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Abstract

In this work we consider numerical implementation of the modified version of a
coupled rate dependent damage-plasticity concrete model first proposed in [8]. We
developed an explicit-implicit integration scheme, implemented it in LS-DYNA fi-
nite element code, with explicit part dealing with large global problem of equations
of motion and implicit part treating local evolution equations. We also provide a
detailed consideration of the numerical stability of this kind of scheme for rate-
dependent damage model. Several numerical tests, both simple ones and a complex
problem of the large aircraft impact on a large concrete slab demonstrate the effi-
ciency of the proposed numerical implementation. Comparison between simulations
of impact of equivalent aircraft engine missiles and the tests carried out in Sandia
laboratory [25] also demonstrates its efficiency.

Key words: Concrete constitutive model; damage; plasticity; high-rate dynamic;
impact

1 Introduction

Transient high rate dynamic behavior of concrete is a very important to take
into account for design concrete structures in the case of dynamic loading con-
ditions, such as an impact on the structure. This impact loading can be due to
explosion, mind blast or an accidental collision of cars, trains or airplanes with
the structure. In particular for structures that involve public safety, they have
to be design to resist not only the static loading but also the dynamic loading
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produced extreme conditions. In order to perform a 3D non-linear analysis
with a wide variety of damage mechanism in concrete we need a model suffi-
ciently robust and capable of providing a reliable representations for different
loading path. But we also need to have a numerical implementation of this
model firmly under control in order to ensure a robust computation. In fact,
the complexity of any practically interesting model is such that a fully im-
plicit schemes are excluded. In other words, for the numerical simulations of
fast transient dynamic, such as an impact on concrete structures, one uses an
explicit time integration scheme. The computer program architecture can thus
be simplified accordingly, in order to provide a solution for very complex in-
dustrial application; with the code as LS-DYNA as one of the most prominent
examples, which is also used herein.

The outline of the paper is as follow. In the next section we briefly review the
salient feature on the coupled damage plasticity model for high rate dynamics
of concrete, adapted to our cases of interest. Then the pertinent details of the
chosen scheme for the numerical implementation is presented. In Section 4
we briefly discuss the proposed procedure for model parameters identification.
Then the stability of the numerical scheme for a rate dependent damage model
is discuss in Section 5. Section 6 provides several illustrative example to show
the model performance in representing different inelastic modes of damage in
dynamics. Closing remarks and conclusions are given in Section 6.

2 Coupled rate dependant damage-plasticity constitutive model

for concrete

This model is first proposed by Gatuingt [8] to simulate explosion in contact or
impact of hard projectiles at velocity less than 350 m/s. For this kind of loading
three failure mechanisms have to be described. First one which is observed
under the impact is a decrease of the material porosity. This phenomenon is
represented with homogenization technics by considering concrete as a matrix
(cement paste and aggregates) with pores. To model the penetration of a hard
striker introducing a large deviatoric strain, a plastic model based on modified
Gurson’s yield function (to take into account porosity evolution) is used. The
third and final mechanism is supplied to handle the case where the compressive
wave can reflect on a free surface producing a traction state of stress which is
represented with a damage model.

These mechanical effects are combined in the relationships which relate the
stresses to the elastic strains:

σij = (1 − D)
[

Kεe
kkδij + 2G(εe

ij −
1

3
εe

kkδij)
]

(1)
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where the shear G and bulk moduli K of the coupled model are defined by
Mori-Tanaka’s expressions:

K =
4KMGM(1 − f ∗)

4GM + 3KMf ∗

; G =
GM(1 − f ∗)

1 + 6KM+12GM

9KM+8GM
f ∗

(2)

with KM and GM respectively the bulk and shear moduli of the matrix mate-
rial without pores . In the case of a smooth impact (such as impact by cars or
airplanes), we can consider that the porosity will not decrease enough under
the projectile to induce a variation of the concrete moduli. For the study of
these kind of problems we will consider in this paper that K and G remain
constant.
The phenomenon of microcracking, in uniaxial tension and compression, is
captured with a rate dependent damage model [5]. Accounting for rate effects
is necessary in order to represent the type of response one finds in dynamic
experiments, mostly dynamic tensile tests [15]). In addition, the added benefit
of the rate dependency is to preserve the well-posedness of the equations of
motion when strain softening occurs [18], [24]. The extensive program of ex-
periments carried out within the French research network GEO showed that
there was a marked dependence between the loading rate and the curve re-
lating the volumetric strain to the hydrostatic stress [7]. The latter is thus
captured by implementing a viscoplasticity model. Within the classical frame-
work of small strain cinematics, we use the basic assumption of additive strain
decomposition:

