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Inelastic behavior modelling of concrete in low

and high strain rate dynamics

Frédéric Ragueneau and Fabrice Gatuingt
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F-94235 Cachan cedex, France

Abstract

This work deals with response modeling of concrete for dynamic loading. As in
statics one has to account for substantial difference of inelastic response in tension
and compression, the anisotropy of the response induced by complex cracking pat-
terns and the need of irreversible deformation due to frictional sliding or non-closing
cracks. On the top of that, in dynamics, we also have to handle the hardening or soft-
ening phenomena which explain a particular hysteretic response for a given cyclic
loading as well as the strain rate effects. The latter should further be addressed
separately for high as opposed to low strain rates. The main goal of this work is to
develop the concrete constitutive model capable of reproducing the salient features
experimentally observed. We present one theoretical development for the constitu-
tive model of concrete at low strain rates. The same kind of developments are then
carried out for high strain dynamic behavior. Both chosen models belong to the

class of coupled plasticity-damage models briefly presented.
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1 Introduction

The concrete like all geo-materials and ceramics, is perceived like being brittle
in traction and more ductile under compressive loading. Moreover, direct ten-
sile tests allow to observe, under displacement control in the testing machine,
a steep softening beyond the peak resistance in traction [1]. Other experimen-
tal procedures to obtain an estimate of the concrete traction strength such as
the splitting tensile tests (Brazilian test) or by 3 points bend tests on notched
samples [2] and [3] are simple to carry out (e.g. the compressed part of the
beam ensures in this case a better stability of the test) but more difficult to

interpret [4].

The behaviour in compression is more easily measured thanks to the greater
ductility of material. During tests on cylindrical specimens, a network of mi-
croscopic cracks nucleates parallel to the axis of loading coalescing at the
complete rupture. For measurement quality, it is important to ensure friction
free boundary condition between the plates of the machine and the two ends
of the sample generating a not-uniaxial state of stress, which can be achieved

by anti-hooping devices [5], [6].

Cracking, as the main source of the damage of brittle materials, is perceived as
the stiffness decrease. The differences in stiffness decrease in longitudinal and
transverse direction, which is typical of concrete, induces anisotropic response
which is very difficult to handle (e.g. see [7]). Moreover, the imperfections of
the cracks precludes their complete closure upon unloading, thus generating
irreversible strains which can be represented by a plasticity model. The same

model can be used to capture friction and sliding along the cracks.



In short, the mechanical model which is capable of representing the salient
features of described response of concrete is the coupled model of damage and
plasticity. The model ought to take into account: different type of behavior
for concrete under tension and compression, anisotropic decrease in material
stiffness as the microcracks open, stiffness recovery as crack closure occurs and

irreversible strains concomitant to damage.

The same type of concrete model can be extended to the case of dynamic
loading, which is of main interest for this work, both for the case of low
strain rate [8] and high strain rate type of response [9]. To that end, the main
modification concerns the capability of the constitutive model to account for

the strain rate effect.

Many issues remain ambiguous in the dynamic experiment as opposed to a
static one and in particular the influence of time. For more frequent structural
testing (rather than material one) the effects of time typically appear in two
ways: by inertial forces induced by nonzero acceleration to which is subjected
the structure and by a dependence of the mechanical characteristics of each
elementary volume of material with respect to the time evolutions which is

described in terms of viscosity.

This distinction is strictly related to the traditional concept of representative
volume element used to define the material behavior and it is indeed not ex-
cluded that the effects of viscosity are due to microscopic inertial phenomena.
This remark is particularly pertinent to the case of concrete like materials,
where the size of the representative volume element is of the order of centime-
ter. We will consider herein, that the dynamic aspect of the behavior is only

due to the influence of time on the mechanical characteristics and exclude the



inertial effects.

A number of works has been published in order to get better insight into the
concrete behavior in dynamic compression and to study the influence of the
loading rate. For example, Bischoff and Perry [10] show, as corroborated by
a significant bibliographical synthesis in figure 1, that there is an increase
of the concrete compressive strength at higher deformation rate. Moreover
they point out that we can distinguish two different modes (see figure 1)
producing the relative increase of the resistance in compression: the first mode
corresponds to a range of variations of deformation rate ranging between the
quasi-static ¢ = 107 s7! and € < 10 s7! leading to 1,5 times increase of the
resistance in compression. The majority of the authors agree on explanation
for such a strength increase pertinent to a material viscosity related to the
presence of water in the pores of the concrete [11], [12]. The second mode
for which the deformation rate ¢ > 10 s ~! all the way to ¢ = 10> s !
allows to multiply by four the resistance of the concrete, according to various
studies, is considered to be of structural origin [13], [14], [15]. This origin
seems to be a state of nonhomogeneous stress in the specimen brought about
by the inertia which generates considerable radial constraints acting like a
confining pressure [16]. One can also consider that this increase in resistance
is due to a delayed appearance of the microscopic cracks [17] for increasing
deformation rate. Moreover, recent studies [18] carried out on ceramics, show
that the higher the rate of deformation, the more cracking remains diffuse (no

localization of cracking), which also increases resistance.

