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Abstract: This paper deals with damage induced anisotropy modelling for concrete-like 

materials. A thermodynamics based constitutive relationship is presented coupling 

anisotropic damage and elasticity. The biaxial behaviour of such a model is analysed through 

the effects of yield surface modifications by the introduction of new equivalent strains. 

 

 

INTRODUCTION 

 

Regarding the ultimate behaviour of reinforced and prestressed concrete structures, the 

prevision of oriented micro-cracks openings is of main importance for the structural 

integrity. It is even a key issue for multi-physics analyses such as in diffusion problems. In 

that sense, the mesoscopic approach using Continuum Damage Mechanics at the 

Representative Element Volume scale is a relevant tool to deal with large scale structures if 

loading induced damage anisotropy is represented (Lemaitre & Desmorat 2005). It allows to 

represent the local loss of stiffness of the material and the strain localization zone 

representative of macroscopic cracks. Within the thermodynamics framework, the state 

damage variable may be a scalar or tensorial quantity. Dealing with induced anisotropy in 

cementitious materials and with non-symmetric tension/compression behaviour, the choice 



for a second order damage tensor (Cordebois & Sidoroff, 1982, Murakami, 1988) is a 

pragmatic approach with regard to robustness and numerical implementations. The 3D 

effects are not commonly taken into account with damage models. Plasticity is often 

required to gain some important features as of course permanent strains but also as confined 

features and responses.  

 

A good approximation of the material response sustaining multiaxial states of stresses is 

required in Finite Elements, the states of stresses being naturally multiaxial at the structure 

Gauss points. Important works have then combined damage behaviour for tensile loadings 

and plasticity-like behaviour – eventually coupled with damage – for compressive or 

confined loadings (Gatuingt & Pijaudier-Cabot 2002). The drawback of such approaches is 

the complexity of the models and of their numerical implementation: one often has to deal 

with multi-surfaces plasticity-damage modelling, robustness is difficult to ensure and 

making the models nonlocal also becomes a difficult task. Damage models (with no 

plasticity) usually do not represent permanent strains, but they represent properly the 

monotonic softening response of materials, at least under low confinement conditions, 

conditions often encountered in structural design when tension and shear are the main cause 

of structural failure. Not modelling plasticity reduces the numbers of materials parameters 

introduced. It allows also to consider more naturally criterion surfaces in the strains space, 

choices computationally efficient. 

 

The choice is made in the present work just to address such monotonic failure cases and to 

see if damage models, anisotropic but with a limited numbers of material parameters, may 

prove sufficient in this task. Concerning modelling, the tension/compression coupled to 

shear response usually needs an adequate expression for the equivalent stresses or strains 



used in the threshold or criterion function. Based on the works of Mazars (1984), Drucker-

Prager (1952) and de Vree (1995), different strain based damage criteria are proposed next 

and extended to nonlocal framework. Their influence both at the material and structural 

levels is studied when ultimate behaviour and rupture occur. In a first part, the initial 

thermodynamics damage modelling is recalled allowing for the rigorous expression of 

constitutive equations. The main numerical features of the new modelling are mentioned in 

part 2. The third part of the paper allows for dealing with the effects of different expression 

for the equivalent strains and for the elasticity domains regarding the biaxial behaviour of 

concrete at the material scale. At last, a structural example is presented. 

 

1. ANISOTROPIC MODELLING OF CONCRETE 

 

The necessity to account for micro-cracks orientation in the description of the mechanical 

behaviour of concrete naturally leads to the use of continuum anisotropic damage framework 

(Chaboche, 1979, Cordebois & Sidoroff 1982, Ladevèze 1983, Chow & Wang 1987, 

Murakami 1988, Dragon & Halm, 1988, Papa & Talercio, 1996, Lemaitre & Desmorat 2005, 

Badel et al, 2007). To be computationally efficient, the expression of constitutive 

relationships has to be coupled with a proper numerical algorithm allowing dealing with 

analyses at the structural scale. From the numerical point of view, considering both a 

hydrostatic / deviatoric splitting and a damage threshold based on an equivalent strain allows 

to avoid the Gauss point iterative resolution of the constitutive equations and related 

evolution laws, even if implicitly discretized (Desmorat et al, 2007). The efficiency of such 

an approach for the use of anisotropic damage in reinforced and pre-stressed concrete has 

been pointed out treating large scale structures.  