ε̇ij = ε̇e
ij + ε̇vp

ij (3)

where ε̇ij is the total strain rate, ε̇e
ij, the elastic one and ε̇vp

ij the viscoplastic
strain rate.

The viscoplastic strain rates are obtained following Perzyna’s approach:

ε̇vp
ij = λ̇

∂FNT

∂σij

(4)

The viscoplastic multiplier λ̇ is defined with the power law which also takes
into account the porosity f ∗:

λ̇ =
f ∗

(1 − f ∗)

〈

FNT

mvp

〉nvp

(5)

where mvp and nvp are material parameters. The porosity evolution is con-
trolled by the irreversible volumetric strain only according to:

df ∗ = k(1 − f ∗)f ∗dεp
kk (6)

where parameter k is introduced in equation (6) in order to be able to calibrate
the velocity with which voids are closed.
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In equation above, FNT is the modified Gurson’s yield function proposed by
Needleman and Tvergaard [17]:

FNT

(

σij, σM , f ∗

)

:=
3J2

σ2
M

+ 2q1f
∗ cosh

(

q2
I1

2σM

)

−
(

1 + (q3f
∗)2

)

= 0 (7)

where I1 = Tr(σ), the first invariant of stress tensor, J2 = ‖dev(σ)‖, the
second invariant of the deviatoric part, σM is the stress in concrete matrix
without voids and q1, q2, q3 are scalars parameters. The model of this kind
treats the concrete as a porous material. This porosity has a great importance
on the material behavior when the hydrostatic stress contribution is not neg-
ligible. Indeed, this model improves upon the Drucker-Prager [4] yield surface
which is often used for concrete with consequences that the material remains
elastic for triaxial compression, which is in contradiction with the compaction
experimentally observed [3]. The main interest in the modified Gurson’s yield
function is to be closed for a hydrostatic state of stress and to provide a kind
of CAP model [9], [10] or [11].

The constitutive response in tension and compression is controlled by the
damage evolution law governed by a rate dependent model given by :

Ḋ =





< ε̃e − εD0 −
1
a

(

D
1−D

)(1/b)

>

mD





nD

(8)

with the damage criterion of Mazars [19]

f = ε̃e − κ (9)

where ε̃e =

√

∑

i

(

〈εe
i 〉

+
)2

is the elastic equivalent strain for quasi-brittle ma-

terials [19]. In Equation (8) above mD, nD are material parameters which
control the rate effect, a, b are material parameters which govern the growth
of damage in quasistatic tension and compression and εD0 is the initial value
of damage threshold.

Figure 1 shows the coupled plasticity-damage model response for the hydro-
static stress state for a loading/unloading cycle. We can see that the model
captures both strain hardening effect with concrete compaction and the irre-
versible plastic residual strain upon unloading.
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Fig. 1. Hydrostatic response of the model used

3 Numerical implementation

Given the complexity of the constitutive relations and the main application
domain which pertains to concrete in fast transient dynamics, the model has
been implemented in the explicit finite element code LS-DYNA [13]. The ob-
jective of the numerical implementation of the model is to be able to calculate
the new state of stress at time t + ∆t knowing the increment of strain ∆ε
and the state of strain at time t. In this computational process, the evolution
of the damage and viscoplastic strain are totally decoupled in order to pre-
serve the computational efficiency. We refer to Figure 2 for the flow-chart of
the implemented computational procedure, which provides the summary of all
different cases.