Just like compression test, the simple tension test must also be adapted to
dynamic. In particular, by using a modified version of the Hopkinson bar test,

Brara and Klepaczko [19] obtained experimental results in which the rate of



deformation is about 100 s —*!

(see figure 2). They also collected the results
presented in the literature as shown in figure 2. We can see from this figure
that just like in compression, two distinct modes appear in the increase of
the tensile strength due to the high rate of deformation. Moreover, for both
modes, the increase seems to be higher than in compression: with a rate of
deformation of about 1 s ~! the tensile strength is multiplied by two, while

if the rate of deformation is about 100 s —*!

one multiplies resistance by 10.
Contrary to compression test, we cannot explain the phenomena which induce
resistance increase. If the first mode dynamic resistance increase, seems again
to be due to the presence of water in material, the second mode is still not
explained. Numerical simulations [20] of this test obtained with the discrete
elements method without accounting for viscous effects, showed that we were
not able to reproduce increase in tension resistance, successfully achieved by

” inertial 7 effects

the same method in compression. It thus seems that the
do not have the same influence in traction (see figure 3) and that it might be
necessary to account for other phenomena which intervene (e.g. crack speed).
The ”inertial ” effects of traction produce a stress state close to a multiaxial

state of traction and thus, in principle, we can not really talk about an increase

in resistance.

While the salient features of the static behavior of the concrete under mul-
tiaxial stress state requests is nowadays, rather well known (see figure 4), it
is much less so in dynamics. The main reason for that pertains in the diffi-
culty to synchronize evolutions of the different loadings components in order
to produce a multiaxial stress state in a concrete specimen. For that reason in
most experimental techniques only one component of the loading is dynamic

while the others remain static. In order to have a touchy dynamic triaxial



compression test, we carried out a test with the Hopkinson bar, in which the
concrete sample was confined by a metal ring [9]. In this test, the state of
deformation is close to an cedometric state what makes it possible to consider
very high pressure and volume change of the concrete. The curve in figure
7 makes it possible to compare static with dynamic results and to observe a
strong influence of rate of loading which cannot be explained by an inertial ef-

fect in measurement or in experiments with the restrained radial deformation

blocked.

The main goal of this work is to develop the concrete constitutive model
capable of reproducing one salient features observed in these experimental
results. The outline of the paper is as follows. In section 3 we present one
theoretical development for the constitutive model of concrete at low strain
rates. The same kind of developments are then carried out in section 4 for
a high strain dynamic behavior of concrete. Although both chosen models
belong to the class of coupled plasticity -damage models briefly presented in
section 2, the actual choice for either is quite specify. Concluding remarks are

given in section 5.

2 Thermodynamic framework for coupled plasticity damage model

for concrete

In order to perform 3D nonlinear transient analyses for concrete structures,
the constitutive equations must provide sufficiently robust and reliable repre-
sentations for any different loading path. The thermodynamics of irreversible
processes provides one such framework for material modelling which allows to

ensure continuity of the stress-strain response under 3D state of loading and



to obtain the consistent tangent modulus, the essential ingredients of efficient
numerical implementation. The expression of constitutive equations based on
thermodynamics is based on several steps. The first one is to define the state
variables, including the internal variables as macroscopic representation of mi-
croscopic mechanism and phenomena (dislocation sliding leading to plasticity
and hardening, cracking inducing damage, etc...). The local state method
postulates that the thermo-mechanic knowledge of a continuum at time ¢ is
completely defined by the value of these state variables. Any process leading to
evolution of state variables is thermodynamically admissible, if, the Clausius-
Duhem inequality (the second principle) is satisfied. Assuming a convex state
potential, from which the evolution laws are derived, allows to verify a priori

the thermodynamic stability condition.

