototype uses a simplified version of our numbering scheme [12].  

The model in [7] addresses the problem of preserving the validity of the views with 

respect to the DTD of the original document. Indeed, if a required node in the DTD is not 

shown in the view the user is permitted to see, then that user can infer about the 

existence of such a hidden node. Their model does not include the possibility of 

protecting portions of DTDs. Therefore, they suggest applying a loosening 

transformation to the DTD so that the view becomes valid with respect to the loosened 

version of the DTD. Our model does not address this issue which actually belongs to 

http://www.univ-pau.fr/~gabillon/xmlsecu


the general problem of inference analysis. A DTD is nothing more than a set of 

integrity constraints. The security administrator might decide to make a (complex) 

analysis of possible inference channels which may arise because of inconsistencies 

between the policy applying to the integrity constraints and the policy addressing the 

data. Such an analysis is sometimes made for databases which require a high 

confidentiality level such as multilevel databases [27]. In our model, if we use XML 

schema instead of DTDs then nothing prevents the owner of the schema from granting 

to other users the permission to see or partially see the integrity constraints. Indeed an 

XML schema is an XML document. However, the problem of closing inference channels 

which may arise because of inconsistencies between the policy addressing the schema 

and the policy addressing the instances is beyond the scope of this paper and remains 

word to be done. 

Finally, let us mention that a number of works [30][32][33] address the problem of 

protecting relationships between nodes. The model presented in this paper does not 

offer this possibility. We are, however, planning to include this feature in a future 

version of this model. 
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Appendix A 

With the scheme defined in section 3.2, axioms to derive the child and the 

preceding_sibling relations are the followings: 

( )( )( )child 0,/, 1,1 ,/  

The root node is the child of the document node 

[ ]( ) [ ]( ) [ ] [ ]( )x y z t v v , node x, y, z , v node x 1, z, t , v child x 1, z, t , x, y, z′ ′∀ ∀ ∀ ∀ ∀ ∀ ∧ + → +  

If the parent code of a node at level x+1 is the local code of a node at level x then 

the node at level x+1 is the child if the node at level x. 

[ ]( ) [ ]( ) ( )

[ ] [ ]( )

x y z t v v , node x, y, z , v node x, y, t , v t z

preceding_sibling x, y, z , x, y, t

′ ′∀ ∀ ∀ ∀ ∀ ∀ ∧ ∧ >

→
 

If the local code t of a node if higher than the local code z of another node sharing 

the same level and the same parent code, then the node of local code z if the 

preceding sibling of the node of local code t. 

From these child and preceding_sibling relations, we can derive all other 

geometry relations.  

( ) ( )x y, child x, y descendant x, y∀ ∀ →  

( ) ( ) ( )x z y, child x, z descendant z, y descendant x, y∀ ∀ ∀ ∧ →  

( ) ( )x y, descendant x, y descendant_ or _ self x, y∀ ∀ →  

( ) ( )x v, node x, v descendant_ or _ self x, x∀ ∀ →  

( ) ( ) ( )( )

( )

x y,preceding_sibling x, y z preceding_sibling x, z preceding_sibling z, y

immediate_preceding_sibling x, y

∀ ∀ ∧ ¬∃ ∧

→
 

We could easily define other tree geometry relations. 

 



Appendix B 

We give the logical interpretation of XPath expressions. The reader may refer to [4] 

for a complete description of XPath (version 1.0). Our interpretation is not complete 

although it covers a very large subset of the XPath language. We use the following 

three place xpath predicate to logically interpret XPath expressions: − ( )xpath p,n,v , reads “node with label v at position n is addressed by path p” 

In the following axioms, we assume that variables p and p’ contain any path different 

from /. 

( )xpath /,/,/  

Path / addresses the document node. 

( )( )( ) ( )( )( )v, node 0, /, 1,1 , v xpath / *, 0, /, 1,1 , v∀ →  

Path /* addresses the root node. 

( ) ( )n v, node n, v xpath // *, n, v∀ ∀ →  

Path //* addresses all nodes. 

( )( )( ) ( )( )( )v,node 0,/, 1,1 , v xpath / v, 0,/, 1,1 , v∀ →   

If the root node has label v then it is addressed by path /v. 

( ) ( )n v,node n, v xpath // v,n, v∀ ∀ →   

Path //v addresses all nodes of label v. 

( ) ( ) ( ) ( )n v n v p, node n, v child n, n xpath p, n , v xpath p / v, n, v′ ′ ′ ′ ′∀ ∀ ∀ ∀ ∀ ∧ ∧ →   

Path p/v addresses the nodes of label v which are the children of the nodes 

addressed by path p.  

( ) ( ) ( ) ( )n v n v p, node n, v child n, n xpath p, n , v xpath p / *, n, v′ ′ ′ ′ ′∀ ∀ ∀ ∀ ∀ ∧ ∧ →  

Path p/* addresses the nodes which are the children of the nodes addressed by 

path p. 

( ) ( ) ( ) ( )n v n v p, node n, v descendant n, n xpath p, n , v xpath p // *, n, v′ ′ ′ ′ ′∀ ∀ ∀ ∀ ∀ ∧ ∧ →  

Path p//* addresses the nodes which are the descendant of the nodes addressed by 

path p. 

( ) ( )n v p, xpath p, n, v xpath p//descendant-or-self::*, n, v∀ ∀ ∀ →  

( ) (n v p, xpath p//*,n, v xpath p//descendant-or-self::*, n, v∀ ∀ ∀ → )  

Path p//descendant-or-self::* addresses the nodes which are addressed by path 

p and the nodes which are addressed by  path p//*. 

( ) ( ) ( ) ( )n v n v p p , xpath p, n, v xpath p / p , n , v descendant n , n xpath p p , n, v⎡ ⎤′ ′ ′ ′ ′ ′ ′ ′∀ ∀ ∀ ∀ ∀ ∀ ∧ ∧ → ⎢ ⎥⎣ ⎦   

Path p[p’] addresses the nodes which are addressed by path p and which have a 

descendant node addressed by path p/p’. 

( ) [ ]( )n v p i, xpath p,n, v position(p, n, i) xpath p i , n, v∀ ∀ ∀ ∀ ∧ →  

Path p[i] addresses all the nodes which are at position i among the nodes 

addressed by path p. − , reads “node n is at position i among the nodes addressed by path p”. position(p, n, i)

We can derive facts belonging to the position predicate from the following 

formula: 



( ) ( )( )( ) ( )

( )

n l i, findall n , v, xpath p, n , v preceding_sibling n , n , l length l, i 1

position p, n, i

′ ′ ′∀ ∀ ∀ ∃ ∧ ∧ −

→
 

The three-place findall predicate is a high-order predicate. However, its 

semantics is well known since it is an ISO standard Prolog predicate. For each n, 

findall creates the list l of all the n’ such that, 

   ( ) (( )v, xpath p, n , v preceding_sibling n ,n′ ′∃ ∧ )

is true. In other words, findall creates the list of all the preceding siblings of n which 

are addressed by path p. The number of preceding siblings of node n is equal to the 

length of this list. length is also a built-in Prolog predicate: − , reads “the length of list l is k”. ( )length l,k

 

 


