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Nonlocal anisotropic damage model and related
computational aspects for quasi-brittle materials

R. Desmorat ∗ F. Gatuingt F. Ragueneau

LMT-Cachan, ENS-Cachan/Université Paris 6/CNRS,
61, av. du président Wilson, F-94235 CACHAN Cedex, FRANCE

Abstract

A three dimensional damage model with induced damage anisotropy is proposed
for quasi-brittle materials such as concrete. The thermodynamics framework is used,
considering then a single 2nd order tensorial damage variable whatever the intensity
and the sign of the loading. The quasi-unilateral conditions of microcracks closure
are written on the hydrostatic stress only. Altogether with the consideration of
damage laws ensuring a damage rate proportional to the positive part of the strain
tensor this is sufficient to model a strongly different behavior due to damage in
tension and in compression. A proof of the positivity of the intrinsic dissipation due
to such an induced anisotropic damage is given.

An efficient scheme for the implementation of the damage model in commercial
Finite Element codes is then detailed and numerical examples of structural failures
are given. Plain concrete, reinforced and pre-stressed concrete structures are com-
puted up to high damage level inducing yielding of the reinforcement steels. Local
and nonlocal computations are performed.

A procedure for the control of rupture is proposed. It is a key point making the
computations with anisotropic damage truly efficient.

Key words: concrete, damage, induced anisotropy, nonlocal, Finite Element
computations

Introduction

To extend existing isotropic damage models to induced anisotropy is not an easy task
as difficulties and questions specifically related to anisotropy arise. How to write the
coupling damage/elasticity? What becomes then the effective stress concept associated
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with the principle of strain equivalence [1, 2] ? Which tensorial representation of damage
shall be used ? If general damage anisotropy can be represented by a fourth order damage
tensor [3, 4, 5], this formally simple choice is difficult to work with, usually because of
the high number of material parameters introduced. And how to model properly and
efficiently (when numerical computations are in mind) the stiffness recovery due to the
micro-defects closure effect [6, 7, 8, 9, 10, 11]? the damage growth higher in tension than
in compression? In order to give a practical answers to these questions, the choice to
represent the damage state by a second order damage tensor has been made by many
authors [12, 2, 13, 14, 15, 16].

Concerning physical damage anisotropy, quasi-brittle materials such as concrete ex-
hibit a micro-cracking pattern different in tensile and in compressive loadings [17, 18]:
the micro-cracks are mainly orthogonal to the loading direction in tension and parallel
to it in compression. This induced anisotropy is responsible for the large dissymmetry
tension/compression of concrete behavior and must be introduced to do so in constitutive
modeling. For thermodynamics consistency and according to this last remark only one
damage variable must be considered. As a state variable a damage variable represents the
micro-cracks pattern, whatever the sign of the loading [19, 20], and cannot be related to
either tension or compression. For the sake of relative simplicity anisotropic damage is
next represented by the second order tensor DDD of components Dij. If a tensile loading is
applied in direction 1, induced anisotropic (diagonal) damage shall act as its component
D1 = D11 instead of a damage variable ”for tension”. If the loading is compressive, damage
shall act as its component D2 = D22 = D33 instead of a damage variable ”for compres-
sion”. Written in the thermodynamics framework the model presented next follows these
guidelines.

1 Coupling damage/elasticity using a 2nd order damage tensor

The thermodynamics framework proposed by Ladevèze leading to 3D continuous stress-
strain responses is used [6, 21, 22]. The damage state is represented by the 2nd order tensor
DDD and there is one known thermodynamics potential ρψ⋆0 from which derives a symmetric
effective stress σ̃σσ independent from the elasticity parameters [23]:

ρψ⋆0 =
1 + ν

2E
tr
(

HHHσσσDHHHσσσD
)

+
1 − 2ν

6E

(tr σσσ)2

1 − ηDH
(1)

with E, ν the Young modulus and Poisson ratio of initially isotropic elasticity, η the
hydrostatic sensitivity parameter (η ≈ 3 for most materials [22]), ρ the density, where
σσσD = σσσ− 1

3
tr σσσ 111 is the deviatoric stress and where HHH is the effective damage tensor, DH

the hydrostatic damage,

HHH = (111 −DDD)−1/2 and DH =
1

3
tr DDD (2)
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Quasi-brittle materials such as concrete exhibit a strong difference of behavior in ten-
sion and in compression due to damage. This micro-defects closure effect usually leads to
complex models when damage anisotropy is considered [24, 9, 25, 26] and the purpose here
is to show that for monotonic applications it is sufficient to consider damage anisotropy
with a quasi-unilateral effect acting on the hydrostatic stress only, with a thermodynamics
potential rewritten

ρψ⋆ =
1 + ν

2E
tr
(

HHHσσσDHHHσσσD
)

+
1 − 2ν

6E

[

〈tr σσσ〉2
1 − tr DDD

+ 〈−tr σσσ〉2
]

(3)

so that the elasticity law reads

ǫǫǫ = ρ
∂ψ⋆

∂σσσ
=

1 + ν

E
σ̃σσ − ν

E
tr σ̃σσ 111 (4)

and defines the symmetric effective stress σ̃σσ independent from the elasticity parameters,

σ̃σσ = (HHHσσσDHHH)D +
1

3

[

〈tr σσσ〉
1 − tr DDD

− 〈−tr σσσ〉
]

111 (5)

with (.)D = (.) − 1
3
tr (.) 111 the deviatoric part. The notation 〈.〉 stands for the positive

part of a scalar, 〈x〉 = max(x, 0).

Because of the splitting between deviatoric and hydrostatic contributions in the ther-
modynamics potential, the bulk modulus of the damaged material K̃ remains constant
for negative hydrostatic stresses, equal to the undamaged modulus K (K̃ = K = E

3(1−2ν)
if

tr σσσ < 0). In other words no volumetric damage is supposed to be associated with negative
strains, and the collapse of micropores in the cement past is neglected under high hydro-
static compression. This simple and therefore first stage modeling choice has already been
made by several authors [17, 27, 21]. It is consistent with further consideration of Mazars
damage criterion, an open criterion for the tricompression states. To consider a constant
bulk modulus in compression is nevertheless a better choice for concrete-like materials
than the feature of a constant (damage independent) apparent Poisson ratio encoun-
tered in most isotropic damage models. As often as long as the permanent strains due to
micro-cracking and internal friction are not taken into account [28, 29, 30, 21, 10, 26, 31],
dilatancy is not reproduced.