Next ingredient of the model which is required is the specific Helmholtz free
energy as a function of the state variables. From the stand point of subsequent
numerical implementation, it is advantageous to include the total strain € along

with a set of internal variables Vi and write the free energy as:

Y= TP(G Vk) (1)

We further appeal to the Clausius-Duhem inequality postulating the positive-

ness of the dissipated energy, which in an isothermal case can be written as:

oé —pp >0 (2)

where o is the Cauchy stress tensor, p the material density and superposed

dot denotes the time derivative.



With respect of the choice of state variable in 1 we can further write:

w‘ae”avkv’“ (3)

And by substituting the last result in (2) we obtain:
O O

— 2N — )2V >
(0 —pg)e Py Ve 20 (4)

From this expression we further deduce the state laws as:

_ oY
Oij = Pa%_ (5)
. 0
AV > 0; Ap = Pa—;//; (6)

where A, is the thermodynamic force associated to the state variable Vj. In
order to complete this development, we have to define particular yield and

damage functions which define the elastic domain:

fP(o,Af) <0, fio,Af)<0 (7)

For a very large number of physical mechanisms as described in the previ-
ous section for dynamics of concrete, we in general need a coupled plasticity
damage model, as indicated in 7 above. The main goal in the next section is
to elaborate on two possible approaches to construct the constitutive model
on continuum damage mechanics and of plasticity coupled to damage, one for

low strain rate and another for high strain rate dynamics.

For completeness of this section we briefly review the main features of the
existing damage and plasticity models. The formers can be separated into two

main categories: the first one exploits micromechanic considerations (e.g. see



Kachanov [21] , Andrieux et al. [22]) to define the internal variables which
are introduced in a free energy potential [23], [24]. The second kind of models
are based on phenomenological interpretations of experimental results and the
expression of the elastic free energy does not contain any microscale variables.
The models of the first category allow for interpretation of internal variables,
but they ought to pass through homogenization procedure, which leads to a
very costly numerical implementation. On other hand, the phenomenological
plasticity coupled to damage models render the choice of the internal vari-
ables somewhat more delicate, but they remain placed within the standard
thermodynamics framework and thus may benefit from advanced numerical

algorithms for plasticity [25], [39].

From a macroscopic point of view, initially introduced by Kachanov [26] for
creep failure problems, the damage mechanics formulation requires the ad-
dition of a phenomenological internal variable which represents the loss of
stiffness (Lemaitre and Chaboche [27]). This can be achieved in many ways.
The classical one is to relate the damaged material’s and the intact mate-
rial’s elastic properties, which in the most general case would require the
damage variable as an fourth-order tensor. But since its identification would
be practically impossible, we further reduce the rank of the damage variable
while trying to maintain the most reliable representation of the experimen-
tally observed properties of the material. In order to achieve this objective,
the effective stress concept is introduced (e.g. see [28], [27], [29]) through a
strain equivalence, such that the effective stress ¢, when applied to the un-
damaged material, will produce the same strain as the true stress acting upon

the damaged variable.

Using this concept of effective stress, the coupling between damage mechanics



and plasticity can be introducing directly by considering the plasticity yield

surface in terms of the effective stress fP(&, Ag) < 0.

Another approach, considering damage as a fourth order tensor, consists in us-
ing directly the material compliance tensor D as the internal damage variable
related to crack growth and nucleation [30], [31]. With this kind of approach,
we also introduce the damage criterion f¢(o, A;) < 0 which is formally equiv-
alent to the plasticity criterion. The final group of models using the damage as
second-order tensors, although frequently used, till poses a problem that the
symmetry of the elasticity operator is not ensured [32] and can be recovered as
shown by Cordebois and Sidoroff [33] by postulating a state potential in terms
of only the effective stress and computing the elasticity operator through the
energy equivalence. This energetic approach will be further developed herein.
Other strategies allowing to account for anisotropy in damage modeling for

concrete are based on the microplan approach [34].

The plasticity models can also be developed by following two kinds of ap-
proaches with respect to the choice of internal variables; on one side, we can
take the micromechanics approach, with the clearly defined internal variables
discribing the sliding of the plastic crystals (e.g. Hill [35] or Lubliner [36])
and, on the other side, we can rather choose the phenomenological plasticity
models. The latter approach is favorised herein mostly for the reason of com-
putational efficiency. The strain rate effect which are of interest for dynamics
can easily be incorporated within such model, with either classical Perzyna
[37] or Duvaut and Lions [38] models, which can be implemented in a uni-
fied manner as shown by Ibrahimbegovic et al. [39]. Further refinement of the
plasticity model of this kind which concern the nonlinear kinematic hardening

of Armstrong and Fredericks [44] can also be handled on efficient manner as
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shown in Ibrahimbegovic and Chorfi [40].

