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RESUME Dans ce travail on présente un cadre théorique général du déveioppedes modeles
de couplage de deux types de comportement anélastique, la plasticitédetieragement. On
introduit la nouveauté principale par rapport aux modeles précédentsediype en utilisant
un critére pour définir le domaine élastique valable aussi bien pour la plasteqig pour
I'endommagement, qui peut étre adopté pour une grande variétéatésiaux, d'une part pour
les metaux poreux et d’autre part pour le béton en compaction. L'intalem numérique est
d’abord présentée pour un cas unidimensionnel simple et ensuiteajéaé pour les criteres
2D et 3D, pertinents a des métaux ou des bétons.

ABSTRACTIN this work we present a general theoretical framework for develoaiognstitutive

model capable of coupling two basic types of inelastic behaviour, plasticdydamage. We
elaborate upon the main novelty with respect to the previous models of thisatigjch pertains
to a systematic use of criteria for defining the elastic domain, both for plasticitydanthge,

which can be adapted to a very wide variety of engineering materials, fretalsnwith voids
on one side to concrete compaction on the other side. The numerical ietiion is first

presented for a simple one-dimensional case, and subsequentlyekterzD and 3D criteria
which are adequate for either metals or concrete.

MOTS-CLES plasticité-endommagement couplé, implantation éléments finis.
KEYWORDS coupled plasticity-damage, finite element implementation.
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1. Introduction

Two classes of constitutive models of inelastic behavithose of plasticity and
damage, are most frequently employed for engineering mePlasticity model
(e.g. see [HIL 50], [LUB 90] or [SIM 98] for a comprehensivecaant), with a clearly
defined yield criterion for identifying the occurrence dagtic deformation which
does not affect the elastic response which remains the sarakstic loading and
unloading, is mostly applicable to simplified represeintabf metals and alloys. Si-
milarly, the continuum damage model (e.g. see [LEM 88] or fK®6]), with its abi-
lity to account for the micro-cracking induced change osgtaresponse but without
residual deformation upon loading, is only a simplifiedresentation of cracking of
concrete or soil-mechanics materials. It has been longgrézed (e.g. see [LEM 85])
that the validity of these basic constitutive models canigpeificantly extended when
combined into a single coupled model of damage and plasti€thie applications
which can be tackled in such a manner are typically outsidth@fscope of each
of the basic models when acting alone, ranging from the metih voids (e.g. see
[GUR 77], [NEE 84]) to compacting concrete (e.g. see [GAT)9%Ypical attempts
of merging these two constitutive models have been devdlafmng a one-track ap-
proach (e.g. see [LEM 85], [BEN 88], [SIM 87] or [JU 89], amoailers) where the
damage model is first applied to produce the equivalensstmeeasure for virgin ma-
terial or so called effective stress, followed by the plastimodel defining the yield
criterion in terms of this effective stress. Even nowaddlys,same kind of develop-
ments are being carried out to provide a reliable repreentaf constitutive behavior
of concrete (e.g. see [MES 98], [JOH 99] or [MAH 00], amonges#), each propo-
sing a rather complex computational procedure to obtagssés and tangent moduli.

In this work we depart from these previous developments opgse a new kind
of coupled damage-plasticity model which has the followndiegirable features:
(i) both plasticity and damage model are built around the cpomding criteria indi-
cating the presence of inelastic deformation. For the foitime amounts to construc-
ting the classical yield criterion only in terms of totallrat than the effective stress,
whereas for the latter this implies using a somewhat lesglata continuum damage
formulation with a clearly defined damage criterion.
(ii) the numerical computation on both plasticity and damagegidine model can be
carried out in parallel (even making use of the presentlyl@vie parallel computer
architecture) and their final results can then be mergemltiir a local iterative proce-
dure which imposes the uniqueness of stresses.

The outline of the paper is as follows. In the next section wefly present the
main idea of coupling the plasticity and damage in a singlestitutive model, star-
ting with a simple one-dimensional setting and extendirtg & more general case.
Numerical implementation is discussed in Section 3 andrabw@merical examples
are presented in Section 4. In Section 5 we state some cloeimarks.
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2. Theoretical formulation

For clarity, we first start with a simple one-dimensionatisg allowing for only
non-trivial component of the stress tensor and the straisate It is mostly a matter
of tensor calculus to develop the corresponding 2D or 3Dieeref any equation
governing the model. However, the particular forms of theld/ior damage criterion
provide a very significant wealth of possible applicatiam&igher dimensional case,
making the model useful for both metals and soil-mechanigterals.