The mesh dependency induced by strain softening at the local level is avoided by adopting 



integral nonlocal type regularization (Pijaudier-Cabot & Bazant, 1987). The transition 

between an homogeneous state of cracking and a macro-crack propagation is solved by 

adopting a scalar critical damage value Dc close to unity for which the principal damages – 

i.e. the eigenvalues of the damage tensor - can no more increase in the direction where this 

critical value is reached.  

 

1.1 Elasticity coupled with anisotropic damage 

 

Modelling crack initiation and growth at the representative volume element scale within a 

macroscopic phenomenological framework needs the introduction of a thermodynamic 

variable. A choice has to be made concerning the damage kinematics, between scalar or 

tensorial representations. The easiest one consists in using a scalar damage variable, 

representing an isotropic state of concrete degradation (Mazars 1984). This approach allows 

for the expression of efficient material models dealing with robust stress integration 

algorithms. Large scale computation can be handled nevertheless without the information 

concerning the cracks orientation. If the description of the crack orientation is a major point, 

an anisotropic kinematics for the damage variable has to be introduced. Damage affecting 

directly the elasticity law, the most natural approach could use a fourth order tensor 

(Chaboche 1979, Leckie & Onat 1981). It is possible to express a new thermodynamic 

variable or to directly use the elasticity operator as a variable being able to degrade 

(Krajcinovic 1985, Simo & Ju 1987, Ju 1989, Govindjee et al. 1995, Meschke et al. 1998). 

In such a case, this framework encounters strong limitations due to the difficulty in 

proceeding to robust numerical integration within a finite element code and to deal with 

adequate identification for the large number of material parameters involved. 

An alternative approach consists in using a symmetric orthotropic second order damage 



tensor as thermodynamic variable (Murakami & Ohno 1978, Cordebois & Sidoroff 1982, 

Chaw & Wang 1987, Murakami 1988). The resulting elasticity operator has also to be 

symmetric, depending on the strain, stress or energy used in the expression of effective stress 

(the real stress acting on the sane part of the material). Difficulty remains in dealing with 

effective stress, independent from material parameters (Lemaitre 2002, Lemaitre & 

Desmorat 2005), or to account for complete stiffness recovery when passing from tension to 

compression (Ladevèze 1983). 

 

In the present study, only partial stress recovery is introduced. A single but tensorial damage 

variable is used in describing the non-symmetric behaviour of concrete in tension and in 

compression. According to the general expression (Ladevèze 1983, Lemaitre & Desmorat 

2005) insuring continuity of the stress-strain path whatever the loadings, the 

thermodynamics potential takes the following form  
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where E and ν  are the elasticity parameters, ρ  the density, σ  the Cauchy stress and D  the 

damage tensor. The notation ( )D
. indicates the deviatoric part of a tensor and ( ) 2/1−− D1  is 

gained from diagonal form of ( )D1 −  as ( ) ( )PD1PD1 −=− −1
diag  and 

( ) ( ) -12/1
PD1PD1

-1/2

diag−=− −
. The notation ),0max( xx =+  stands for the positive part of 

the scalar x and ),0min( xx =−  stands for its negative part. 

 

The state laws are obtained by derivation of the potential with respect to the thermodynamics 



variables. The elasticity law coupled with anisotropic damage reads: 
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And the strain energy release rate density Y  (the thermodynamics force associated with D ) 

is: 
D

Y ∂
∂ψρ *= . 

 

The decoupling between the deviatoric member of the stress-strain relation and its volumic 

part induces only a partial stiffness recovery sufficient for monotonic applications. In 

compression, damage does not affect the hydrostatic response with a bulk modulus 

)21(3/ ν−= EK . In tension the damaged  bulk modulus is ( )KTrK D−= 1
~

. 

 

Previous elasticity law rewritten εσ :E=~  with E  the undamaged Hooke tensor defines 

analytically the relationship between the Cauchy stress and the effective stress σ~ , 
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so that the elasticity laws simply sums up as : 
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EE
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1.2 Damage threshold and evolution laws 

 

Damage evolution is linked to the violation or not of a criterion. Depending on the materials, 

the damage criterion may be expressed, similarly to plasticity, thanks to the stresses (Ortiz 

1985, Warnke 1975, Voyiadjis & Abu-Lebdeh 1994), using the strains (Mazars 1984, 

Herrmann & Kestin 1988, Ramtani 1990, de Vree et al. 1995, Geers et al. 2000) or using 

energy quantities like the damage energy release rate (Marigo 1981, Laborderie et al. 1990). 