3 Damage coupled to plasticity for low strain rate dynamics

In order to obtain more reliable results for transient non-linear computations
of structures, physical and numerical energy dissipation have to be accounted
for . The major difficulty relates to select the corresponding form of the damp-
ing matrix, such as viscous or hysteretic [41]. A more realistic damping model
includes inelastic behavior and these possibilities ought to be examined care-
fully since related to internal dissipation. As shown by recent experiments on
reinforced concrete mock-up subjected to seismic loading, there exist strong
interactions between state of failure and resulting global damping [42]. Most
of the coupled damage-plasticity models, which are capable to reproduce real-
istically the behavior of concrete in the non-linear static case, do not provide
the same accuracy for cyclic loading. Namely, the influence of heterogeneities
and roughness of the crack surfaces imply that at a fixed level of damage,
concrete still exhibits dissipation due to the frictional sliding between crack
surfaces. This property can be observed experimentally through typical cyclic

loading producing hysteresis loops.

A new constitutive model is proposed for concrete, capable of including resid-
ual hysteretic loops at a fixed level of damage. The model is developed within
the thermodynamics framework and it allows to couple the state of crack-
ing with the hysteretic dissipation induced by the crack surfaces sliding. The
model employs a particular Helmholtz’s free energy which allows to intro-
duce a coupling of the level of damage in one direction to a frictional stress,

associated with a plasticity-like behavior and a non-linear kinematic harden-
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ing. The introduced dissipative potential allows the description of dilatancy,

fundamental feature of materials like concrete, sand or rocks.

A physically realistic description of the oriented crack growth in concrete can
be obtained by using a second-order damage tensor formulation. Helmholtz’s
strain-based free energy is chosen as a function of an effective strain tensor
which is defined in the principal axis of the damage tensor according to (no

summation on repeated indices):

€y = (1= d) ey (1 — dj) '/ (8)

As in Cordebois and Sidorof [33], this effective strain, introduced directly into
the state potential, allows for the description of an elasto-damage material

exhibiting orthotropic cracks:

1 Y . N
pa = 5{2/1/61']'61']' + i} 9)

where A and p are the Lame coefficients defined for the undamaged mate-
rial. The main assumption postulated to describe the hysteretic behavior of
a partially open crack created after fracture is based on the concept of fric-
tional sliding. It induces the occurrence of a sliding stress which prevents the
crack from opening easily. In other words, the energy consumed during crack-
ing is not entirely dissipated but partially stored in the sliding potential. It is
through the damage variable that this energy shift can be obtained. Since each
dissipative nonlinear phenomenon needs its own internal variable, measure of
the frictional sliding is defined as a particular second order tensor, the sliding
strain €. Since they result from the same microscopic mechanism (rugosity of

the cracked surfaces), inelastic strains and hysteresis loops are represented by
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the same internal variable. Sliding is incorporated into the behavior through
an equivalent strain which couples damage with elastic strain component of
sliding.

R 1/4 1/4

iy = di’ (eij — €5;)d’ (10)

1§ /g

The complete thermodynamic potential will now have the following form:

pY = pha(€ij) + prbs(€is) (11)

with
1 .. .9 1
Pos = 5 {20kisE + Ay} + S baija (12)
where o;; is the internal variable associated with the kinematic hardening

phenomenon and b is a material parameter. The constitutive equations may

now be derived as:

o 3
O'z'j == paew = 2/1;(1 — di)1/2€ij(1 — dj)1/2 + )\(1 — di)1/2 Z Gkk(l — dk)l/Q(Sij -+ O'Zsj(l?))
1J k=1
and
s o 1/2 s\ g1/2 1/2 s\ 1/2
1 k=1

Finally, the back stress id defined as

o

We can observe that the total stress is divided into two parts : a classical

elasto-damage one and a sliding stress component. One can easily recognize a
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classical elasto-damage coupling and a new term allowing the energy to shift
from the elasto-damageable part to the frictional sliding part. The coupling
between sliding and cracking is made possible thanks to the presence of the
damage variable as a multiplier in the right-hand side of (14). Damage is clas-
sically controlled by the elasto-damage stress and the sliding strain is linked
only to the sliding part of the stress. This kind of partitioning, in conjunction
with the two yield functions, allows the description of a hysteretic behavior at
a fixed level of damage. Such an approach could be compared to multi-surface
modelling [43], except for the fact that the surfaces are not expressed in the
same space (strain space for damage and stress space for sliding). The sliding
and plastic strains being different, the thermodynamic forces associated with
the total strain and the sliding strain are also different. Such a formulation
differs greatly from the classical plasticity-damage coupling. This choice of in-
troducing damage into the sliding stress is guided by the idea that all inelastic
phenomena in concrete result from the cracks’ growth. Such an assumption
implies a limitation of this model in the case of hydrostatic compression, the