Once the coupling damage/elasticity is defined, it can be used to make quantitative
damage measurements. For an uniaxial state of stress, the elasticity law reads

ǫǫǫ =
σ

E
BBB(D1, D2) (6)

with BBB a dimensionless tensor, diagonal, function of the principal damages D1 and D3 =
D2 only (the loading direction is denoted 1),
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• in tension,

B11 = (1 + ν)

[

4

9(1 −D1)
+

2

9(1 −D2)

]

+
1 − 2ν

3(1 −D1 − 2D2)

B22 = B33 = −(1 + ν)

[

2

9(1 −D1)
+

1

9(1 −D2)

]

+
1 − 2ν

3(1 −D1 − 2D2)

(7)

• in compression,

B11 = (1 + ν)

[

4

9(1 −D1)
+

2

9(1 −D2)

]

+
1 − 2ν

3

B22 = B33 = −(1 + ν)

[

2

9(1 −D1)
+

1

9(1 −D2)

]

+
1 − 2ν

3

(8)

so that the measurement of the secant modulus ES = Ẽ = σ/ǫ11 gives a possibility to
measure the damage if either one of the principal damages D1 or D2 is zero (or constant)
or if the ratio D2/D1 is known for example from the damage evolution law (see section
3),

B11(D1, D2) =
E

Ẽ
−→ D1 or D2 (9)

Last, the state potential (3) defines the energy density release rate tensor YYY as the
thermodynamics variable associated with DDD, YYY = ρ∂ψ

⋆

∂DDD
[22].

2 Local and nonlocal damage criterion functions

As for plasticity, the elasticity domain can be defined through a criterion function f
such as the domain f < 0 corresponds to elastic loading or unloading. Many criterion
can be used, written in terms of stresses such as plasticity criteria [32, 24, 33, 34], strains
[17, 28, 35, 36], or strain energy release rate density [37, 5, 29] The purpose here is to built
a nonlocal constitutive model with a restricted number of material parameters, robust and
easy to implement in Finite Element computer codes. Dilatancy will not be taken into
account and one will accept an open criterion for the tricompression states.

These remarks lead us for the present work to the simple choice of Mazars criterion,
function of the positive extensions 〈ǫI〉 of the I th principal strain ǫI ,

f = ǫ̂− κ ǫ̂ =

√

√

√

√

3
∑

I=1

〈ǫI〉2 =
√

〈ǫǫǫ〉+ : 〈ǫǫǫ〉+ (10)

where ǫ̂ is the equivalent strain for quasi-brittle materials and κ is the elastic strain
limit in tension. The notation 〈ǫǫǫ〉+ stands for the positive part of the strain tensor in
terms of principal values. Note that the choice of Mazars equivalent strain is the most
efficient in terms of number of material parameters introduced (none!) but it leads to
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a tension/compression dissymmetry of the elasticity limit usually not large enough in
the uniaxial case (case adjusted next by an adequate set of damage threshold and of
damage parameters), feature to be even more emphasized for the bitension/bicompression
dissymmetry case. One uses next Mazars criterion with these drawbacks in mind, i.e.
with in mind that further studies on the confined multiaxial loading paths will need
improvements concerning the definition of the equivalent strain ǫ̂ as in [38]. The proposed
framework will nevertheless strictly apply with just such a change of definition. Note that
Mazars strain present choice already allows to face 3D Finite Element computations with
anisotropic damage of plain but also reinforced and pre-stressed concrete structures, as
illustrated in section 8.

To build a nonlocal damage model, it will be sufficient to consider nonlocal Mazars
criterion,

f = ǫ̂nl − κ (11)

introducing the nonlocal equivalent strain ǫ̂nl which can be defined using an integral form
(W is the nonlocal weight function, [39],

ǫ̂nl = ǫ̂nl(x) =
1

Vr

∫

Ω
W(x − s) ǫ̂(s) ds Vr = Vr(x) =

∫

Ω
W(x − s)ds (12)

or using a second gradient form [40, 41],

ǫ̂nl − c ∇2ǫ̂nl = ǫ̂ (13)

Both the integral form (through W) and the gradient form (through c) introduce a char-
acteristic length lc. Even if induced anisotropy is considered next, the introduction of a
single (isotropic) internal length will prove sufficient for practical applications.

3 Damage evolution laws for induced anisotropy

As already mentionned, a single (tensorial) damage variable is considered. This choice
is thermodynamically consistent with the representation by an internal variable of the
degradation mechanisms. It solves the problem of the artificial introduction of two scalar
damage variables – one for tension, one for compression – in case of isotropic damage, as
a damage variable represents a state of microcraking which remains the same at constant
internal variables whatever the microcracks are positively or negatively loaded. Damage
neverthess acts differently in tension and in compression and the induced anisotropy is
then naturally responsible for the tension/compression dissymmetry. Damage is generally
larger in the tensile direction denoted 1 in further developments with D1, D2, D3 as
principal damages.

For metals loaded in tension in direction 1 the damages D2 and D3 are of the order
of D1/2 [23]. This feature is modelled by a damage evolution law ensuring a damage rate
proportional to the absolute value (in terms of principal components) of the plastic strain
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rate tensor:

ḊDD ∝ |ǫ̇ǫǫp| (14)

For concrete, the damage pattern is different in tension and in compression [17, 30, 26].
For a tension loading applied in direction 1:

DDD ≈















D1 0 0

0 0 0

0 0 0















(15)

when for a compression loading applied in direction 1:

DDD ≈















0 0 0

0 D2 0

0 0 D2















(16)

These two damage states can be modelled by damage evolution laws ensuring a damage
tensor rate proportional to the positive part (in terms of principal components) of the
total strain tensor:

ḊDD ∝ 〈ǫǫǫ〉+ (17)

but also by any rate law of the form

ḊDD ∝ 〈ǫǫǫ〉α+ (18)

with α a damage exponent.

3.1 Non associated thermodynamics model

To propose a damage model written in the thermodynamics framework, consider as
damage pseudo-potentiel :

F = F (YYY ; ǫǫǫ) = YYY : 〈ǫǫǫ〉α+ (19)

where ǫǫǫ acts as a parameter so that the damage evolution law is derived from the normality
rule as

ḊDD = λ̇
∂F

∂YYY
= λ̇〈ǫǫǫ〉α+ (20)

The damage multiplier λ̇ is determined from the consistency condition f = 0, ḟ = 0.
Making the simple choice κ = κ(tr DDD) [35] gives for the local model

λ̇ =
dκ−1

dǫ̂

˙̂ǫ

tr〈ǫǫǫ〉α+
(21)

6



The anisotropic damage law takes then the general form:

ḊDD =
dκ−1

dǫ̂

〈ǫǫǫ〉α+
tr〈ǫǫǫ〉α+

˙̂ǫ (22)

where the exponent α mainly plays a role in multiaxial states of stresses. Setting α = 2
(so that tr〈ǫǫǫ〉α+ = ǫ̂2) makes once more the equivalent strain ǫ̂ appear. This choice is then
consistent with Mazars criterion, the damage law simplifying as

ḊDD =
dκ−1

dǫ̂

〈ǫǫǫ〉2+
ǫ̂2

˙̂ǫ (23)

In tension performed in direction 1, ǫ̂ = ǫ1 > 0 and :

〈ǫǫǫ〉+ =















ǫ1 0 0

0 0 0

0 0 0















〈ǫǫǫ〉α+ =















ǫα1 0 0

0 0 0

0 0 0















(24)

so that the form (15) of the damage tensor in tension is recovered.

