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A NOTE ON THE RESONANCE COUNTING FUNCTION FOR SURFACES WITH CUSPS

We prove sharp upper bounds for the number of resonances in boxes of size 1 at high frequency for the Laplacian on finite volume surfaces with hyperbolic cusps. As a corollary, we obtain a Weyl asymptotic for the number of resonances in balls of size T → ∞ with remainder O(T 3/2 ).

In this short note, we intend to prove sharp bounds on resonance-counting functions for the Laplacian on finite volume surfaces with hyperbolic cusps. Let M be a complete non-compact surface, equipped with a Riemannian metric g. We assume that (M, g) can be decomposed as the union of a compact manifold with boundary and a finite number of hyperbolic cusps, each one being isometric to (a, +∞) y × S 1 θ with metric

dy 2 + dθ 2 y 2
for some a > 0. The spectral properties of the Laplacian ∆ g were first studied by Selberg [Sel89] and Lax-Phillips [START_REF] Lax | Scattering theory for automorphic functions[END_REF] in constant negative curvature, and by Colinde-Verdière [START_REF] Verdière | Pseudo-laplaciens[END_REF], Müller [START_REF] Müller | Spectral geometry and scattering theory for certain complete surfaces of finite volume[END_REF], Parnovski [START_REF] Parnovski | Spectral asymptotics of Laplace operators on surfaces with cusps[END_REF] in the non-constant curvature setting.

On such surfaces, the resolvent R(s) = (∆ g -s(1 -s)) -1 of the Laplacian admits a meromorphic extension from {ℜs > 1/2} to C as an operator mapping L 2 comp to L 2 loc and the natural discrete spectral set for ∆ g is the set of poles denoted by

R ⊂ {s ∈ C| ℜs ≤ 1/2} ∪ (1/2, 1].
The poles are called resonances and are counted with multiplicity m(s) (the multiplicity m(s) is defined below and corresponds, for all but finitely many resonances, to the rank of the residue of the resolvent at s). We shall recall in the next section how the set of resonances is built. To study their distribution in the complex plane, we define two counting functions :

N R (T ) := s∈R,|s-1/2|≤T m(s) (1) N R (T, δ) := s∈R,|s-1/2-ıT |≤δ m(s). (2)
The first result on the resonance counting function was proved by Selberg [Sel89,p. 25] for the special case of hyperbolic surfaces with finite volume : the following Weyl type asymptotic expansion holds as T → ∞

(3) N R (T ) = Vol(M) 2π T 2 + C 0 T log(T ) + C 1 T + O T log(T )
for some explicit constants C 0 , C 1 . In variable curvature, Müller gives a Weyl asymptotic [Mül92, Th. 1.3.a] of the form

N R (T ) = Vol(M) 2π T 2 + o(T 2 )
and this was improved by Parnovski [START_REF] Parnovski | Spectral asymptotics of Laplace operators on surfaces with cusps[END_REF] who showed that for all ǫ > 0

(4) N R (T ) = Vol(M) 2π T 2 + O(T 3/2+ǫ ).
Parnovski's proof relies on a Weyl type asymptotic expansion involving the scattering phase S(T ) (see next section for a precise definition) :

(5)

2πN d (T ) + S(T ) = Vol(M) 2 T 2 -2kT ln T + O(T ),
where k is the number of cusps, and N d is the counting function for the L 2 eigenvalues of ∆ g embedded in the continuous spectrum.

Using a Poisson formula proved by Müller [START_REF] Müller | Spectral geometry and scattering theory for certain complete surfaces of finite volume[END_REF] and estimate (5), we are able to improve the results of Parnovski :

Theorem 1. For T > 1, and 0 ≤ δ ≤ T /2, the following estimates hold

N R (T, δ) = O(T δ + T ), (6) N R (T ) = Vol(M) 2π T 2 + O(T 3/2 ). (7)
In the first estimate with δ = 1, the exponent in T is sharp in general, as can be seen from Selberg's result (3) which implies that there is