2.1. Basic hypothesis

The one-dimensional constitutive model of coupling the dgenand plasticity can
be built on 3 basic hypotheses: additive decomposition efttital strain field, the
strain energy and finally the plasticity and damage catefhe first of them implies
that the total deformation can be additively decomposeal étdstic pari©, plastic
parte? and damage patt’, leading to

€=¢"+ € + €. [1]

We note in passing that the damage models rarely make use oftion of the
damage strain, with few exceptions (e.g. see [CAR 97] or [\2&)) dealing only with
rate form of the equation (1) .

The second ingredient of the model governing elastic resp@specified in terms
of strain energy. Assuming the simplest quadratic form imteof the corresponding
state variables we can write the strain energy as the sunasti@ldamage and plastic
parts:

U(e, e, D, 6% e, €7) = Ue(e) + W(e?, D) + E7(€P) + E4(¢Y), (2]

where,

1
Te(e®) = EeeCeee [3]

In equations (2) and (3) above, the elastic modulus is deneith C*¢, ¢? and D are
internal variables of plastic strain and damage compliagit@and£? are strain like
internal variables describing the hardening phenomenoiplésticity and damage,
respectively, an@? (£P) and=4(¢?) are the corresponding hardening functions. Ins-
tead of working with the damage strain ener(-), it is convenient to appeal to the
Legendre transformation (e.g. see [STR 86]) to define cemphtary energy, which
is postulated as a quadratic form in stress with
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1
= 3 oDo | [4]

The final group of basic model ingredients is provided tocefpethe elastic do-
main, where no change of internal variables takes placagaklith the yield criteria
o and damage criteri@? with

PP (0,q") = |o|— (o) —¢") <0

% (0,q%) 5]

[
S
!
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whereg? andq? are stress like variables describing the hardening phenayag is
the yield limit ando s is the fracture limit.

We next show that all the remaining ingredients can be deérik@m these three
basic ones simply by the standard thermodynamics consiolerand the principles
of maximum plastic and maximum damage dissipation. To,stae can provide the
local form of the second principle of thermodynamics (eeg f.UB 90], [LEM 88]),
stating that the total inelastic dissipation is always megative. Subsequently, by
making use of the results in (2) to (4) we can further write

0<D = ogé— W
DP
owe o=P Ox?
. . =P . 0y d
= — e p_ = ¢p X
(o 5o )e€ + o€ 35”5 +o( o )
ox? .. o=l )
+6—DD_8—§(1§’ (6]
—_—
Dd

whereDP andD? denote, respectively, plastic and damage dissipation.

In an elastic process with no change of plastic variableth ili= 0 and¢? = 0,
and no change of damage variables, with= 0 and¢? = 0, which further implies
that no dissipation takes place, wif¥ = 0, D% = 0 andD = 0, it follows from (6)
above that the stress can be obtained from the elastic sinaigy:
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— ov — (%¢® [7]

g = 865
and that the damage strain is defined through stress andtfentvalue of he damage
compliance:

a._ X! _

= = Do. [8]

€

Assuming that the stress constitutive equation in (7) amdadge strain definition

in (8) remain the same in an inelastic process we can condtodedissipation in-
equality in (6) that

. . A .
0<D=0el +qP¢P + —oDo + ¢, [9]
—_—— 2
Dp )
D4

where we introduced stress-like variabigsandq? which are as thermodynamically
conjugate to hardening variablgs and¢? and which can be computed from

0=P

P —
q 97
d Ed

2.2. Plasticity model

In an inelastic process where the plastic module is activate can appeal to the
principle of maximum plastic dissipation (e.g. see [HIL BO]LUB 90]) to conclude
that among all plastically admissible fields of stress aneks-like hardening variable
we can choose those which render the maximum of the plassgpdition. This can be
formally presented as a constrained minimization problérickvcan also be recast in
a non-constrained form by making use of the Lagrange midtiprocedure (e.g. see
[STR 86])

o= 7 . :
qp - 7 } - mlna,qP:q)P(J,qP):O(_Dp(g7 qp))
(i

Mminye, qv (LP (0, q7,P), [11]

where4? is the plastic multiplier and
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LP = —DP(0,qP) + PP (0, ¢P). [12]

The Kuhn-Tucker optimality conditions (e.g. see [STR 86}) this problem can
be readily obtained as:

_OLP(0,¢"4") ., 000,00
0= % = P 4 % 3 — & =4 5o
8Lp(0" qp7 ,-YP) - . 8(1)17 . . 8(1)17
= — P ap P AP 13
8(]1’ f + Y aqp g Y aqp 3 [ ]

which can be interpreted as the evolution equations of tterial variables of the
plastic model with the Lagrange multipliéP as the plastic multiplier. If we assume
that the latter takes a zero value in an elastic processagtte&KLlihn-Tucker equation
associated with the Lagrangian in (11) leads to the starfdand of the loading /un-
loading conditions which can be written as

AP >0 P <0 APDP = 0. [14]

The positive value of the plastic multiplier can be obtaifredn the plastic consis-
tency condition, imposing for a state of plastic loadingplestic admissibility on the
subsequent state, resulting with

ooy 9dv

— PP — 2 -
0=F = 8Ua—i—aqpq.