In compression performed in direction 1, ǫ̂ =
√

2ǫ2 > 0,

〈ǫǫǫ〉+ =















0 0 0

0 ǫ2 0

0 0 ǫ2















〈ǫǫǫ〉α+ =















0 0 0

0 ǫα2 0

0 0 ǫα2















(25)

so that the form (16) of the damage tensor in compression is recovered.

3.2 Nonlocal damage law

For the nonlocal model, the equivalent strain ǫ̂ is replaced by ǫ̂nl in the criterion func-
tion. The only change is then in the expression for the damage multiplier with now:

λ̇ =
dκ−1

dǫ̂nl

˙̂ǫnl

tr〈ǫǫǫ〉α+
(26)

so that the damage evolution law becomes non local, i.e. ḊDD(x) at point x is (through
ǫ̂nl) either function of the values of the surrounding points s or function of the strains
gradient,

ḊDD =
dκ−1

dǫ̂nl
〈ǫǫǫ〉α+
tr〈ǫǫǫ〉α+

˙̂ǫnl or ḊDD =
dκ−1

dǫ̂nl
〈ǫǫǫ〉2+
ǫ̂2

˙̂ǫnl (α = 2) (27)
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Of course, on the level of a single material point the nonlocal model will give the same
response than the local one.

4 Positivity of the intrinsic dissipation

The thermodynamics framework has been used to derive both the state law and the
damage evolution law but, due to the choices made for the potentials ρψ⋆ and F , the
model is not standard generalized [42]. The positivity of the intrinsic dissipation, here
YYY : ḊDD, is then not guaranteed and must be checked.

Even if the state potential (3) is not convex with respect to DDD, it can be differentiated
as ρdψ⋆ = ǫǫǫ : dσσσ + YYY : dDDD and also as

ρdψ⋆ =
1 + ν

E
(HHHσσσDHHH)D : dσσσ +

1 − 2ν

3E

[

〈tr σσσ〉
1 − tr DDD

− 〈−tr σσσ〉
]

tr dσσσ

+
1 + ν

E
(σσσDHHHσσσD) : dHHH +

1 − 2ν

6E

〈tr σσσ〉2
(1 − tr DDD)2

tr dDDD

(28)

so that:

YYY : ḊDD =
1 + ν

E
(σσσDHHHσσσD) : ḢHH +

1 − 2ν

6E

〈tr σσσ〉2
(1 − tr DDD)2

tr ḊDD (29)

The term in tr ḊDD will be obviously positive for any monotonic increasing κ−1-function so
one has to concentrate on the term (σσσDHHHσσσD) : ḢHH .

Any damage law of the form (18) gives positive increasing eigenvalues DJ for the
damage tensor DDD. With the relation (5), the eigenvalues for HHH are

HJ =
1√

1 −DJ

(30)

and are therefore also positive and increasing during any damage process. The positivity
of the matrix (σσσDHHHσσσD) is last gained by checking the sign of its eigenvalues, denoted
χ, solution of (σσσDHHHσσσD)~g = χ~g (with ~g standing for the corresponding eigenvectors), or
equivalently solution of

(HHHσσσD)2~g = χHHH~g (31)

with (HHHσσσD)2 obviously a positive matrix. The eigenvalues χ read then:

χ =
~gT (HHHσσσD)2~g

~gTHHH~g
(32)

As ratios of positive terms they are positive as is then the second order tensor (σσσDHHHσσσD).
The tensorial product two positive tensors, (σσσDHHHσσσD) and ḢHH being positive, one can con-
clude that the positivity of the intrinsic dissipation is satisfied for any loading, eventually
3D, complex and/or non proportional.
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5 Local and nonlocal anisotropic damage models

In order to derive and to implement the full set of constitutive equations for the
anisotropic damage model one has last to define the function κ = κ(tr DDD). The sim-
plest choice is to consider a linear function introducing two parameters only: the damage
threshold κ0 = κ(0) and a damage parameter A as [35, 26, 43]

κ(tr DDD) =
1

A
tr DDD + κ0 (33)

This leads to

κ−1(ǫ̂) = A (ǫ̂− κ0) (34)

and to the damage law (α = 2, nonlocal model):

ḊDD = A
〈ǫǫǫ〉2+
ǫ̂2

˙̂ǫnl (damage law 1) (35)

with for the local damage model the rate ˙̂ǫnl replaced by local Mazars strain rate ˙̂ǫ.

Damage anisotropy is different in tension and in compression. It affects differently the
elasticity law and a strong difference in tension and in compression is finally obtained
with the quite simple damage evolution law 1 (figure 2). Important point, this feature
is gained with the consideration of one (tensorial) damage variable only, in accordance
with the thermodynamics definition of a state variable: if one degradation mechanism
is observed, only one damage variable shall represent the micro-cracks or micro-defects
pattern, whatever the material is in tension or is in compression. The dissymmetry is
nevertheless not sufficient with the linear κ-function with a too high damage rate in
compression leading to a non physical snapback. One prefers then to consider as damage
evolution law:

ḊDD = A



1 +

(

ǫ̂nl

a

)2




−1
〈ǫǫǫ〉2+
ǫ̂2

˙̂ǫnl (damage law 2) (36)

with a a material parameter of the order of magnitude the value of the strain reached in
compression. In tension the term (ǫ̂/a)2 << 1 is negligible so that the damage law 1 (35)
is recovered.

Comparing equations (27) and (36) allows to determine the κ-function,

dκ−1

dǫ̂nl
= A



1 +

(

ǫ̂nl

a

)2




−1

(37)

This defines κ−1 and κ as

κ−1(ǫ̂nl) = aA

[

arctan

(

ǫ̂nl

a

)

− arctan
(

κ0

a

)

]

(38)
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κ(tr DDD) = a · tan

[

tr DDD

aA
+ arctan

(

κ0

a

)

]

(39)

which have the same expression for the local damage model with also ǫ̂nl (and ˙̂ǫnl for the
damage law) replaced by ǫ̂.

For accuracy reasons, the damage parameters A, a as well as the damage threshold
must be identified by curve fitting on both the tension and compression curves of the
material. Nevertheless, the damage measurement by eq. (9) with D2 = 0 in tension and
D1 = 0 in compression allows to plot the trace of the damage tensor versus the equivalent
strain curve. In tension, tr DDD = D1, ǫ̂ = ǫ11; in compression, tr DDD = 2D2, ǫ̂ =

√
2ǫ22 =√

2B22(D2)
B11(D2)

ǫ11. An example is given in figure 1 for concrete from which one can then justify

to consider the function κ as a function of the trace of DDD: the experimental points from
tension and from compression determine the same curve. Note also the characteristic
shape of the damage curve obtained for models with no permanent strains: the damage
seems to reach an asymptotic value. The concavity of the damage evolution will probably
change if the permanent strains are modeled and if the damage is measured from the
elastic unloading slope instead of from the secant modulus. In any case the principal
damages D1, D2, D3 are each bounded by 1 or most often by a critical damage Dc. The
trace tr DDD can then take values larger than 1 (and nevertheless bounded by 3 or 3Dc)
but only in cases of negative states of stresses as tr DDD does not affect the compressibility
modulus K̃ kept equal to the initial modulus K in such cases.