In a first time, we assume that all the strain increment are elastic and we
compute the equivalent elastic strain:

εe
ij(t + ∆t) = εij(t + ∆t) − εvp

ij (t)

ε̃e(t + ∆t) =

√

∑

i

(

〈εe
i (t + ∆t)〉+

)2 (10)

Furthermore, we assume that all internal variables remain fixed with their
rates (ḟ ∗, σ̇M and Ḋ) equal to zero, so that we can compute the corresponding
stress rate in the elastic predictor:
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εij(t+∆t) = εij(t) + dεij

εij(t+∆t) = εij(t+∆t) - εij(t)

0~ >eεCase 1 0<NTF0

~
D

e

εε < 0<NTF

vp

e

0

~
Dεε <e

F.E. imput

Elastic equivalent strain

σij(t+∆t)= ∆t  
e

Elastic predictor

Case 2

Case 4

Case 3

Case 3

Case 1

YES

YES NO NONO NO

YES YES

YES

NO

σij(t) + σij
.

*

Fig. 2. Numerical integration scheme

ε̇ij(t + ∆t) = ε̇e
ij(t + ∆t) + ε̇vp

ij (t + ∆t) = ε̇e
ij(t + ∆t)

σ̇ = (1 − D(t))
[

Kε̇kk(t + ∆t)δij + 2G(ε̇ij(t + ∆t) − 1
3
ε̇kk(t + ∆t)δij)

]

ε̇vp
ij (t + ∆t) = 0; ḟ ∗(t + ∆t) = 0; σ̇M(t + ∆t) = 0

(11)

In order to verify if the correction is needed to obtain the real state of stress,
we test the positivity of the elastic equivalent strain predicted. If this strain is
negative, we deal with a loading path mainly in triaxial compression and the
damage variable D will never evolve. We are thus concerned with either the
case 1 (elasticity) or with the case 3 (only plasticity) as shown in Figure 2. In
case 2 we only have a damage evolution with no plasticity. For the ”coupled”
case 4, we have evolutions of the damage variable and of the plastic strain. In
this case, we first compute the new state of damage and we use it to compute
the plastic correction without any subsequent iteration.

For the plastic correction we use the return mapping algorithm [20] for the
plastic part of the model assuming that the damage D is known at the state
t + ∆t. The latter is computed first from the evolution of the damage during
the incremental process, by using an explicit scheme due to the formulation
of the damage growth (see equation 8). We can then write:
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ε̇ij(t + ∆t) = ε̇e
ij(t + ∆t) + ε̇vp

ij (t + ∆t) = 0 =⇒ ε̇e
ij(t + ∆t) = −ε̇vp

ij (t + ∆t)

σ̇ij = −(1 − D(t + ∆t))
[

Kε̇vp
kkδij + 2G(ε̇vp

ij −
1

3
ε̇vp

kkδij)
]

ε̇vp
ij = λ̇

∂FNT

∂σij

ḟ ∗ = k(1 − f ∗)f ∗ε̇vp
kk = λ̇k(1 − f ∗)f ∗

∂FNT

∂σkk

σ̇M = λ̇
Et

(1 − f ∗)σM

∂FNT

∂σij

σij

(12)

Substituting equation (12)3 into equation (12)2 we obtain:

σ̇ij = −λ̇(1 − D(t + ∆t))
[

K
∂FNT

∂σkk

δij + 2G(
∂FNT

∂σij

−
1

3

∂FNT

∂σkk

δij)
]

(13)

with λ̇ = f∗

(1−f∗)
FNT

mvp
(see equation (2)) for linear viscoplasticity (nvp = 1) and

where plastic loading (FNT > 0) is implicitly assumed.

The rate of change of the yield function during the relaxation process can be
written as follows (see Figure 3):

˙FNT =
∂FNT

∂σij

:σ̇ij +
∂FNT

∂f ∗

.ḟ ∗ +
∂FNT

∂σM

. ˙σM (14)

Substituting σ̇ij, ḟ ∗ and σ̇M with their evolutions in equation (12), defined
as a function of the plastic multiplier λ̇, we obtain an ordinary differential
equation to solve:

˙FNT = −
FNT

mvp

(

f ∗

1 − f ∗

)







∂FNT

∂σij

:(1 − D)

[

K
∂FNT

∂σkk

δij + 2G(
∂FNT

∂σij

−
1

3

∂FNT

∂σkk

δij)