[15]

>From (10) and (13) we get:

) g .

@ = aigpfp

02 00
T per? ogr

[16]

and from (7) and (13):

& = Cé—el—&)
0B

= C°(e—é¢h) —Arce 5

[17]

Combining the equations (15), (16) and (17) we obtain:
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- P . .

dB‘I‘; Ce(6 _ Ed)
PP e OPP PP 92EP 9PP
do C Ao + OqP OEP2 OqP

[18]

=

Finally, using (17) and (18) we determine the elasto-plaginsistent tangent modulus
(with damage kept fixed) that

e PP 9PP e
¢ do__Jdo c ](6
oPpr Ce oPpr + PP 92EP 9PP
do do OqP 0€Er2 9qP

6 =[C°~ — ¢y, [19]

2.3. Damage model

The damage model can also be cast in an equivalent formae asighgiven for the
plasticity, although that is not the usual manner of praagnt (e.g. see [LEM 88] or
[KRA 96]). Namely, in the case where the damage model is aietd/while the plasti-
city remains inactive, we can appeal to the principle of nmaxih damage dissipation
to select among all admissible value of stress and hardet@ngage variables those
which maximize the damage dissipation. The latter can baditated as an constrai-
ned minimization problem and further transformed into acamstrained one by using
the Lagrange multiplier method

o= 7 . :
d ? } = mlncr,qd:@d(a,qd)zo(_Dd(g7 qd))

q:
)

minVU,qd (Ld(Ua qd)a ;Yd)v [20]
where4? is the Lagrange multiplier for damage and

L = —D%(0,¢") + 4'®%(0, ¢%). [21]

The Kuhn-Tucker optimality conditions corresponding te tamage Lagrangian
can readily be obtained as

oL (a,q%,%%) . 097 . 1 094
=—— 17/ = _D Ve = D =AP - ——
0 oo 7y oo o Oo
8Ld(0, q“, ﬁd) ‘d d o ‘d d ol
0 e ——] = — v — =AY — 22
g £+ 8qd=>£ Vo [22]
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which specify the evolution equations for the internal &bhes of the damage model.
To complete this description of the Kuhn-Tucker optimationdition we also provide
the loading/unloading conditions with

41>0; @1 <0; 449 =0, [23]

where the zero value of the damage multiplier is introducedah elastic process,
where no change of damage internal variables would takes pleite positive value
of the damage multiplier, which occurs for the case of damegeing can be com-
puted from the damage consistency condition, by imposiegatimissibility on the
subsequent state to get

: 09?004
0=2a%= S0t a—qdqd. [24]
>From (10) and (22) we have
0q? .
d _ Y4 sq
¢ = agdg
0?24 94
. d
= - (%dgTqCp [25]
and from (8) and (22) we get
6 = (D—'led)
= D' —D DDt
d
= Dt dpflaai;, [26]

where we used the relatigiD—1) = —D~'DD~'. Combining equations (24),(25)
and (26) we obtain:

99 —1:d
4= T [27]
007 11027 | 997 5757 97 °
oo do 9q? §¢d? 9q?

Hence using (26) and (27) we get the damage consistent tamgeiulus as
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D—l 89? 59 D—l

s do__Odo -d
0= [D T 9%d D-1 odpd 9%d 92=d 9Ppd ]6 . [28]
do do + 9q¢ 9gd? 9q?

2.4. Elasto-plastic-damage coupling

Finally, for the case where both plasticity and damage nsoded active one can
apply simultaneously the principle of maximum plastic anckimaim damage dissi-
pation to recover both sets of results as presented in () afid (15) for plasticity and
(8), (22) and (24) for damage. This would imply in particullaat we can write two
different forms of the stress rate equation, one for plagtand another for damage,
according to

G =C%P(é— ¢, [29]
where
o P47 =0
P = e 22P 92P e . 30
e - mceﬁ:ﬁazapm ;P >0 [30]
do do 9qP 9epZ OqP
and
o= Ced¢d [31]
where
D ;44 =0
CEd — p-1a2? oed -1 [32]
= D—l _ 9o Oo : ,'yd >0

924 H_102d | 994 5224 s9d
9e D B+

9qd ped2 044

Therefore, from equality of stress rates in (29) and (31) areabtain the damage
strain rate according to

CP(e — ¢ty = Ced = ¢ = [C°P + 1 CPe. [33]
Replacing the last result in (31) we can rewrite the stretgsaquation as
& = CPdg, [34]

whereC°?? is the elasto-plastic-damage consistent tangent modsilgisén as
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Cepd — Ced [Cpp + Ced]—lcep. [35]
g
Cepd
—— 7
Of oo /.
f /
/
— . (C°ep /
oy b //
/
/
/
| /1
p C° , Ce
I L _|
/
/
/
Vi
€P e €

Figure 1. Theo — e diagram for the one-dimensional elasto-plastic-damagestitu-
tive model. We first reach the yield surface and then thediradhreshold surface. By
unloading we can observe both phenomena, the appearandasticstrains and de-
creasing of elastic properties. We also give the graphiegkresentation of the strain
decompositione = € + P + €.