Fig. 1. Trace of DDD function of Mazars equivalent strain (marks: experiments, continuous line:
model)

The full set of constitutive equations finally reads:

• Elasticity,

ǫǫǫ =
1 + ν

E
σ̃σσ − ν

E
tr σ̃σσ 111 or ǫǫǫ = EEE−1 : σ̃σσ (40)

• Effective stress,

σ̃σσ =
[

(111 −DDD)−1/2 σσσD (111 −DDD)−1/2
]D

+
1

3

[

〈tr σσσ〉
1 − tr DDD

− 〈−tr σσσ〉
]

111 (41)

• Mazars equivalent strain,

ǫ̂ =
√

〈ǫǫǫ〉+ : 〈ǫǫǫ〉+ (42)

• Nonlocal Mazars strain, defined either in gradient form (13) or in integral form (12).
With a Gaussian weight function,

ǫ̂nl =
1

Vr

∫

Ω
exp

(

−‖x − s‖2

l2c

)

ǫ̂(s) ds Vr =
∫

Ω
exp

(

−‖x − s‖2

l2c

)

ds (43)

• Damage criterion, local f = ǫ̂− κ(tr DDD) or nonlocal or f = ǫ̂nl − κ(tr DDD),

f < 0 or ḟ 6= 0 −→ elastic loading or unloading

f = 0 and ḟ = 0 −→ damage growth
(44)
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• Damage evolution law, local (if ǫ̂nl = ǫ̂ is set) or nonlocal,

ḊDD = A



1 +

(

ǫ̂nl

a

)2




−1
〈ǫǫǫ〉2+
ǫ̂2

˙̂ǫnl (45)

where α = 2 is set.

It is a first order differential set of equations, time independent as no viscosity is intro-
duced. The use of a damage criterion function f written in terms of strains will allow for a
quite simple implementation in a Finite Elements computer code. Note that the elasticity
law will then need to be inverted. This can be done in a closed form as:

σσσ = (111−DDD)1/2 σ̃σσ (111−DDD)1/2 − (111 −DDD) : σ̃σσ

3 − tr DDD
(111−DDD)+

1

3
[(1 − tr DDD)〈tr σ̃σσ〉 − 〈−tr σ̃σσ〉] 111 (46)

There is a total of only 5 material parameters for the final constitutive model with
induced damage anisotropy (plus a characteristic length lc for the nonlocal model): E,
ν for elasticity, κ0 as damage threshold, A and a for damage evolution. A single set of
material parameters is valid for both tension and compression. A critical damage Dc may
also be considered: when the maximum principal damage reaches Dc there is rupture
[23, 44]. There is often no need to introduce a critical damage for nonlocal computations
as they need the stress-strain response of the material up to vanishing stresses and as the
mesoscopic cracks are represented by localized zones or shear bands.

Fig. 2. Stress-strain curves for concrete (tensile strength ft = 4 MPa, compressive strength
fc = 38 MPa)

Figure 2 shows for both damage laws 1 and 2 the monotonic stress-strain curves for con-
crete obtained either in tension or in compression. Note that for the proposed anisotropic
damage models the stress goes to zero in all cases for highly damaged materials. The
material parameters describing well concrete behavior (using law 2) are: E = 42 GPa,
ν = 0.2, κ0 = 5 10−5, A = 5 103, a = 2.93 10−4. The same value for the damage parameter
A is used for law 1 illustrating the fact that there is an influence of parameter a on tension.
An adequate choice for A will allow to make both tensile responses strictly match but
not the compressive responses. Important point, one can see on such curves that damage
anisotropy is truly responsible for the dissymmetry tension/compression, even if not in
an adequate manner for the damage law 1. The snapback exhibited for law 1 is not phys-
ical and corresponds to a damage rate too high in compression, rate corrected through
the consideration of parameter a. This kind of unstable compressive response was also
obtained for Bažant and Gambarova initial microplane model [45, 46] in which the local
shear behavior was neglected (only local shear representation leading to correct concrete
response in compression [47]). The property of shear/compression related behaviors is
illustrated here for the anisotropic damage model by plotting the shear stress τ vs en-
gineering shear strain γ monotonic model response (Fig. 3). To introduce the parameter
a = 2.93 10−4 in law 2 and then to model properly the concrete compressive response
induce a less brittle response in shear. Note that this effect due to a lower damage growth
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will be even more pronounced if the quasi-unilateral conditions of microcracks closure are
written on the deviatoric stresses also [22, 48] when in the present case they are written
on the hydrostatic stress only.

Fig. 3. Model response in shear for damage laws 1 and 2

Last, the fact that the thermodynamics potential can be continuously differentiated
leads to the natural continuity of each component of the stress and strain tensors, even
for non proportional loading paths. This property is essential for the ability of anisotropic
damage models to deal with complex loading as encountered at Finite Element Gauss
points.

6 Numerical implementation

The anisotropic damage model is in fact quite simple to implement in a Finite Element
code: local iterations may be avoided even if Euler backward scheme is used, as proposed
in present implementation procedure.

A global resolution of the equilibrium equations gives the displacements at time tn+1

with the internal damage variable DDD =DDDn kept unchanged from the last computed incre-
ment tn. The strains ǫǫǫn+1 = ǫǫǫ(tn+1) at each Gauss point are calculated from the elements
interpolation functions. To integrate the constitutive equations means to determine the
stress σσσn+1 and the damage DDDn+1 at time tn+1. An iterative process, not described here,
made of global equilibrium resolutions followed by local time integration of the constitu-
tive equations often takes place [49, 50, 51, 52, 53, 54]. One focus here on the numerical
scheme for the local integration of the damage law.

6.1 Exact resolution of Euler backward discretization

The inputs of the time integration subroutine are the strain tensor ǫǫǫn+1 and the damage
tensor DDDn at a FE Gauss point; the ouputs are the damage and stress tensors DDDn+1, σσσn+1

at the same point. Instead of using the elastic stiffness, to calculate the secant operator
EEES helps the global resolutions, it helps a lot for the highly damaged parts subject to
elastic unloadings. Computations will generally be more efficient if one uses the consistent
tangent operator. But note that as one has to take the positive part of the strain tensor in
previous constitutive equations, the stress-strain law cannot be continuously differentiated
(the thermodynamics potential cannot be derivated twice) so that the tangent operator
does not exist at some points, for instance for non proportional loading conditions with
changes of sign of the strains. One has also in mind nonlocal integral computations for
which it even more difficult to define a tangent operator [55] and this key point for
convergency acceleration with risk of loss of robustness is left to further developpments.
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Euler backward scheme is used, i.e. the variables are replaced by their value at time
tn+1 in the constitutive equations when the damage rate ḊDD and the damage multiplier λ̇
are replaced by ∆DDD = DDDn+1 −DDDn and ∆λ = λn+1 − λn in the damage law. In order to
integrate the damage model proceed as follows:

(1) Compute the equivalent strain,

ǫ̂n+1 =
√

〈ǫǫǫn+1〉+ : 〈ǫǫǫn+1〉+ (47)

(2) Make a test on the criterion function f = ǫ̂n+1 − κ(tr DDDn)
If f ≤ 0, DDDn+1 =DDDn, the material behaves elastically.
If f > 0, the damage must be corrected by using the damage evolution law discretized
as (α = 2 is set),

∆DDD =DDDn+1 −DDDn = ∆λ 〈ǫǫǫn+1〉2+ (48)

The damage multiplier is determined from the consistency condition numerically
written fn+1 = ǫ̂n+1 − κ(tr DDDn+1) = 0 so that:

tr DDDn+1 = κ−1 (ǫ̂n+1) (49)

which leads to the explicit expression of ∆λ even for Euler backward scheme,

∆λ =
tr DDDn+1 − tr DDDn

ǫ̂2n+1

(50)

and to the exact actualization of DDD,

DDDn+1 =DDDn + ∆λ 〈ǫǫǫn+1〉2+ (51)

(3) Compute then the stresses using first the elasticity law written

σ̃σσn+1 = EEE : ǫǫǫn+1 (52)

using then eq. (46),

σσσn+1 = (111 −DDDn+1)
1/2 σ̃σσn+1 (111 −DDDn+1)

1/2 − (111 −DDDn+1) : σ̃σσn+1

3 − tr DDDn+1

(111 −DDDn+1)

+
1

3
[(1 − tr DDDn+1)〈tr σ̃σσn+1〉 − 〈−tr σ̃σσn+1〉] 111

(53)

The numerical scheme is Euler backward scheme, therefore robust at the Gauss point
level, and it has here the main advantage of the explicit schemes: there is no need of a
local iterative process as the exact solution of the discretized constitutive equations can
be gained.

Important feature, due to the use of a nonlocal damage criterion written in terms of
strains, the nonlocal damage model is easily implemented in FE codes already working
with nonlocal variables. For instance the existing subroutines computing nonlocal Mazars
strain ǫ̂nl can be used with no change. Once the strain ǫǫǫn+1 is known from the global

13



equilibrium, compute first ǫ̂nln+1 using for example the integral form (12). The only change
in the integration of the constitutive law is then in equation (49) which has to be replaced
by

tr DDDn+1 = κ−1
(

ǫ̂nln+1

)

(54)

The above procedure still applies.

6.2 Secant operator

The secant operator is in fact the effective (damaged) fourth order elasticity tensor Ẽ̃ẼE
as when no permanent stresses are modelled,

σσσ = EEES : ǫǫǫ = Ẽ̃ẼE : ǫǫǫ, Ẽ̃ẼE = Ẽ̃ẼE(DDD) (55)

In our case it has the same expression for both local and nonlocal anisotropic damage
models.

Using eq. (46) allows to derive a closed form for Ẽ̃ẼE,

• if tr ǫǫǫ > 0,

Ẽ̃ẼE = 2G

[

(111 −DDD)1/2⊗(111 −DDD)1/2 − (111 −DDD) ⊗ (111 −DDD)

3 − tr DDD

]

+K(1 − tr DDD) 111 ⊗ 111 (56)

• if tr ǫǫǫ < 0,

Ẽ̃ẼE = 2G

[

(111 −DDD)1/2⊗(111 −DDD)1/2 − (111 −DDD) ⊗ (111 −DDD)

3 − tr DDD

]

+K 111 ⊗ 111 (57)

where G = E/2(1 + ν) and K = E/3(1 − 2ν) are respectively the shear and the bulk
moduli and where the special tensorial product ⊗ is used: for two tensors AAA and BBB,
(AAA⊗BBB)ijkl = AikBjl.

To know the expression for the secant tensor allows to built the global Finite Element
secant matrix and to solve the equilibrium equations by use of quasi-Newton method.
The secant method applies in the same manner to both local and nonlocal models. Note
that with the gradient form (13) for nonlocal Mazars strain, a tangent operator can still
be derived at Gauss points level [41]. This is not the case anymore for the integral form
(12) and refer then to [55] for the definition and use of a global tangent matrix.

7 Numerical control of rupture with anisotropic damage

Induced damage anisotropy often leads to numerical difficulties, more or less important,
depending on the model, which can sometimes stop the computations very early (an
example is given in next section for the present model, see figures 7 and 9).
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As numerical difficulties one often thinks of a poorly estimated consistent tangent
operator but for most models with no permanent strains, the use of the global secant
stiffness proves sufficient [56]. The main difficulties are in fact due to a bad numerical
control of local rupture once a high level of damage, anisotropic, is reached. In order to
continue the computation up to complete structural failure, one must ensure the local
damaged Hooke operator to keep positive stiffnesses (i.e. positive Kelvin moduli) or in
other words to remain positive definite [6].

7.1 Broken bulk modulus

In the models proposed in previous sections, the trace of the damage tensor acts on
the hydrostatic stress as:

tr ǫǫǫ =
〈tr σσσ〉

3K(1 − tr DDD)
− 〈−tr σσσ〉

3K
(58)

with K the bulk modulus of the undamaged (isotropic) material. There are situations
such as compression leading to tr DDD > 1. These are admissible as long as they are mainly
compressive, more precisely as long as tr σσσ < 0, as the hydrostatic stiffness remains
equal to 3K. But they become critical when a change in the loading sign occurs if the
broken material behavior is not properly defined as then 3K(1 − tr DDD) is negative and
cannot therefore act as a material stiffness. The physical meaning of a large damage trace
due to compression is that the material, highly damaged, still resists for compressive
states of stresses but will be broken in pieces as soon tensile stresses are applied on it. It
is nevertheless possible to continue the computation by defining a fictitious hydrostatic
broken behavior for the material such as

• a linear broken behavior,

tr σσσ = 3Kbroken〈tr ǫǫǫ〉 − 3K〈−tr ǫǫǫ〉 (59)

where the ”broken” bulk modulus Kbroken is very small and is related to the trace of
the damage reached when the broken behavior is activated. If tr DDD ≥ Dc at this time,

Kbroken = K(1 −Dc) (60)

• a constant broken behavior,

tr σσσ = σbroken if tr ǫǫǫ >
σbroken

3Kbroken

tr σσσ = 3Kbrokentr ǫǫǫ if 0 < tr ǫǫǫ ≤ σbroken
3Kbroken

tr σσσ = 3Kbrokentr ǫǫǫ if tr ǫǫǫ ≤ 0

(61)

with the residual stress σbroken as material parameter.
• or even a softening broken behavior ensuring tr σσσ → 0 for ”large” positive hydrostatic

strains.
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7.2 Principal damages bounded by the critical damage Dc