]

+
∂FNT

∂f ∗

. k(1 − f ∗)f ∗
∂FNT

∂σkk

+
∂FNT

∂σM

.
Et

(1 − f ∗)σM

∂FNT

∂σij

σij







(15)

This kind of problem has been solved by Ortiz and Simo [20] introducing the
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Fig. 3. Principle of the return mapping

instantaneous relaxation time t̄:

t̄ =mvp

(

1 − f ∗

f ∗

)

/







∂FNT

∂σ
:(1 − D)

[

K
∂FNT

∂σkk

δij + 2G(
∂FNT

∂σij

−
1

3

∂FNT

∂σkk

δij)

]

+
∂FNT

∂f ∗

. k(1 − f ∗)f ∗
∂FNT

∂σkk

+
∂FNT

∂σM

.
Et

(1 − f ∗)σM

∂FNT

∂σij

σij







(16)

equation (15) reduces to :

˙FNT = −
FNT

t̄
=⇒ ln(FNT ) =

−t

t̄
(17)

The following algorithm is then applied: the elastic predictor is computed.
The return path can then reach a suitably updated yield surface by means of
a sequence of straight segment ∆it (see figure 3) which is the instantaneous
relaxation time of the linear differential equation.
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∆it =mvp

(

1 − f ∗(ti)

f ∗(ti)

)

/







∂FNT
i

∂σij

:(1 − D)

[

K
∂FNT

i

∂σkk

δij + 2G(
∂FNT

i

∂σij

−
1

3

∂FNT
i

∂σkk

δij)

]

−
∂FNT

i

∂f ∗

• k(1 − f ∗(ti))f ∗(ti)
∂FNT

i

∂σkk

−
∂FNT

i

∂σM

•
Et(t

i)

(1 − f ∗(ti))σM(ti)

∂FNT
i

∂σij

: σij(t
i)







(18)

To update the variable σij, f ∗ and σM during the return mapping iterative
process, we use:

σij(t
i+1) = σij(t

i) + σ̇ij(t
i)∆it

σM(ti+1) = σM(ti) + σ̇M(ti)∆it

f ∗(ti+1) = f ∗(ti) + ḟ ∗(ti)∆it

(19)

We can thus compute FNT
i+1 as well as the new values of the internal variables.

The total relaxation time is obtained with the following equation:

ti+1 = ti + ∆it.log
FNT

i

FNT
i+1 (20)

We obtain the exact plastic correction for FNT = 0 which is obtained when
the total relaxing time is equal to the real time increment ∆t [20].

During this internal variable computation and in particular for the elastic pre-
diction, we can obtain numerical problem to compute the modified Gurson’s
yield function (see eq. (7)). This is due to the high numerical values obtained
with the cosh function when the term q2I1

2σM
becomes large enough. This phe-

nomenon is represented in Figure 4. We follow Mahnken [16] who proposed to
modify the expression of the hyperbolic cosine with the power series develop-
ment around a critical point. We choose for critical value q2I1

2σM
= Xc = 30 and

we obtain the expression:

∣

∣

∣

∣

q2I1

2σM

∣

∣

∣

∣

≤ Xc : FNT

[

cosh
( q2I1

2σM

)

]

∣

∣

∣

∣

q2I1

2σM

∣

∣

∣

∣

> Xc : FNT

[

cosh(Xc) + sinh(Xc)(
q2I1

2σM

− Xc) +
1

2
cosh(Xc)(

q2I1

2σM

− Xc)
2
]

(21)

This method ensures continuity under the critical point and limits the growth
up of this term when X > Xc.
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Figure 5 shows the response of the model for a hydrostatic compression (where
only the plastic criterion is activated) for different strain increment but with
the same strain rate. We can notice that the model response is now totally
independent of the strain increment. This is due to the implicit integration
scheme used for the plasticity.