3. Numerical Implementation

In this section we address the numerical implementatiames®f the proposed
damage-plasticity model, within the framework of one-siepplicit backward Euler
time-integration scheme. The central problem of compomati plasticity can thus be
presented as follows:

Central problem of computational damage-plasticity

Given:e, = €(-,t,), €& = €R (-, ty,), efll = e;il(-,tn), P =(¢P(-,ty), Dn = D(-,tp),
fg :gd('vtn)v t:tn+1 —tn
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T P d P d
Find: €En+11 €y 1 €t £n+1' Dn+1r £n+1

Such that:
Ne el,int el,ext
A5 — 65571 =0,

el,int __ el p D d d
fn+1 = / B U(Gn-i-la €n+1- gn-i,-la Dy, £n+17 €n+1)d$,
le

£ = / Nbdz + [N,

. p p p . P p —
7n+1 Z 07 (I)n—&-l(o'""rl?qn—&-l) S 07 7n+1(1)n+1 - O

’.Yle+1 >0, ¢ﬁ+1(0n+1,qi+1) <0, "Yg+1q);i1+1 =0. [36]

In (36) above the first equation expresses equilibrium ef tcbmplete system,
whereas the other two are the equations imposing the pmasticdlamage admissibi-
lity of the computed stress state at timg ;. The symbold”s' , denotes the standard
finite element assembly procedure summing up all elementriboitions (e.g. see
[BAT 90]), fel-nt andfe-c*t represent the internal and external forces of the element
‘el’, N is element displacement variation aBé' the corresponding strain variation.
The essential role of the finite element method and the comilynased numerical
integration scheme is to drastically simplify the centrallgem reducing it to corres-
ponding numerical integration points which are chosen @ing to the given finite
element mesh.

Furthermore, in accordance to the usual operator spligoha® (e.g. see [SIM 98]),
we can separate the solution of the equilibrium equatioo® fthe one carried out to
find the admissible stress state. The first group of equatinamely the equilibrium
equations are solved iteratively in order to provide theenirguess of the total strain
field. If the Newton method is employed, one would need thgémt stiffness matrix,
or more precisely the elasto-plastic-damage tangent medalg. see [BEN 88]). Ho-
wever, this is not essential and many other iterative sceeraa be used for such a
purpose. For any global solution procedure we are given #s¢ ikerative value for
total strain field at each integration poimﬁf}rl, where the superscript:)’ denotes
the iteration counter. The central problem thus reducestapaiting the correspon-
ding values of the internal variables which will provide amassible stress field. This
computation is accomplished by a local iterative schemih iération counter deno-
ted by’ (k)’, where two ingredients of the model exploited indepengepribduce the
current values of plastic and damage straiﬁﬁ and efff{, and the corresponding
stress field according to the following expression:

e 7 k d(k
Tng1 = O], — ) — el [37]

As already indicated, the computation of this kind is cateet independently on
plasticity and damage part of the model, producing the strakiesg), , | andaﬁﬂ,
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respectively. At the final stage, we then impose that thesestresses coincide, which
provides the converged values of the plastic and damagemafion.

3.1. Plasticity computation

The computation for the plasticity model is carried out by pinocedure described
in this section. By keeping the damage variable fixed andharticular, the current
value of the damage straifﬁ(f{, frozen, we first assume that the step remains elastic
(with respect to the potential change of plasticity modégiinal variables), which
allows us to compute the elastic trial state:

b = Co(e), — e — et [38]
En = g€ [39]

If the trial elastic step is indeed plastically admissilnidhie sense that

p,trial __ xp/ _ptrial ptrial
q)nJrl =9 (Un+1 ?qn+1 ) S 07

we conclude that the total step is the exact solution wjth, = 0. In the opposite, we
need to correct this result for the stress by finding thetp@svalue of the plastic mul-
tiplier which will re-establish the plastic admissibilitjo that end we first integrate
by backward Euler scheme the evolution equation in (13) tainkthe correction of
internal variables:

oer
i1 = €+ 801?:1
n
o0P?
' +1
P = &+ V£+1Wnﬂ
n
q£+1 = qp(££+1)v [40]
where
’YZ+1 = '7£+1At [41]
and the corresponding value of the stress,
i d(k
‘75+1 = 06(65:-11 - 6£,+1 - en(ﬁ)
i d(k
= (el — b — ) = C(eh iy — h)
D
_ O_p,trial —Ce P a(I)n-‘,-l [42]

n+1 ’Yn+1 do +13
n
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which should be tested for the plastic admissibility,