C > 0 such that as T → ∞ (8) N(T, 1) = CT + O T log T
In n-dimensional Euclidan scattering, upper bounds O(T n-1 ) on the number of resonances in boxes of fixed size at frequency T were obtained by Petkov-Zworski [PZ99] using Breit-Wigner approximation and the scattering phase ; our scheme of proof is inspired from their approach. Their result was extended to the case of noncompact perturbations of the Laplacian by Bony [START_REF] Bony | Résonances dans des domaines de taille h[END_REF]. In general, it is expected that the number of resonances in such boxes is controlled by the (fractal) dimension of the trapped set (see for example Zworski [Zwo99], Guillopé-Lin-Zworski [START_REF] Guillopé | The Selberg zeta function for convex co-compact Schottky groups[END_REF],

Sjöstrand-Zworski [SZ07], Datchev-Dyatlov [DD13]).
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Preliminaries

We start by recalling well-known facts on scattering theory on surfaces with cusps, and we refer to the article of Müller [START_REF] Müller | Spectral geometry and scattering theory for certain complete surfaces of finite volume[END_REF] for details. Let (M, g) be a complete Riemannian surface that can be decomposed as follows:

M = M 0 ∪ Z 1 ∪ • • • ∪ Z k ,
where M 0 is a compact surface with smooth boundary, and Z j are hyperbolic cusps

Z j ≃ (a j , +∞) × S 1 , j = 1 . . . k,
with a j > 0 and the metric on Z j in coordinates (y, θ) ∈ (a j , +∞) × S 1 is

ds 2 = dy 2 + dθ 2 y 2 .
Notice that the surface has finite volume when equipped with this metric.

The non-negative Laplacian ∆ acting on C ∞ 0 (M) functions has a unique self-adjoint extension to L 2 (M) and its spectrum consists of (1) Absolutely continuous spectrum σ ac = [1/4, +∞) with multiplicity k (the number of cusps). (2) Discrete spectrum

σ d = {λ 0 = 0 < λ 1 ≤ • • • ≤ λ i ≤ . . . }, possibly finite,
and which may contain embedded eigenvalues in the continuous spectrum. To λ ∈ σ d , we associate a family of orthogonal eigenfunctions that generate its eigenspace (

u i λ ) i=1...d λ ∈ L 2 (M) ∩ C ∞ (M)
. The generalized eigenfunctions associated to the absolutely continuous spectrum are the Eisenstein functions, (E j (x, s)) i=1...k . Each E j is a meromorphic family (in s) of smooth functions on M. Its poles are contained in the open half-plane {ℜs < 1/2} or in (1/2, 1]. The Eisenstein functions are characterized by two properties :

(1) ∆ g E j (., s) = s(1 -s)E j (., s) (2) In the cusp Z i , i = 1 . . . k, the zeroth Fourier coefficient of E j in the θ variable equals δ ij y s i + φ ij (s)y 1-s i where y i denotes the y coordinate in the cusp Z i and φ ij (s) is a meromorphic function of s.

We can collect the scattering coefficients φ ij in a meromorphic family of matrices, φ(s) = (φ ij ) ij called scattering matrix. We denote its determinant by ϕ(s) = det φ(s). Then the following identities hold

φ(s)φ(1 -s) = Id, φ(s) = φ(s), φ(s) * = φ(s).
The line ℜs = 1/2 corresponds to the continuous spectrum. On that line, φ(s) is unitary, ϕ(s) has modulus 1. We also define the scattering phase ( 9)

S(T ) = - T 0 ϕ ′ ϕ ( 1 2 + ıt)dt
The set of poles of ϕ, φ and (E j ) j=1...k is the same, we call them them scattering poles and we shall denote Λ this set. It is contained in {ℜs < 1/2} ∪ (1/2, 1]. The union of this set with the set of s ∈ C such that s(1 -s) is an L 2 eigenvalue, is called the resonance set, and denoted R. Following [Mül92, pp.287], the multiplicities m(s) are defined as :

(1) If ℜs ≥ 1/2, s = 1/2, m(s) is the dimension of ker L 2 (∆ g -s(1 -s)). (2) If ℜs < 1/2, m(s) is the dimension of ker L 2 (∆ g -s(1 -s)) minus the order of ϕ at s. (3) m(1/2) equals (Tr(φ(1/2)) + k)/2 plus twice the dimension of ker L 2 (∆ g -1/4).
For convenience, we define two counting functions for the discrete spectrum and the poles of ϕ:

N d (T ) := |s i -1/2|≤T m(s i ), (10) 
N Λ (T ) := s∈Λ,|s-1/2|≤T m(s), (11) so that N R (T ) := s∈R,|s-1/2|≤T m(s) = 2N d (T ) + N Λ (T ).