4 Parameters identification

The main goal of this section is to give a systematic procedure in order to
calibrate and choose the model parameters. We saw in Section 2 that the con-
stitutive equations are governing with two inelastic threshold functions. The
first one is based on Mazars’s work and concerns the damage evolution. The
second one is the modified Gurson’s yield function for the evolution of the
plastic strain. It is important to note that, the Mazars’s threshold function is
activated in traction before the Gurson’s yield function, means that only the
damage constitutive law is used see Figure 6. The representation of the yield
functions was generated with MatSGen software developed at LMT–Cachan
by François [6]. So if we want to calibrate the model damage parameters we
have to perform a traction test in statics and in dynamics. In addition, for a
triaxial compression load path, only the Gurson’s yield function is activated
which means that we will use only the viscoplastic constitutive law. To cali-
brate the model parameters for the viscoplastic strain evolution, we have to
perform the hydrostatic compression test in statics and in dynamics. On the
other hand, if we are in a load path in simple compression with low confine-
ment, we activate the two thresholds and we will have a coupled response of
the constitutive equation. Nevertheless, if we choose appropriate parameters,
we can obtain a simple compression depending only on the damage law which
will permit to calibrate the damage parameters in compression.
In table 1 we present a summary of the parameter values for MB50.

5 Stability of the numerical implementation

5.1 Rate dependant damage model

An homogeneous material element at a macroscopic point of view deforms in a
homogeneous manner if a homogeneous stress is applied at its boundaries. But
when the strain becomes larger, due to the loading for example, concentration
can occur in one element which lead to localization of strain over more or less
extended area and the deformation of the considered element ceased to be
homogeneous.
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Table 1
Model parameters for MB50

Plasticity par. Values Units Damage par. Values Unity

E0 5.51010 Pa E0 3.51010 Pa

ν 0.2 – ν 0.2 –

q1 1.5 – ǫD0
1.10−4 –

q2 0.8 – at 20000 –

q3 1 – bt 1.6 –

σM0
60 MPa nDt

5 –

n 15 – mDt
0.510−4 –

k 45 – ac 3000 –

mvp 1.110−2 – nDc
20 –

nvp 1 – mDc
0.510−3 –
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A good way for describing localization in terms of continuum theory is the
strain rate discontinuity [23, 21, 22]. The localization implies a non uniqueness
in the incremental response of a homogeneous, homogeneously strained body
and also implies a vanishing speed of acceleration waves [12, 14].

The equation of the damage model is:

σ = (1 − D)Eε (22)

with the evolution law of the damage governed by a rate dependent model
(see equation (8)) considering nD = 1. This is an evolution problem which is
solved by a time integration scheme. This latter provides a discretized solution
of this evolution problem, which can be written as :

div σn+1 = 0

σn+1 = (1 − Dn+1)Eεn+1 = G(εn+1, Dn+1)

∆D = Dn+1 − Dn = ∆t Ḋn+1 = F (εn+1, Dn+1)

(23)

This is a non-linear problem which can be solved by the Newton scheme. We
have to ensure that this remains a well-posed problem by verifying the posi-
tiveness of the consistent tangent operator.

Therefore, we linearize the non-linear evolution laws:

δσn+1 =
∂G

∂εn+1

: δεn+1 +
∂G

∂Dn+1

δDn+1

δDn+1 =
∂F

∂εn+1

: δεn+1 +
∂F

∂Dn+1

δDn+1

(24)

With the equation (24)2 we have:

δDn+1 =

∂F
∂εn+1

: δεn+1

1 − ∂F
∂Dn+1

(25)

Using this expression of δDn+1 in equation (24)1 we can write:

δσn+1 = H : δεn+1 (26)

with

H =
∂G

∂εn+1

+

∂G
∂Dn+1

⊗ ∂F
∂εn+1

1 − ∂F
∂Dn+1

(27)

13



the tangent modulus of the non-linear evolution law. In our case, we have:

∂G

∂εn+1

= (1 − Dn+1)E

∂G

∂Dn+1

= −Eεn+1

∂F

∂εn+1

=
∆t

mD

< εn+1 >+

ε̃n+1

∂F

∂Dn+1

= −
∆t

mD

.