response remains elastic

According to experimental investigations, the damage in brittle materials such
as concrete is governed principally by their tensile behavior and much less pro-
nounced in compression. To take into account this asymmetry, two different
damage tensors must be introduced, one in tension and another in compres-
sion. The splitting between the tensile and the compressive damage tensors is
achieved through the sign of the sliding strains expressed in their respective

principal directions:

d; = df H (e};) + di H™ (€;) (16)
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where H*(ef;) = P7'H(\;;)P and H (¢f;) = P~'(0;; — H(\;;))P = 6 —
H*(e;), Aij is the tensor of sliding strain eigenvalues, P is the transformation
matrix and H(z) is the Heaviside function. The associated damage criterion
is also expressed in the principal axis of the strain tensor. choosing for each

direction i :

fi=¢& —ewn—ri(6) <0 (17)

where x;(€;) is the hardening variable (historic) and eg is the initial threshold.

The evolution of damage variable is governed by the positive value of strains:

df = |[“5(1+ ¢ Bt)eap(Bt(ew — &) ¢ (18)
€

where Bt is a material parameter driving the slope of the softening branch.
This last equation was derived from empirical considerations. Such a formula-
tion can not handle the behavior of material under strongly non-proportional
loading. Compressive damage in a particular direction is considered propor-
tional to the state of tensile cracking along the orthogonal directions and it is
therefore taken equal to a function as follows:

d-+ d+ B
i = (%) (19)

where 3 is a material parameter connecting the damaged Young’s moduli for
two orthogonal directions. Typically we obtain it by comparison of apparent

Young’s moduli in the longitudinal and radial directions.

The sliding part of the constitutive relation is assumed to be represented by
a plasticity-like model. In order to better reproduce the observed hysteresis

loops, nonlinear kinematic hardening is considered as the model initially in-

15



troduced by Armstrong and Frederick [44] and further developed by [45]. Such
a model allows to overcome the major drawback of Prager’s kinematic hard-
ening law, i.e. the linearity of the state law defining the forces associated with
kinematic hardening, by adding the nonlinear terms in the dissipative poten-
tial. In order to retain simplicity and adequacy of classical return mapping

numerical algorithm for stress computation, the sliding criterion is given as:

f = JQ(O',fj — ij) — Oy S 0 (20)

where Jy (afj—Xij) represents Von Mises’ equivalent stress. The specific aspects
of non-linear behavior of concrete have been introduced in the plastic flow
potential. Namely, nonlinear kinematic hardening imposes the use of a non-
associated flow rule:
s 3

¢ = JQ(Oij — XU) + ZaX”XU + CIl — O'y (21)
a and c are material parameters. I; = 1/30}, is the first invariant of the sliding
stress tensor and this choice enables us to take into account the dilatancy phe-

nomenon observed experimentally on geomaterials such as concrete or rocks.

The evolution laws of the internal variables are thus expressed as:

. 0 3, 1, 1
GSZ.J. = —agfj = )\[Q—JZ(O'” - ga'kkéij — XZJ) + gcdij] (22)
and
_ . ¢ 3,1, 3

where ) is the plastic multiplier.
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3.1 Numerical examples

The first analysis is performed at the material level and details concerning the
numerical scheme allowing to solve the constitutive equations may be found
in [46]. The Figure 5 represents the results of the numerical simulation of a
uniaxial compression test. We can observe that the model is able to describe

the volumetric response of the material satisfactorily.

The material parameters used for the analysis are : £ = 36000M Pa, v = 0.24,
€do = 1'10_45 Btinduced = 300:Btdirect = 9000, atension = 5-10_6Pa'_17 btension =
1.10"°Pa, acompression = 39-1078Pa™, beompression = 5.101°Pa, ¢ = 0.09 and

B=12.