Concerning the other (shear) moduli, the numerical difficulties can be avoided by en-
suring the principal damages to remain bounded by 1 or, better, by the critical damage
Dc. Once the largest principal damage DI reaches Dc, a solution is to keep the dam-
age evolution law unchanged, here ḊDD = λ̇〈ǫǫǫ〉2+, but projected in such a manner that DI

remains constant equal to Dc. Such a projected damage law reads:

ḊDD = λ̇ Π⊥nI 〈ǫǫǫ〉2+ (62)

with Π⊥nI the projection operator. It has the main advantage to consider the same damage
law (with no need of additional parameters) as for the 3D case but in fact restricted
to 2D as the material cannot damage anymore in the direction nI . The eigenvector nI

corresponds to the eigenvalue DI , it is the normal of the main mesocrack initiated and is
determined by solving

DDDnI = DI n
I = Dc n

I ,
∣

∣

∣

∣

∣

∣nI
∣

∣

∣

∣

∣

∣ = 1 (63)

The two other eigenvectors, also normalized, are denoted nII and nIII and are associated
with the principal damages DII , DIII smaller than Dc (consider here DI ≥ DII ≥ DIII) so
that a less formal expression for the projected damage law is derived as:

ḊDD = λ̇
[

〈ǫǫǫ〉2+ − (nI·〈ǫǫǫ〉2+nI) nI⊗nI − (nII·〈ǫǫǫ〉2+nI)
(

nI⊗nII
)

sym
− (nIII·〈ǫǫǫ〉2+nI)

(

nI⊗nIII
)

sym

]

(64)
and is then valid for fixed nI but for updated DII , DIII , n

II , nIII as long as DII has not
reached Dc. Last, only DIII will evolve as ḊIII = λ̇ nIII·〈ǫǫǫ〉2+nIII at fixed nI and nII up to
DIII = Dc so that one ends up to a diagonal (isotropic) damage DDD = Dc 111. A 3D broken
behavior is finally obtained, isotropic, dissymetric (linear case, Dc constant close to 1),

σσσ = 2G(1 −Dc)ǫǫǫ
D +K [(1 −Dc)〈tr ǫǫǫ〉 − 〈−tr ǫǫǫ〉] 111 (65)

with ǫǫǫD = ǫǫǫ− 1
3
tr ǫǫǫ 111 the deviatoric strain.

The numerical implementation is similar to the one described in section 6.1 as the
projected damage evolution law (64) is discretized in

∆DDD =DDDn+1 −DDDn = ∆λΠ⊥nI 〈ǫǫǫn+1〉2+ (66)

instead of Eq. (48) with a damage multiplier given by

∆λ =
tr DDDn+1 − tr DDDn

tr (Π⊥nI 〈ǫǫǫn+1〉2+)
(67)

instead of Eq. (50), so that the damage is updated as DDDn+1 = DDDn + ∆λΠ⊥nI 〈ǫǫǫn+1〉2+.

The risk of obtaining negative (non physical!) stiffnesses is in fact strong for structures
computations with any anisotropic damage model introducing 111 −DDD (2nd order) terms
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or III−DDD (4th order) terms as one principal damage may reach 1 at some Gauss points for
locally severe loading. This is usual for instance for reinforced concrete structures with
perfect interfaces between steel and concrete so that severe shear easily occurs. The 111−DDD
and III−DDD terms must remain positive and the projection procedure just proposed can be
applied to ensure this feature. Write the considered anisotropic damage evolution law in
the general form ḊDD = λ̇QQQ (initial case of principal damages smaller than unity), with QQQ
often a normal to a damage surface, i.e. a tensorial function of the stresses, strains and
other variables. To replace the term 〈ǫǫǫ〉2+ by QQQ in equation (62) define in a general manner

the projected damage law as ḊDD = λ̇ Π⊥nIQQQ. Note that for models based on compliance
increase due to damage the problem just mentioned shall not occur, except once more
if (111 −DDD)−1 or (III −DDD)−1 terms are introduced. For micromechanics based models such
as the microplane damage model [45, 46, 47] this difficulty does not occur if the local
scalar damages over each microcrack or over each microplane direction does not reach
unity. This can be gained by using local uniaxial stress-strain relations having a softening
part asymptotically equivalent to a monotonically decreasing function approaching 0 at
large strains or by using local scalar damage laws monotonically increasing functions
approaching 1 at large strains [57, 58]. This feature is more complex to gain for a tensorial
writing of the damage evolution law.

8 Finite Element computations of structures

Once a constitutive model is developed it has to prove its efficiency in Finite Element
computations of engineering structures, or at least on structural components. The diffi-
culties encountered are numerous. The strain-damage localization due to stress softening
is of course one of them, phenomenon usually regularized with use of nonlocal models, but
at expensive computation cost. There are also important difficulties related to interfaces
and steels yielding, difficulties preponderant in reinforced and pre-stressed concrete struc-
tures. Once illustrates here the ability of the anisotropic damage model to deal with such
structures, starting first with Nooru-Mohamed test exhibiting rotations of the loading
principal directions.

8.1 Plain concrete mixed-mode fracture

The double edge notched specimen tested by Nooru-Mohamed [59] is analysed using the
implementation of the model developed in the previous section. The specimen geometry
and the experimental testing set up are shown in Figure 4. It is a symmetric 200 mm×
200 mm mortar square with two notches, 30 mm long and 5 mm thick.

The rotation of the external boundary of the plate is restricted around the Oz axis
(thick borders). The concrete specimen is first loaded by an increasing shear force F (t)
applied on the lateral surface. During the application of the shear force, the vertical
displacement of the upper surface is totally free. In a second time, a vertical displacement
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U(t) is applied up to failure at constant F = FMax, the higher FMax the more curved the
crack path [59].

Fig. 4. Nooru-Mohamed test

The case study is here carried out for FMax = 22.5 kN. The FE discretization of the
specimen is made by the use of four node tetrahedron elements with one integration point.
In order to perform the computations in 3D at reasonable cost, a FE mesh with a 5 mm
width is used when the real width of the specimen is 50 mm. The model parameters
used for the simulation are those of section 5 for concrete: E = 42000 MPa, ν = 0.2,
κ0 = 5 10−5, A = 5 103, a = 2.93 10−4. The nonlocal length used in the integral weight
function (Gaussian type, Eq. 43) is lc = 8 mm, small value indeed justified by the fact
that the material is a mortar with very small constituents [60, 61]. Three meshes are
used (Figure 5): a coarse mesh with a total of 862 elements, a medium mesh with 2428
elements, and a fine mesh with 4558 elements. The characteristic length corresponds then
close to the notch to 2 elements of the coarse mesh, to 5 elements of the medium mesh,
to 10 elements of the fine mesh. The above procedure for the control of rupture with
anisotropic damage is considered with a linear broken behavior (Dc = 0.99).