Main observation

In this Section, we explain how to obtain estimate for N R (T ) in boxes at high frequency.

From the asymptotic expansion (5), we deduce that for 0 ≤ δ ≤ T /2, 

S ′ (T ) = log 1 q + ρ∈Λ 1 -2ℜρ (ℜρ -1/2) 2 + (ℑρ -T ) 2 .
where q is some constant (not necessarily < 1). Let C > 1, 0 < ǫ < 1 and Ω T,δ := {s ∈ C; |s -1/2 -ıT | ≤ δ/C and 0 ≤ 1/2 -ℜs ≤ ǫδ}.

Then, for s ∈ Ω T,δ , [T -δ,T +δ] 1 -2ℜs (ℜs -1/2) 2 + (t -ℑs) 2 dt = 2 arctan t -ℑs 1/2 -ℜs T +δ T -δ
The addition formula for arctan, with x, y > 0 and xy > 1 is given by arctan x + arctan y = π + arctan

x + y 1 -xy

thus [T -δ,T +δ] 1 -2ℜs (ℜs -1/2) 2 + (t -ℑs) 2 dt = 2π -2 arctan 2δ(1/2 -ℜs) δ 2 -|s -1/2 -ıT | 2 ≥ 2π -2 arctan Cǫ,
where C is set to be 2/(1 -1/C 2 ). For ǫ small enough, this is bigger than, say π.

Since all but a finite number of terms in (13) are positive, we have :

S(T + δ) -S(T -δ) ≥ O(δ) + ρ∈Λ∩Ω T,δ π.
Combining with (12), we deduce that

N d (T + δ) -N d (T -δ) + #Λ ∩ Ω T,δ = O(T δ) + O(T ) + O(δ).
This is the content of (6) in our main theorem.

Consequence

Now, we proceed to prove the second part of our theorem. We will follow the method of Müller [Mül92, pp. 282], which is a global and quantitative version of the argument used in the previous section. Integrating the Poisson formula over [-T, T ], we relate the scattering phase asymptotics to the poles of φ. Using the arctan addition formula, we are left with the sum of N Λ (T ) and an expression with arctan's (equation (4.9) in [START_REF] Müller | Spectral geometry and scattering theory for certain complete surfaces of finite volume[END_REF]) : 

(

  12) 2π(N d (T +δ)-N d (T -δ))+S(T +δ)-S(T -δ) = 2Vol(M)T δ -4kδ ln T +O(T ). Next, we recall the Poisson formula for resonances proved by Müller [Mül92, Th. 3.32] (13)

  Johannes Sjöstrand and Maciej Zworski. Fractal upper bounds on the density of semiclassical resonances. Duke Math. J., 137(3):381-459, 2007. [Zwo99] Maciej Zworski. Dimension of the limit set and the density of resonances for convex cocompact hyperbolic surfaces. Invent. Math., 136(2):353-409, 1999. E-mail address: yannick.bonthonneau@ens.fr DMA, U.M.R. 8553 CNRS, École Normale Superieure, 45 rue d'Ulm, 75230 Paris cedex 05, France

The sum is then split between {1} the poles in {|T -|ρ -1/2|| > T 1/2 }, and {2}, the others. Müller proved that the sum {1} is O(T 3/2 ). The sum {2} can be bounded by 1 4

From [START_REF] Müller | Spectral geometry and scattering theory for certain complete surfaces of finite volume[END_REF]Cor. 3.29], we also recall that

If ñ(T ) is the counting function for Λ, we deduce that

This concludes the proof.