The two curves in Figure 6 show the ability of the model to describe the
hysteresis loops under compression loading paths. The level of inelastic strains
and hysteresis is directly linked to state of damage. The hysteretic dissipation
capability of the model can be illustrated by plotting the absorbed energy
of an unloading loop against the value of damage in Figure 6. We can easily
appreciate the effect of the coupling between the state of damage and the

sliding stress

4 Damage coupled to plasticity for high strain rate dynamics

Modelling of concrete structures subjected to dynamic loading such as explo-
sions, impacts and perforations is very demanding, both from the point of
view of computer codes and from the point of view of material modelling. It

seems that constitutive modelling of concrete has not reached the same level
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of sophistication as computer methods. Most approaches are inspired by ex-
isting constitutive relations for alloys and ceramics, where a split between the
spherical and deviatoric parts of the stress-strain relations is assumed (see e.g.
[47,48]). The deviatoric part is modelled with a plasticity-based, or viscoplas-
tic model while the spherical part, also called ”equation of state”, is fitted with
a cap model [49]. In the present paper, which is a sequel of recent research
efforts carried out at LMT-Cachan [50], we present a constitutive relation for
concrete in dynamics based on viscoplasticity combined with rate dependent
continuum damage. This relation is restricted to cases with moderate strain
rates in concrete, corresponding typically to explosions and impacts of pro-
jectiles at a velocity less than 350 m/s, inducing a hydrostatic pressure in the

material which is less than 1 GPa.

4.1 Constitutive equations

Let us consider the case of an impact on a concrete slab and look at the various
modes of deformation and failure in concrete. Near the striker, inertial forces
in concrete are such that the material is confined. Concrete experiences a very
high state of triaxial compression. In statics, the response of concrete for such
a state of stress has been characterized experimentally [51,52]. The equation
of state, (e.g. the curve relating the volumetric deformation to the hydro-
static stress), exhibits an increase of the tangent and decreasing volumetric
moduli with residual plastic strains upon unloading. Recently Gary et al. [53]
obtained similar results in dynamics and observed a substantial rate effect.
The hydrostatic stress at a given volumetric strain increases with the strain

rate. Although the physical mechanisms responsible for the rate effect are not
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clearly explained at the moment (it might be due to intersticial water trapped
in the porous microstructure of the material), it is generally accepted that the
observed hardening phenomenon is due to irreversible material compaction at

a given strain rate.

Farther away from the impactor, concrete is subjected to compression with
a moderate amount of confinement. Its response is essentially controlled by
microcracking in compression and internal friction. This state of stress can
be captured by constitutive relations based on plasticity or plasticity coupled
to damage [54,55]. Two characteristics of the material response ought to be

recalled:

(1) The volumetric and deviatoric responses of the material cannot be sep-
arated.The coupling between the volumetric and deviatoric responses of
concrete has been experimentally demonstrated by Burlion et al. [52] by
comparing hydrostatic and uniaxial tests on confined specimens.

(2) In uniaxial compression, it has been demonstrated with three dimensional
computations that rate effects are very small compared to the confine-
ment generated by inertial forces which are opposite to the lateral expan-
sion of the specimen during loading [56,9]. The increase of the material
strength, which is classically observed (see e.g. Ref. [10]) can be almost
totally explained (in the range of strain rates considered in this paper)

by such a transient confinement.

The third failure mechanism is scabbing and occurs on the back of the im-
pacted structure. It is due to the interaction between the compressive wave
generated by the impactor and the free surface. The compression wave is

transformed into a tensile wave which might produce tensile cracking if the

19



material strength is reached. This failure mechanism is practically rate de-
pendent. Contrary to compression, inertial forces in uniaxial tension induce
a three dimensional state of tensile stresses in the material and cannot con-
tribute to an increase of apparent strength. The response of the material in
tension can be captured with a rate dependent damage model [28,57] or a rate

dependent smeared crack model [59].

An accurate description of the response of concrete subjected to impacts and
explosions requires the combination of at least the three features above men-
tioned. Most constitutive relations implemented in existing computer codes
are not entirely satisfactory because they do not account for the interaction
between the deviatoric response of the material and its volumetric response
and they do not combine the above three mechanisms. Bazant and co-workers
have used the microplane approach for such a combination [60], but the rate
effect on the equation of state is not considered in that model. Burlion et al.
[50] proposed a coupled damage—plasticity model in which compaction and
tensile cracking are combined into a single damage variable. Although the
model remains quite simple, it is very delicate to obtain a good description of

uniaxial compression especially since strain rate effects are not included.