Fig. 5. Different meshes of Nooru-Mohamed structure

Figure 6 shows the anisotropic damage patterns computed. The left column computa-
tions correspond to local results, the right one to nonlocal results. The application of the
shear load up to FMax yields localized damage at the notch tip. The structural failure is
then due to the application of the vertical displacement U(t) with mainly mode I cracks
represented here in the Continuum Damage Mechanics framework by large D22 values.
The damage patterns computed corresponds well to the crack patterns experimentally
observed [59]. They are symmetric with respect to the center of the specimen (two main
cracks obtained) so that the damage D22 is drawn here in the upper part of the structure,
D11 in the lower part (most D11-damage occurs due to the control of rupture procedure).
The right column computations exhibit the now classical convergence and mesh indepen-
dence of the results obtained with a nonlocal model. Due to instabilities related to the too
brittle response in local computations (induced by the mesh refinement), no convergence
has been obtained for the local model with the fine mesh. Note that no specific proce-
dure such as arclength methods has been used to overpass the numerical difficulties as
the conceptually satisfactory introduction of a characteristic length proves to be efficient
(convergence is obtained in nonlocal for the fine mesh). The importance of the procedure
for the control of rupture must be emphasized: without its use the computations stop
before the shear load FMax is reached.

Fig. 6. Damage maps for Nooru-Mohamed test at U = 3.5 10−3 mm– (a) left column: results
with local anisotropic damage model, (b) right column: results with nonlocal anisotropic damage
model

Fig. 7. Structure response for nonlocal computations

Figure 7 shows the computed global responses of the loading plate as the tensile load
T versus the normal displacement U curves once F = FMax is imposed. The post-peak re-
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sponse is of course mesh-dependent in case of local computations (not plotted), the finer
the mesh the more brittle the structure behavior. This is classically not the case any-
more for the nonlocal computations as convergence is reached for the nonlocal anisotropic
damage model by mesh refinement.

To conclude, the nonlocal anisotropic damage model with an adequate control of rup-
ture correctly represents the crack propagation for mixed mode fracture.

8.2 Reinforced concrete structure

The objectives of this section are to evaluate the ability of the anisotropic damage model
to deal with a reinforced concrete element subject to flexion. The structure is a reinforced
square cross section beam, subject to three point bend loading. Figure 8 shows geometric
features for concrete and steel. During loading, multiple loading paths are encountered in
different parts of the beam: tension on the lower part, compression on the upper part, shear
near the edge and along the reinforcing bars. The corresponding different features of the
constitutive equations are activated at the same time and the occurrence during loading
of several competitive cracks usually makes difficult the global convergence scheme. For
these reasons, this case-study was part of the international MECA benchmark, launched
by E.D.F. to compare and discriminate different 3D constitutive models for concrete [62].

Fig. 8. Reinforced concrete beam

For concrete, the material parameters used in the following computations are those of
section 5 and used for previous computations of Nooru-Mohamed test. For steel, elasto-
plasticity with linear hardening is considered and the material parameters are imposed by
the benchmark: Young’s modulus E = 200000 MPa, Poisson ratio ν = 0.3, yield stress of
480 MPa, plastic modulus of 20000 MPa. For the computation, a 3D specimen has been
meshed with 2 elements in the thickness for a total of 600 eight node parallelepipedic
elements. Accounting for the different symmetries of the problem, only one reinforcing
steel bar is modelled as shown in Figure 9. The mean dimension of the finite element size
is 50 mm.

The monotonic loading is applied up to failure. Two computations with two different
characteristic lengths are performed in order to appreciate the effect of the nonlocal length
(Gaussian weight function, Eq. (43), lc = 150 mm and lc = 250 mm). The choice lc = 150
mm is the more physical as it corresponds here to a characteristic length equal to 3 or 4
times the maximum aggregate size [60].

Figure 9 shows comparisons between experiment and modeling in terms of global re-
sponse, i.e. the load applied at the center of the beam versus the deflection. As often for
numerical computations using the displacement based FE method, the initial beam stiff-
ness is larger than the experimental one, phenomenon here enhanced by the high value of
the concrete Young’s modulus. As one also can see in Figure 9, due to the reinforcing steel
bar implying a flexural rupture the effect of the characteristic length is small in terms of
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global response, but not of cracking pattern as it can be seen from damage maps. The
choice lc = 150 mm is the more appropriate here, as expected.

Fig. 9. Comparisons experiment/computations

Fig. 10. Mesh and D11 damage field obtained at the begining of steels yielding (left : lc = 150
mm, right: lc = 250 mm - left and right correspond to two different computations)

The maps of the damage variable D11 are given in Figure 10. The computation rep-
resents quite well the multiple cracks propagation for the characteristic length lc = 150
mm. The three main stages of a reinforced concrete structure subject to flexion are then
recovered: elasticity, cracking in tension, and yielding of the reinforcement.

Due to the high number of competitive cracks, the convergence of the local model
stop very early during the analysis. Only the nonlocal approach allows for the calcula-
tions achievement without local instabilities. Last and again, the computations performed
without the procedure for the rupture control stop too early when the computations with
numerical rupture control (linear broken behavior) run up to complete failure of the beam.

8.3 Pre-stressed powerplant ring

Consider last the response under pressure of the concrete structure of Figure 11 rep-
resentative of a ring of a powerplant containment vessel reinforced by half circular steel
bars and pre-stressed by metallic cables. The diameter of the ring is 46.8 m, its thickness
0.9 m and only a height of 0.4 m is meshed. A vertical compressive stress of 8.5 MPa
is applied to model the weight of the upper part of the structure (not meshed). There
are two symmetric anchoring parts and the steel reinforcement is made of 88 rectangular
stirrups (not considered in the computations), of 4 circular reinforcement bars and of 2
pre-stressed half-circular cables. A more detailled description of the studied structure can
be found in [63] and in [22].

The FE analysis of the ring is made in 3D with the bars and the cables modelled
with 812 two node bar elements and the concrete part with 4420 eight node bricks. The
prestressing tension is applied through an equivalent loading allowing for the introduction
of a constant tensile stress all along the cables. The equivalent loading of the steel cable
on the concrete part of the structure corresponds to an initial tension of 4.4 MN for each
cable.

Both the passive steel bars and the active metallic cables are assumed elastic-perfectly
plastic. Concrete is modelled with the anisotropic damage model and the material param-
eters of previous sections. The material parameters for the steel and the cables are: E =
190000 MPa, ν= 0.3, yield stress of 500 MPa for the steel bars of diameter 25 mm ; E =
190000 MPa, ν= 0.3, yield stress of 1814 MPa for the active cables of cross section 5143
mm2. The deformed shape of the ring after the prestressing stage is shown in Figure 11a.
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Fig. 11. Deformed shape of the ring (a) after prestressing and (b) after internal pressure - Points
A and B of the anchoring part

An internal pressure P (t) is then applied. It corresponds to the every ten years exper-
imental loading applied on powerplant containement vessels in order to measure the air
leakage of the structure. The damage fields are computed up to PMax = 2 MPa for which
the average damage intensity corresponds to a structure already collapsed (of course real
tests are performed with a much lower pressure level). Due to steel reinforcement a non
uniformly deformed mesh is obtained (Figure 11b) in which the displacements have an
amplification factor of 633).