(I)ﬁ-s-l = @p(Uf’m,qﬁH) =0. [43]

Using the yield surface function defined in (5) and the eiquat (40) and (42),
(43) can be rewritten as

strial e 7
b | = |obT — CE L = (oF — P(Eh,,)) = 0. [44]

For a convex hardening function (e.g. saturation hardejimg can always solve
the last equation using the Newton procedure to get condesgee,, , , from which
we can calculate

p _ D P . p,trial
67L+1 - 671 + fyn—&-ISZgn(a-n+l )
P — P p
£n+1 - fn + FYnJrl
P _ p,trial e.p . p,trial
Op+1 = Opp1 — C ’Yn+1829n(0n+1 ) . [45]

3.2. Damage computation

We then turn towards the damage part of the model to compatpdtential evo-
lution of the damage internal variables. We start againdbimputation by assuming
the elastic trial step and keeping the damage variablesthe 8s in the previous step,
which leads to

o™ = Dyl [46]
it = al€). [47]

We recall that the damage strain valuetat;, ez+1, is determined by the iteration
process, where for either plastic and damage calculatién-ath iteration we keep

the damage strain value frozene%iﬁ.

If the damage admissibility of the trial step is confirmediwi

B = S G < 0.
the trial step is indeed the exact solution V\W_,'_l = 0. In the opposite, one needs
to compute the corresponding positive value of the damagépiier that will re-
establish the damage admissibility. More precisely, irgtegg by backward Euler
scheme the damage variables evolution equations in (20awevdte
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d — k
Un—i—l = Dn-{—l n(—&-%
0P
d l 1
= a.n—‘yt-qla _D 17%—‘,—18 ;;L+
n+1
1 0%
D _ D + n+1
n+1 ,VnJrl ;jl+1 ao_
d d 8¢?L+1
1 = & +’7n+1 d
a n+1
qff+1 = qd(§Z+1)- (48]

By using the damage function form introduced in (5) and thaatgs in (48) above,
the damage admissibility condition can be written as

d,trial —
‘I’i+1 = “Tnh | - Dnl’YgH - (0? - qd(§g+1)) =0. [49]

Solving this non-linear equation by the Newton method giveshe value of the
damage multiplier? 41 and hence the final values of stresses and the damage interna
variables:

d d,t l d,trial
Opt+1 — n—l-rlm - Dn ’Y,L+1SZg1’L( n—:lla )
1
Dn+1 = D +’7n+1
onal
d d d
Snt1 = &t Tt
d d/ed
Gr1 = q“(&ny1) [50]

In equation (46) the trial stress is calculated assumingttteainitial value of the
damage variable is non-zerd), > 0, to avoid a potential problem of dividing by
zero. By this assumption we have to change the elastic pyopaues in the program
to C¢, so that the real elastic properties of the model do not aitang

C° = (Do +Ce 1. [51]

However, by taking the value dd non-zero, we slightly change the damage har-
dening variable evolution sincB(¢¢ = 0) > 0. Thus, D, becomes another mate-
rial parameter for the hardening evolution. In our caldols we tookDy = C¢ ™1,
which means that within the present model calculations thgtie properties have to
beC® = 2C°.
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3.3. Coupling

We note that the computation on the plastic model describékle previous sec-
tion is carried out in a completely independent manner froendomputation on the
damage part of the model summarized in (46) to (50); In paleicthese two compu-
tational procedures can be advanced in parallel with noan@h of results, dedicating
to each its particular processor on a parallel computeraty ®ut the corresponding
part of the work.

The final results produced by the two parts of the model shénblly be compa-
red against one another and any discrepancy, or residuallcshe eliminated with

d(k d(k d(k
r(enl) = b (6X4)) — ol 4 () = 0. [52]

The last equation is then solved by an iterative proceduvehioh we supply the
results available from the two parts to perform the nexaiiee step with

0=r® —cm AF) — ot AtE) [53]
leading to
(k)
Aﬁd(k% = 771”4,1
" Chi + Gty
it = el At [54]

The computation then continues with this improved valuehef damage strain
until the convergence in (52) is finally achieved. The numbfeiterations depends
significantly on the choice of the starting value of the dgmatrainﬁiﬂ:o). As the
first guess we should not take the last converged vatfiesince the damage strain
evolves also in an elastic procesé & Do # const. evenif D = const). So, we first
assume that process remains elastic, which means thattegeavariableD, does

not change and the trial stress equals:
af:i‘}l =0n+ (Dp+C° N Hepsr — €n). [55]

By definition the corresponding damage strain is equal to:

Ei-s(-kl:O) = Dna'zn_tﬁl- [56]

The value above is then taken as the starting value of the glasteain iteration pro-
cess to solve the non-linear case (equations (52) to (54)).
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In (54) above we need the corresponding values of the efdagtic as well as
the elasto-damage moduli, which can be easily computed fd&nfor plasticity and
from (50) for damage to obtain:

. AP _
OoP ce Y41 = 0
n+1 . Cep _ er(623p)
a( — d ) — n+1 — oep2 /1 . AP >0
i~ i e e 2
-1 ) _
aO'd Dn 9u ”Yn-&-l - O
n+1 . ed __ —1,9%2¢
5. = Criy = Dy (Geaz)Int VT [57]
= 92=d =
n+1 Dn1+(‘;£ﬁ)n+1 ? Intl

The given values of tangent moduli for both parts of the madelalso of direct
use for constructing the tangent modulus of the coupled madeording to

Grez,l-)i-l(den-‘rl - degﬂ,—l) = C’fbildeg]f’»l [58]
ce®
= de‘i 1 = en7Hd€n+1
" Cn:il + Cvez(il
CEP Ced
= dop i1 UBS Sukin s HRY PR [59]

Colia+Cety
—_——
Cepd
The tangent elasto-plastic-damage modulus given in (5@3ésl to compute the

corresponding element contribution to the global stiffnestrix for the Newton ite-
rative scheme applied in solving global equations with

e L,(7 L,(i+1 1,(i)\ _ peliex el,in
A RS (@5 = ) = £ - £

L, e € e
K\ = [, BIOH BT da, [60]
The computational procedure presented in the foregoindpeayeneralized to 2D
or 3D problems with no modification other than dealing wlik second order tensors

used for stress and strain, and the fourth order tensor éotaihgent modulus. The
outline of such a computational procedure is given in AppeAd

4. Numerical simulations

In this section we present the results of a couple of numlesinzaulations. In or-
der to illustrate the versatility of the model to represemmgé spectrum of different
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materials, one of the example draws from porous metal fadund another from com-
pacting concrete .

4.1. Criteriafor porous metalsin tension

The porous metal coupled model was built along the lines®pibneering work
of Gurson ([GUR 77]), however with important difference aedjng the present mo-
del, which has the ability to describe the closing of poraswtading. Postulating that
it is only spherical part of stress which determines the gityothe damage criterion
is given as

oY (o, q") = (tr(a)) — (6 — q7), [61]

wheretr(o) denotes the trace of the tengspand< - > the Macauley brackets:

z ;x>0
<x>—{0 r<0 [62]

Here we neglect the possibility that the material can be dgthan compression. To
model the plasticity of metal matrix, we used the von Misé®don:

®P(0,¢") = \/dev(a) : dev(a) — (ol — ¢"), [63]

wheredeuv (o) denotes the deviatoric part of the tensqidev (o) = o — 3tr(o).

>From the choice of the criteria it follows that the evoluatiof damage variables
depends only upon the spherical part of the stress tensathanel/olution of plastic
variables upon its deviatoric part. Hence, the two nonlipd&nomena appear uncou-
pled in strain space. This is the direct consequence of ttial iphysical presumption
that the opening of the micro-cracks is due to positive dphepart of the stress and
sliding of crystal planes due to the stress deviator. Theéorcorresponding to da-
mage and the latter to plasticity.

Finally, we use an exponential hardening law for either pineenon, plasticity
and damage,

PE) = (o -ok)1- e

g€t = (0f—ol)(1 - e, [64]

whereo®, ando?, are saturation values of stress, wher#aandb? are the material
parameters governing the rate of saturation.
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4.1.1. Results

The model is illustrated on an example of a rectangular pléte a circular hole
in the middle, submitted to a simple tension test. By exjigisymmetry conditions,
only one quarter of the model is used in the analysis; Sea&gu

fixed
inthe
x direction

L prescri bed
di spl acement
inthe

x direction

4 4
v v

fixed in the y direction

Figure 2. One quarter of the specimen, used in calculation and prbsdrboundary
conditions .

The material properties taken in the calculation were tileviang; (i) for elasti-
city: Young's modulusE = 240G Pa and the shear modulug, = 92G Pa; (ii) for
plasticity: yield stressg,, = 170M Pa, hardening limit stress2, = 210M Pa and
saturation parameted® = 50; (iii) for damage: fracture stress; = 170M Pa, har-
dening limit stressg?, = 210M Pa and saturation parametéf, = 50.