The constitutive relations presented herein are an extension of this model,
aimed at providing a more accurate description of the material response, at
still a moderate degree of complexity. The proposed relations are based on

three main characteristics:

e The variation of porosity of concrete, which remains lower than 30 %, is
taken into account with the help of a homogenisation technique and, in

particular, the method of Mori-Tanaka which provides explicit expressions
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of the shear and bulk moduli of (uncracked) concrete. Thus, the elastic
properties of material are functions of the variation of porosity, especially
during hydrostatic loadings.

e Microcracking is captured with a rate dependent damage model [58], which
uses two damage variables in order to provide a realistic response of the ma-
terial in uniaxial compression while preserving a fairly good description of
what occurs in tension, which is a characteristic of damage models. Rate ef-
fects are necessary in order to reproduce the results of dynamic experiments
(mostly dynamic tensile tests). In addition, rate dependency preserves well
posedness of the equations of motion when strain softening occurs [61].

e In order to describe the material response in triaxial compression, a vis-
coplastic model is implemented, based on Perzyna’s approach associated
with a modified Gurson’s yield function [62]. Rate effects modification of
plasticity model is needed to capture the increase of stress with strain rate

in hydrostatic compression observed experimentally in dynamics [9)].

These mechanical effects are combined in the relationships which relate the

stresses to the elastic strains:

1
oij = (1 — D)[Kep,,6i5 + QG(??% - geik%)] (24)

where the shear G' and bulk moduli K are defined by Mori-Tanaka’s expres-

sions:

K — EuGu(-f*)

T AGMA3K M f*

(25)

G = — G-/

6K 7 T12G 1 rx
1+ 9K 37 +8G 51 f
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where Kj; and G,; are the bulk and shear moduli of the material without

pores respectively.

In this model, the damage is isotropic and represent by a scalar variable D.

The damage growth is defined by:

D = Oéch + OétDt (26)

where D, and D, represent the compressive and tensile damage respectively,

while a, and «; are parameters defined as:

uniaxial tension a.=0
| uniaxial compression ay =0 (27)
general loading o+ a. =1

The definition of these parameters is given in the original work of Mazars
[67,63]. The growth of the two damage variables is governed by the elastic

equivalent strain[63]:

&= 5 (e (28)
where ¢ is the ith component of the tensor of the principal strains and (z)*
is the positive part of x.

The growth of D, and D; is defined by the following equations which are

similar to the equations used by Dube et al.[58]:

mp

c

- (1/bc)
) < E° —epy— (L >\ "De
D. = ( o0~ 2 () ) (29)
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and

D,

) w

where mp,, np,, mp, and np, are material parameters which control the rate
effect. a., as, b, by are material parameters which govern the growth of dam-
age in quasistatic tension and compression and €pq is the initial threshold of

damage.

The experiments carried out within the French research network GEO showed
that there was a dependence of the loading rate on the curve relating the vol-
umetric strain to the hydrostatic stress [9], in addition to permanent plastic
strains and to the material compaction which induces an increase of the bulk
and shear moduli of the material. It is thus pertinent to implement a viscoplas-
tic model. Within the classical framework of (small strain) elasto-plasticity,

we use the basic assumption of additive strain decomposition:

where £;; is the total strain rate, €f;, the elastic one and éff the viscoplastic

one.

The viscoplastic strains are obtained following Perzyna’s approach:

. OF

5o (32)

Fnr is the modified Gurson’s yield function proposed by Needleman and Tver-

gaard [62]:
3J I
Fnr(oij,om, f7) = —22 + 2¢1 f* cosh (Q2 - ) — (1 +(gsf*)*) =0 (33)
oir 20
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where o), is the stress in concrete without voids, f* the porosity and ¢, g¢o,

g3 are scalars parameters.

Colantonio and Stainier [64] proposed a similar model in which the definition
of the plastic multiplier accounts for the variation of porosity of the material.

We follow here the same approach and define the viscoplastic multiplier as :

\ f* FNT Nwp
=i ) (34)

where m,, and n,, are material parameters. Just like in the model by Burlion
[50], we assume that the evolution of the porosity is controlled by the irre-

versible volumetric strain:

df* = k(1 — f*) f"deg, (35)

where a parameter £ is introduced in equation 35 in order to be able to cali-
brate the velocity with which porosity is closed. Figure 7 shows a comparison
of the hydrostatic responses between static and dynamic simulations and the

corresponding experiments taken from Ref. [65].