Most of the finite elements codes use displacements based interpolation functions. The most 

efficient way to express constitutive equations arguing for explicit numerical integration is 

to make use of a damage threshold based on the strains. For brittle materials like concrete, 

Mazars’s criterion (1984) defining an equivalent strain is used for the anisotropic evolution 

of damage. The equivalent strain ε)  is constructed selecting the positive principal strain Iε : 

 

∑ +++ == 2
:ˆ Iεε εε  (5) 

 

The damage threshold takes the simple form: 

 

( ) 0ˆ ≤−= Dtrf κε  (6) 

 

( )Dtrκ  is the consolidation function in the strains space, depending on the trace of the 

damage tensor. The initial value defines the damage threshold ( )00 κκ = . 

 

The advantages are multiple. On the one hand, the use of equivalent quantities based on 



strains will make easier the explicit derivation of the subsequent numerical scheme for stress 

integration. On the other hand, dealing only with one scalar equivalent quantity based on 

strains, the classical drawbacks of spurious mesh dependency when using softening 

constitutive equations (Bazant 1976) are simply numerically avoided by implementing the 

law within the framework of nonlocal media through the use of a nonlocal weight function 

ψ  (Pijaudier-Cabot & Bazant 1987). It only needs the identification of a new parameter cl , 

which is the internal length of the nonlocal medium. This length can be linked to the size of 

the heterogeneities of the material or to the resulting scale effects when dealing with 

structural analyses. A equivalent strain ε̂  is the made nonlocal as 

 

( )∫ −=
Vr

nl dvxss
xV

x ψεε )(ˆ
)(

1
)(ˆ  with ( )∫ −=

V

r dvxsV ψ and ( ) )/2exp( 22

clxsxs −−=−ψ  

 (7) 

 

Only one damage tensorial variable is used to represent the micro-cracks pattern in concrete. 

The non-symmetric tension/compression response is obtained thanks to the anisotropic 

feature of damage. The damage evolution in one direction is guided by the level of extension 

in this direction. Then the damage can be considered proportional to the positive part of the 

strain tensor +ε  or to 
2

+ε . The power 2 is used next as 
2

+∝ εTrTrD&  simplifies in 

2ε̂∝D&Tr . 

 

Within the thermodynamics framework, the corresponding choice for the non associated 

potential is: 

 

2
: += εYF  (8) 



 

The damage evolution law is obtained by derivation with regard to the strain energy release 

rate density: 
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The damage multiplier λ&  is determined from the consistency condition 0=f  and 0=f& .  

 

The identification of the behaviour of different concretes is performed by the definition of 

the consolidation function ( )Dtrκ . For concrete, a simple expression has been found 

allowing to fit the concrete responses in tension and in compression, introducing only two 

material parameters a and A in addition to the Young’s modulus E, the Poisson’s ratio ν  and 

the damage threshold 0κ . 
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1.3 Uniaxial responses 

 

The responses of the model, subject to uniaxial states of stresses are presented in the next 

figures. The material parameters used in the analysis are E = 42 GPa, ν  = 0.2, κ 0 = 5 10
-5

, A 

= 5 10
3
, a = 2.93 10

-4
.  

 



One can observe that with only one thermodynamic variable (the damage tensor), the model 

is able to correctly describe the non symmetric uniaxial behaviour of concrete. Due to the 

decoupling between the hydrostatic part and the volumic part of the model, the volumic 

strain of the response is not affected in compression. Even if dilatancy is not represented, 

this is an improvement compared to the loss of bulk modulus obtained with isotropic damage 

models. 

 

 

2. NUMERICAL IMPLEMENTATION 

 

2.1 Euler backward scheme for numerical stresses and damage computations 

 

One major advantage of this model is its easy numerical implementation within any finite 

element code and its corresponding robustness regarding computations at the structural 

scale. In fact, any evolution equation can be analytically (explicitly) calculated, even when 

using an implicit discretisation scheme. No internal iteration, very CPU time consuming, are 

needed at Gauss point level. The principal steps for stress computation are recall hereafter. 