In Figures 3 and 4 we show how the spreading of plastified @amdladjed regions
will change with the other phenomenon being activated .ebdfiit stages of activation
of either plasticity or damage models are illustrated bytgors of hardening variables
£P and¢?, respectively.

a)

Plastic Hardening
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4.50E-03
4.95E-03
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Min = 0.00E+00
Max = 3.91E-03
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b)

Plastic Hardening

0.00E+00
4.50E-04
9.00E-04
1.35E-03
1.80E-03
2.25E-03
2.70E-03
3.15E-03
3.60E-03
4.05E-03
4.50E-03
4.95E-03
5.40E-03
Min = 0.00E+00
Max = 5.36E-03

Figure 3. Contours of the plastic hardening variakd&, when a) only plasticity is
activated and b) both plasticity and damage are activated.

Damage Hardening
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b)

Damage Hardening

0.00E+00
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2.17E-04
3.25E-04
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7.58E-04
8.67E-04
9.75E-04
1.08E-03
1.19E-03
1.30E-03
Min = 0.00E+00
Max = 1.25E-03

Figure 4. The value of the damage hardening variabte when a) only damage is
activated and b) both, plasticity and damage are activated.

We observe the complete disappearance of shear band (Ryuaetypical res-
ponse of metals or alloys with von Mises criterion, when dgens also taken into
account. Besides, we notice that in the case where both pterare activated ei-
ther region is reduced to a smaller volume, but the diffeesrmetween the maximum
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and minimum value of? and¢? is larger. With other words, the phenomena are, when
activated simultaneously, more localized.

4.1.2. Convergence characteristics

Since the plastic and damage model state variables corigngatre carried out
independently, the convergence rate of each one is nottedfdxy another. In parti-
cular, the implementation of the von Mises model is compjetee same as for the
plasticity model and thus keeps its robustness in the cduptadel as well. Moreover,
since the damage model is formulated in a completely anabgay to the plasticity,
that is using the fracture criterion and the principle of theximum dissipation, we
obtain comparable computational efficiency and simildnusiness. In both cases, for
saturation hardening models defined in (64), we rized iterations to converge with
the Newton procedure applied to each model.

The iterative procedure for the coupled plasticity-dameamgelel, assuring the f-
inal uniqueness of stresses, requires in general only atésations to converge. The
convergence criteria &tth iteration can be written as:

3
Y (0P (el®) — gt ()2 < g min(oy, o), [65]

i,j=1

wheren is a chosen tolerance. A typical sequence of the intermedésults obtained
in the iterative process is presented in Table 1.

iter. | [lo? — o[ €ty €5 €t

1 2.400521 10 | 0.01681690 | 0.006922074 | —0.002569930
7.003845 102 | 0.01614148 | 0.007330000 | —0.002210263
3.758989 10° | 0.01615158 | 0.007325925 | —0.002293375
1.504535 10 | 0.01615126 | 0.007326051 | —0.002292093
9.815405 10=° | 0.01615126 | 0.007326049 | —0.002292127

[SA{ TN GV] N V)

Table 1. Iterative values for stress difference norm and damagérstamputed by
plasticity-damage model.

The solution uniqueness for the model of this kind is guaaatf the plasticity
and damage criteria do not concern the same inelastic msohsiriNevertheless, uni-
queness of the solution does not ensure the easy convery@adave remarked that
for the plastic and damage criteria too similar, we need lemgne steps to converge,
while the convergence is remaining quadratic.
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4.2. Criteriafor compacting concrete

It is quite interesting that the same kind of model can be tsadpresent com-
pacting concrete behavior, although the latter can be segaaed at the opposite
end of the spectrum with respect to porous metal behaviaribes by Gurson’s cri-
terion. Namely, while the previous study deals with the éase of metal porosity
and softening response under tension loading, in this ebeawg model the decrease
of concrete porosity under hydrostatic pressure loadirdyiaareasingly hardening
response of compacting concrete [GAT 99].

Since we do not necessarily seek to use the most elaboratel fitwcdconcrete
capable of providing a very good agreement between the ncahsimulations and
experimental results, we use rather a simple model foripigstomponent in terms
of the Drucker-Prager criterion with no hardening:

PP (o) = \/dev(o) : dev(o) — tan(a) %tr(o) -2/3 a?, [66]

wheretan(«) is a (positive) material constant, roughly representirigrimal friction.

The damage model component is chosen to describe an esseatiaanism of
compacting concrete "damage" leading to an increase istagsie. Therefore, the da-
mage criterion for concrete compaction concerns only thesgal part of the stress:

(I)d(o-a qd) = tT(O') - (U? - qd)v [67]

whereaf is the damage elastic limit ang is the damage hardening variable. By
introducing a linear hardening law for the damage:

¢t = —K
[68]

with fairly large value of hardening modulug? we hope to provide a reliable repre-
sentation of concrete behavior in compaction.