Fig. 12. Anisotropic damage fields at P = 2 MPa

The anisotropic damage maps show an oriented microcracking pattern, mainly radial
(truly represented by Dθθ field, D22 is the sectors θ ≈ 0◦ and 180◦, D11 in the sectors θ ≈
90◦ or -90◦), which will be preferable paths for air leakage under pressure. The evolution of
the principal damages at points A (external point of the anchoring part) and B (internal
point of the anchoring) are plotted in Figure 13 under of the pre-stressing loading. Point A
is the most loaded point after pre-stressing. During the pressure increase, the microcracks
spread around the whole ring as the damage field tends to the uniform level Dθθ ≈ 1 for
P = PMax = 2 MPa.

Fig. 13. Principal damages at points A and B during prestressing

The procedure for the rupture control of section 7 proves again efficient as without
it one cannot numerically apply pre-stresses larger than 2 MN in the cables. The steel
reinforcements prevent the localization modes, at least with the large elements used.
In order to obtain large mesocracks initiation by strain-damage localization, nonlocal
computations using smaller elements shall be performed but at a much expensive cost!

Conclusion

To conclude, an anisotropic damage model is proposed for quasi-brittle materials. The
damage state corresponds to a given microcracks pattern and, accordingly to the definition
of thermodynamics state variables, it is represented by a single 2nd order tensorial damage
variable DDD whatever the sign of the loading. The strong dissymetry of concrete behavior
is represented and is shown to be mainly due to induced damage anisotropy. A single set
of damage parameters A and a is introduced and is valid for both tensile or compressive
loading. The model is 3D and allows for computations of structures under either local and
nonlocal assumptions. A proof of the positivity of the intrinsic dissipation is given.

From numerical examples up to structural failure, the anisotropic damage model shows
its ability to be used in large scale engineering computations at reasonable computational
cost. Reinforced and pre-stressed concrete structures can be studied up to a very high
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damage level and yielding of the reinforcement steels. Note that the numerical calculations
are efficient due to three main features:

• a thermodynamics formulation (a state potential continuously differentiable, positive
dissipation for any complex loading),

• Euler backward scheme solved in an exact manner for the time integration of the con-
stitutive equations (no local iterations),

• the use of a procedure for the numerical control of rupture probably always necessary
in case of anisotropic damage.

Last, even if anisotropic damage has not proven yet its superiority over the isotropic
damage consideration for structural (mechanical) applications, it is nevertheless a more
thermodynamically consistent framework. But probably the most promising point con-
cerns the mechanical coupling with diffusion problems such as thermo-hydro-mechanical
analyses. For instance, when dealing with the evaluation of the gas or liquid leakage of a
cracked structure, one shall take advantage of the anisotropic description of the damage
in the coupling with material permeability [64].
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[19] P. Ladevèze, J. Lemaitre, Damage effective stress in quasi unilateral conditions, in:
16th International Congress of Theoretical and Applied Mechanics, Lyngby, Den-
mark, 1984.

[20] J. Lemaitre, A Course on Damage Mechanics, Springer Verlag, 1992.
[21] E. Papa, A. Talierco, Anisotropic damage model for the multi-axial static and fatigue

behaviour of plain concrete, Engineering Fracture Mechanics 55 (1996) 163–179.
[22] J. Lemaitre, R. Desmorat, Engineering Damage Mechanics : Ductile, Creep, Fatigue

and Brittle Failures, Springer, 2005.
[23] J. Lemaitre, R. Desmorat, M. Sauzay, Anisotropic damage law of evolution, Eur. J.

Mech., A/ Solids 19 (2000) 187–208.
[24] M. Ortiz, A constitutive theory for the inelastic behavior of concrete, Mechanics of

Materials 4 (1985) 67–93.
[25] S. Murakami, K. Kamiya, Constitutive and damage evolution equations of elastic-

brittle materials based on irreversible thermodynamics, Int. J. Mech. Sci. 39 (1997)
473–486.

[26] D. Halm, A. Dragon, An anisotropic model of damage and frictional sliding for brittle
materials, European Journal of Mechanics, A/Solids 17 (1998) 439–60.

[27] L. Resende, A damage mechanics constitutive theory for the inelastic behaviour of
concrete, Comp. Meth. Appl. Mech. Engng 60 (1987) 57–93.

[28] G. Herrmann, J. Kestin, On the thermodynamics foundation of a damage theory
in elastic solids, J. Mazars and Z.P. Bazant eds, Elsevier Amsterdam, 1988, Ch.
Cracking and Damage, pp. 228–232.

[29] C. Laborderie, Y. Berthaud, G. Pijaudier-Cabot, Crack closure effect in continuum
damage mechanics: numerical implementation, in: Proc. 2nd Int. Conf. on ’Computer
aided analysis and design of concrete strucutures’. Zell am See, Austria, 4-6 april,
1990, pp. 975–986.

23



[30] J. Mazars, Y. Berthaud, S. Ramtani, The unilateral behavior of damage concrete,
Eng. Fract. Mech. 35 (1990) 629–635.
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14 (1975) 39–63.
[43] A. Chiarilli, J. Shao, N. Hoteit, Modelling of elasto-plastic damage behavior of clay-

stone, Int. J. Plast. 19 (2003) 23–45.
[44] J. Lemaitre, R. Desmorat, Isotropic and anisotropic damage law evolution, Ed. J.

Lamitre, Academic Press, 2001, Ch. Handbook of Materials Behavior Models, Con-
tinuous Damage, section 6.14, pp. 513–524.

[45] Z. P. Bazant, B.-H. Oh, Crack shear in concrete: crack band microplane model,
Journal of Structural Engineering 110 (1984) 2015–2035.

[46] Z. P. Bazant, B.-H. Oh, Microplane model for progressive fracture of concrete and
rock, Journal of Engineering Mechanics 111 (1985) 559–582.

[47] Z. Bazant, P. Prat, Microplane model for brittle plastic material: I. theory and ii.
verification., Journal of Engineering Mechanics 114 (1988) 1672–1702.

[48] R. Desmorat, S. Cantournet, Modeling micro-defects closure effect with
isotropic/anisotropic damage, Int. J. Damage Mechanics in press.

[49] A. Benallal, I. Doghri, R. Billardon, An integration algorithm and the corresponding
consistent tangent operator for fully coupled elastoplastic and damage equations,
Communications in Applied Numerical Methods 4 (1988) 731–740.

24



[50] J. Simo, T. Hughes, Computational inelasticity, Springer, 1998.
[51] M. Jirasek, T. Zimmermann, Embedded crack model: Part ii: Combination with

smeared cracks, Int. J. Num. Meth. Engng 50 (2001) 1291– 1305.
[52] M. Jirasek, Z. Bazant, Inelastic Analysis of Structures, Wiley, Chichester, 2001.
[53] J. Besson, G. Cailletaud, J.-L. Chaboche, S. Forest, Mécanique non linéaire des
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