Figure 8a shows the response of the damage model in uniaxial tension tests
carried out at various strain rates. The response is strongly dependent on the
strain rate, which is in agreement with experiments [65]. Figure 8b shows the
response of the damage model in uniaxial compression. We can see that we
chose to have a behaviour in compression which is only slightly dependent
on the strain rate. This is again quite consistent with test data. It should be
pointed out, however that the model response will be substantially modified

in compression, due to the coupling with a viscoplastic model.
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Figure 9a shows the response of the model for hydrostatic compression followed
by hydrostatic tension. We observe a hardening behaviour when the porosity
of the material decreases. We see also that during unloading, the modulus of
elasticity of material is higher than at the beginning of the loading (this is
due to the decrease of porosity). Finally, when tension is reached, the rate
dependent damage model is recovered, with the elastic constants K and G
which have increased due to compaction. A static loading and a dynamic
loading were carried out in order to show the influence the strain rate on the

model response.

With regard to the material behaviour in uniaxial compression, the values of
the model parameters provide a behavior which is either ”coupled” or not,
in the sense that the viscoplastic criterion and the damage criterion can be
activated at the same time or not. Figure 9b shows, in the case of a dynamic
compression test (loading—unloading-reloading), a curve where the model pa-
rameters are such as in one case the damage criterion is activated only (no
irreversible strains) and in the second case the two criteria are activated simul-
taneously. In the second case, a decrease of stiffness occurs at the same time
that incremental viscoplastic strains are non zero. Obviously, the first case is
much easier to handle as far as calibration is concerned because viscoplasticity
is restricted to cases where the material is subjected to compression with a

significant amount of confinement.

Overall, the constitutive relations contains two parameters which define the
elastic behaviour (the shear and bulk moduli of concrete without voids), five
parameters which control the material response in tension (including the dam-
age threshold), four parameters which control damage growth in compression.

Four parameters enter in the viscoplastic model and two enter in the equation
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which governs the variation of porosity, including the initial material porosity
(the quantities ¢, g9, g3 assume fixed values usually). The initial porosity de-
pends on the concrete mix. It is usually in the range of 0.3. The total number
of model parameters might be considered to be quite high, but in view of the
three mechanisms described by the model and the various rate effects, it seems
difficult to arrive at a significantly smaller number of parameters. Quasistatic
experiments in tension, uniaxial compression and triaxial compression (such
as uniaxially confined tests [52,50]) provide all the coefficients, except the
viscoplastic parameters (see Burlion et al. [50]). The determination of these
parameters is more intricate because it requires test data obtained for differ-
ent strain rates. Such test data have been obtained for a single concrete mix,
including scabbing tests, split Hopkinson tests on confined and unconfined

specimens [65].

Given the complexity of the constitutive relations and their aim which is to
model concrete in fast transient dynamics, the model has been implemented
in the explicit finite element code LS-DYNA3D using the Euler forward in-
tegration scheme. The nonlinear response of the material is obtained by an
explicit correction of the elastic prediction at each time steps [50]. It is well
known that explicit time integration is not accurate if the time increment is
too large (i.e. if the viscoplastic incremental strains, damage or incremental
porosity are too high). It was observed that in practical cases where the three
dimensional finite element mesh is sufficiently fine in order to achieve an ac-
curate description of the irreversible phenomena in the structure, the critical
time step due to the explicit integration of the equations of motion is so small
that the explicit integration of the constitutive relations is accurate enough.

Given the fact that both the constitutive relations and the equations of motion
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are integrated explicitly, error accumulation might occur at these two levels.
The balance between the internal, kinetic and dissipated energy is monitored

in order to detect such situations.

5 Conclusions

As shown in this work, modeling mechanical response of concrete for dynamic
loading inherits all the difficulties we have to deal with in statics, like substan-
tial difference of inelastic response in tension and compression, the anisotropy
of the response induced by complex cracking patterns and the need to account
for irreversible deformation due to frictional sliding or non-closing cracks. On
the top of that, in dynamics, we also have to take into account the eventual
hardening or softening phenomena which explain a particular hysteretic re-
sponse for a given cyclic loading as well as the strain rate effects as also shown
herein. A great number of mechanism can be identified explaining different
features of concrete behavior in dynamics and most of sufficiently versatile
models will have a fair number of parameters to be identified. Although the
mechanism interpretation and parameters identifications can be carried out at
the micro level, the computation is in principle performed at the macro one.
Nowadays it is still hard to imagine a complete analysis of civil engineering
structures only based on a micro-scale description [66]. Such an approach of
computational mechanics in nonlinear transient dynamics remains the most
pragmatic one allowing to keep, as far as possible, the physical features of the
micro-scale without neglecting the need of an efficient and robust numerical

tool at the structural level.
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model.
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