4.2.1. Results

The computations are performed for the same model of a Eeefdiplate (see Fi-
gure 2), but this time submitted to compression loading. fitmaerical values for the
material parameters taken in the calculation are the fafigw(i) elasticity: Young’s
modulusE = 240G Pa and the shear modulys = 92GPa; (ii) plasticity: yield
stressg, = 170M Pa, material parametetana = 0.6; (iii) damage: fracture stress,
o = 210M Pa, K = 200.

In Figure 5 we show how the damaged regions change with oowftthe plas-
ticity component activated, by tracing the contours of tamege hardening variable
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£, We observe that the damage hardening is much less presentasth model com-
ponents are activated.

Damage Hardening
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Min = 0.00E+00
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b)
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6.67E-04
7.50E-04
8.33E-04
9.17E-04
1.00E-03
Min = 0.00E+00
Max = 9.98E-04

Figure 5. The value of the damage hardening variabte when a) only damage is
activated and b) both, plasticity and damage are activated.

In Figure 6 we show contours of the largest stress compondatiins of its absolute
value, 011, for three different cases where only the plasticity, oflg lamage or
both model components are activated. It is for the lattee gd®en the stress response
appears least localized.
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b)
STRESS 11
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Figure 6. The value of the stress ;, when a) only plasticity is activated, b) only
damage is activated and c) both plasticity and damage areatetd.

5. Conclusions

The general theoretical framework for developing a couglksticity-damage
constitutive model presented herein allows to accommodatéde variety of ma-
terials, as illustrated on porous metal and compactingredacThe main novelty of
the model with respect to the standard coupled models okihispertains to treating
each model component, plasticity and damage, in an indgp¢maanner attributing
to each its own yield or damage criteria. This kind of featway especially be ad-
vantageous when the behavior of one or both components afaheled model is
well under control. In the opposite case, in order to sinauateal material behaviour,
we need to identify the material parameters, either in trenpmenological sense by
comparing it with experimental results or by using a micedsdased representation
to provide the material parameters for a particular compbne

Another important novelty introduced herein concerns tin@erical implementa-
tion, where the plastic and damage component state vasiabfaputations are carried
out independently from each other. The latter allows thaicthssical return mapping
algorithm providing the quadratic convergence rates eatly used for plasticity com-
ponent computations. Moreover, since the damage modetrisufated in a comple-
tely analogous way to the plasticity, that is using the das@ierion and the principle
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of the maximum dissipation, the same type of return mappiggréhm can be used
to obtain computational efficiency and robustness conipgartp those of plasticity
component.

The chosen strategy of separating the computations for twgoonents to reduce
the model complexity is in general taxed mildly, since thdiadnal computational
cost concerns typically only a few iterations to obtain tloerect value of damage
strain and to converge the stress provided by two componetite same value.
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7. Appendix: Numerical algorithm of the elasto-plastic-danage model

given
e e?, D, 0 €l
(4) (4) (fj)nd (i) d(i)
7 p(i i p(i i
ni10€n 1 Dy €07 andg
elastic computation

trial _ ~e, (%) p d(k=0)y _ /e —1 —1, (i) p
n+1 — C (€"+1 —€n — en+1 ) = (C + Dn) (En+1 - En) [69]
d(k=0) _ trial
€pt1 = Dn nil
d(k) d(k)
n+1 n+1
plastic computation damage computation
p,trial __ trial d,trial _ xd/ _d d
40 = P (e, {1 an) <1>n+dl " o1, qn)
£ @D tria . : i,tria .
if <I’n+1 < Ot. o if <I>n+1 St 0. :
P _ ria = ra
Ulr)n+1 = On4l Tpt1 = Tpnt1
€nt1 = €n Dypt1 =D,
P =¢P §d = fd
n4+1 = Sn nt+l = Sn
P — 4P d — d
qn+1 In Ant1 n
e . trial . £ xd,trial .
n“1>n+1 >0 : |f'i>nJrl >0 :
solve solve
p ¥ P P p — d d d d d _
<I>n+1(0'n+1(’Yn+1)7 qn+1(7n+1)) =0 q>77,+1(0-n+1(7n+1)7 ‘1n+1(’¥n+1)) =0
where where
aaP oad
p _ _trial IS nil d  _ _trial d —1%%n41
i1 =041 —Yn41C o Tpt1 = crn'i‘g - 'Yn+dan %
P — P p —
ntl — gn + Tn+1 fg+1 = 53 +d’)’n,+1
p — P —
Q1 = qp(EnJrl) In+1 =4 (En+1)
P _ep pp aq>i+1 b Db+ “’i+1 6<I>fi+1 8¢i+1
€nt1 = €n T Tny1 00 ntl = n T gg T 70 ® —o
nt1 T 9f T In4
Y d
P
Tnt1 Tn+t1
[70]

P d .
Ifol | #onir:
) d(k)
correction of €01
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da(k e edy—1 d
Aengrl) = (CP+C) (eh —0oni1)
(el A A 400
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