1
a

(

Dn+1

1−Dn+1

)(1/b)

bDn+1(1 − Dn+1)
= −α

∆t

mD

(28)

Which leads to :

H = (1 − Dn+1)E +
−Eεn+1 ⊗

∆t
mD

<εn+1>+

ε̃n+1

1 + α ∆t
mD

(29)

In order to solve the problem, we have to verify the equilibrium for the lin-
earized problem:

div δσn+1 = 0 (30)

which is a well-posed problem under the condition:

det nHn = 0 (31)

With the tangent modulus obtained in equation (29) we obtain from the last
expression :

det

[

(1 − Dn+1) nEn −
∆t

mD.ε̃n+1.(1 + α ∆t
mD

)
n(Eεn+1⊗ < εn+1 >+)n

]

= 0

(32)
this is verified for [1]:

mD.ε̃n+1.(1 + α ∆t
mD

)

∆t
= (< εn+1 >+ n){nEn(1 − Dn+1)}

−1(Eεn+1) (33)

5.2 Application to 1D bar in traction

For a 1D bar in traction we can obtain a simple form of the tangent modulus:

H = (1 − Dn+1)E − Eεn+1
∆t/mD

1 + α ∆t
mD

(34)
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For this simple case, the stability condition is H = 0. With this condition, we
can obtain a stability time step ∆t:

∆t =
md

εn+1/(1 − Dn+1) − α
(35)

Figure 7 shows the reduction of the critical time step with the damage increase.
This curve has been obtain for model parameters identify for concrete MB50,
with the values of parameters given in table 1. We can observe that for these
values, the critical time step is big enough to ensure stability of the numerical
scheme even at the end of the damage evolution.

6 Numerical simulations

6.1 Patch Test

In order to see if the model was implemented correctly in the FE code LS-
DYNA, we decided to test two different meshes (one regular and one distorted
see Figure 8), under a homogeneous stress field – the classical path test (see
[27] carried out in dynamics.

First we carried out traction tests on a regular mesh cube and a distorted mesh
one in order to check if the damage phenomena exhibit mesh dependency, see

15



Fig. 8. Regular and distorted meshes used for the patch test
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Fig. 9. Patch test in traction

Figure 9.
The stress vs strain diagram clearly indicates no mesh dependency as shown
in Figure 10, with two curves which remain in very good accordance.

Then we carried out the same kind of tests for an hydrostatic state of stress as
illustrated in Figure 11, with the same purpose to verify the good accordance
of the model response for different meshes. Figure 12 showing the hydrostatic
pressure vs voluminal strain curves for regular and distorted mesh indeed
confirms good accordance in both cases.

6.2 Reinforced concrete slab

Another test of the model capabilities was to carry out a large scale computa-
tion. As it would be dedicated to simulations of soft impact phenomena and
especially aircraft impact, we carried out the computation of impact between
747 class Boeing like aircraft and a reinforced concrete slab.
The slab was a parallelepiped of 80 by 80 meters large and 80 centimeters
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thick. The concrete within was a classical one of 25 Mpa ultimate compressive
stress.
The aircraft impacted the slab following a 20 degrees angle, at 252 m/s this
means 900 kph the ultimate speed of this kind of aircraft in such a configura-
tion, as it is shown in figure 16.
The finite element model of the aircraft was constructed by a mesh of Belytschko-
Lin-Tsay shell elements, the slab is constituted of under-integrated (one Gauss
point) brick elements . The automatic contact surface to surface LS-DYNA
option for contact was used in this simulation.
The reinforcement was represented with beams and a perfect contact between
concrete and steel bar was assumed, by merging nodes between beams ele-
ments and 3D elements. Reinforcement ratio was 0.4 % in each direction.
The results presented in figure 17 show the evolutions of the damage on the
impacted face and the opposite one. When damage reaches the maximum
value of 1 the concrete is locally fully destroyed. Thus we can conclude in this
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case that a huge crater has occurred on the top face of the slab, yet we can
assume that the scabbing on the rear face is limited to a 15x15 meters square
area containing nearly 7 disseminated scabbed discs. According to the 0.25
damage value on the half of the opposite face, we can assume that half of rear
face is considerably weakened with the presence of several cracks.
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6.3 Sandia’s Laboratory tests simulations

In order to check the relevance of the constitutive relations we carried out sim-
ulations of impact tests performed in Sandia Laboratory by Sugano et al. and
presented in [25] and [26]. Following the test program, we simulate impact of
n aircraft engine equivalent missiles, considering several sizes. In particular we
carried out simulations of LED, MED and SER missiles which means, respec-
tively, Large size Equivalent and Deformable missile, Medium size Equivalent
and Deformable missile and Small size Equivalent Rigid missile. The details
for the selected three missiles are presented in Figure 18.
The missiles impacted three slabs, with a particular choice depending on the
kind of missiles. The slabs are presented in figure 19, from left to right with
the two slabs placed in a box have been used for small size and large size
missile tests.
Among several impact tests, carried out by Sugano et al., we chose to simulate
impact of those exposed in Table 2.
In our simulations missiles where represented by using the finite element mod-
els constructed with Belytschko-Lin-Tsay shell elements, except for SER mis-
sile, whose mesh is built with 3D elements. The concrete part of the slab was
represented with under-integrated 3D elements, the reinforcement was rep-
resented with truss-bars. In each case reinforcement ratio was 0.4% in each
direction.

Table 2
Simulated tests characteristics

No. Missile type Missile velocity Slab thickness Reinf. ratio Slab type

(m/s) (m)

S10 SER 141 0.15 0.4 Small # 1

S28 SED 196 0.06 0.4 Small # 1

L5 LED 214 1.60 0.4 Large # 3

The qualitative results of numerical simulations, the same as those obtained
in the tests, are presented in Table 3; we note that penetration means that
the missile penetrated the slab without having gone through it, perforation
means that missile went through, scabbing means that the impact generated
a scab on the rear face of the slab.

All computations where stopped when the velocity of the missile stopped de-
creasing, this means when the missile finally got stuck in the concrete, or
when concrete did not bring any resistance to its penetration, since the slab
was totally damaged. The damage fringes of the simulations at the end of the
computations are exposed in Figures 13, 14 and 15, respectively, for impact
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Table 3
Tests results for each impact

No. Perforation Scabbing Penetration

S10 No Yes Yes

S28 Yes Yes Yes

L5 No Some cracks Yes

Fig. 13. Simulations of S10 test – Top, bottom and side views

Fig. 14. Simulations of S28 test – Top, bottom and side views

tests S10, S28 and L5. In figure 13, we can observe that the damage is not
enough continuous to let the missile goes through, the damage fringe on the
rear face exposes that a scabbing is occurring.
In Figure 14 the damage fringe is continuous through the slab thickness under
the impacted zone, thus we can conclude that a perforation has occurred and
a scabbing too.
In Figure 15, we see that the damage is localized in the impact area, a large
undamaged volume separates damage on the rear face and damage on the
front face. We can here conclude on a penetration with maybe some cracks or
a small scab.
Considering these observations and Table 3, we can conclude that obtained a
very good accordance with the tests. The latter also confirms the validation
of the constitutive equations that had been developed and also their imple-
mentation.
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Fig. 15. Simulations of L5 test – Top, bottom and side views

Fig. 16. Configuration of plane and slab before impact

7 Conclusions

We have presented a very careful consideration of the numerical implementa-
tion aspects for the constitutive model of coupled damage-plasticity, within
the framework of explicit-implicit scheme used by computer code LS-DYNA.
The proposed integration scheme can be considered as optimal one for the
given problem, in which we combine an explicit solution of global equations of
motion, with the implicit solution of local evolution equations, which ensures
both the computational efficiency and admissible values of stress field during
the damage computation. The model is especially suited for representing dif-
ferent damage mechanisms which develop in concrete under high rate loading,
both in tension and compression. The former pertains to tension cut-off dam-
age criterion, whereas the latter is represented by the plasticity model with
Gurson-like criterion, with a particular feature of accounting for hardening
due to concrete compaction.
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Fig. 19. The three different kind of impacted slabs in Sandia tests

Several illustrative numerical examples are presented in order to show a very
satisfying performance of the proposed model. The most prominent is the ex-
ample showing very good comparison with the experimental results obtained
in Sandia’s laboratory for impact problems on reinforced concrete slabs.
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[7] Gatuingt F., “Prévision de la rupture des ouvrages en béton sollicités
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