 

Knowing all the variables and stress at time nt  as well as the final state of strain at time 1+nt , 

1+nε , the stress-damage algorithm aims at computing the internal variable (the damage tensor 

1+nD ) and the stresses 1+nσ  at time 1+nt . 

 

1. Calculate the threshold function trial : ( )nneqtrial trf Dκε −= +1,  with any appropriate 

equivalent strain (Mazars’s one ++++++ == 1111, :ˆ nnnneq εεεε  or others..)  



If the elasticity criterion is not violated, i.e. 0<f , the damage does not evolve ( nn DD =+1 ) 

the stress increment is obtained thanks to a reversible elastic change of state (steps 6 and 7). 

On the contrary, the internal variable has to be corrected, according to the nonlinear 

constitutive equations and the consolidation function. 

 

2. Calculate the non local equivalent strain if regularisation procedure is adopted (eq. 

7). 

3. Discretize the damage evolution as : 
2

11 +++ ∆=−=∆ nnn ελDDD  

4. Taking the trace of the previous expression (making 2
1

2

1 ˆ +++ = nntr εε  appears), the 

damage multiplier increment can be explicitly computed 
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5. Actualize the damage tensor: 
2

11 +++ ∆+= nnn ελDD  

6. Calculate the effective stresses: 11 :~ ++ = nn εΕσ  

7. Determine the Cauchy stresses by inverting eq (3). 
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2.2 Rupture control procedure 

 



Describing rupture of structural elements needs to deal with damage constitutive equations 

reaching the ultimate state of damage (eigenvalues close to unity). For isotropic damage, 

respecting the Clausius-Duhem inequality, it is quite clear that the maximum value of the 

damage variable should not exceed one. Within an anisotropic framework with partial 

stiffness recovery, such a criterion is no more so simple. The tensorial damage acts by its 

individual values on the deviatoric part of the behaviour and it acts by its trace on the 

volumic part. It is obvious to consider two different treatments for the damage evolution law, 

depending on which part of the behaviour is treated. Such a treatment simply just ensures the 

property of a positive effective damaged elasticity tensor. 

 

A critical value cD  for damage is introduced, allowing defining the numerical transition 

between a micro-cracked medium range and the occurrence of a macroscopic crack, for 

which continuum damage mechanics looses sense and consistency, benefiting to nonlinear 

fracture mechanics or extended finite element formulation. Both handle strong 

discontinuities in the material (Belytschko & Black 1999, Jirasek 2000). In first 

approximations for concrete, cD  is taken equal to 0.99. 

 

Concerning the hydrostatic part of the constitutive equations, the limitations at high state of 

damage appears clearly when observing the reversible process equations (from eq (2)). 

( ) K

Tr

TrK

Tr
Tr
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−+ +−= σσε
D

 (11) 

 

To keep positive the damaged bulk modulus, it is necessary to only limit in tensile loadings 

the evolution of the trace of D to cD . In such a way that, when trD reaches cD , the bulk 

modulus takes the critical value of ( )KDK c−= 1
~

 when 0>εTr . 



 

For the deviatoric case, to ensure that the damaged elasticity operator remains positive 

definite, one only has to impose that the eigenvalues of the second order damage tensor are 

bounded by 1, or by cD  from a numerical point of view (Lemaitre et al. 2000, Badel 2001). 

Under these conditions, the general evolution equations of the previous section have to be 

adapted. If the maximum eigenvalue of damage ID  reaches its critical value in the 

direction In , damage growth in that direction is stopped, defining a first plane of fixed crack 

in the solid. Damage only goes on growing in the remaining ( )IIIII nn ,  directions. The 

damage evolution law is kept unchanged by only considering the terms of the strain tensor in 

the ( )IIIII nn ,  plane, conserving cI DD =  along In . The corresponding (projected) 

evolution law formally reads: 

 

+Π= ε
Inλ&&D  (12) 

 

with 
InΠ  the projection operator. If the loading continues, a second direction for which 

damage reaches its critical value is detected, defining in the same way, orthogonally to the 

two first directions, the third one, and so the eigen base of the damage operator for the 

cracked medium. Only three families of cracks are introduced at the final stage and the fully 

broken behaviour is an elastic one (with different bulk modulus in tension and in 

compression), 
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with )1(2/ ν+= EG , the shear modulus. 

 

 

3. BIAXIAL BEHAVIOUR AND EQUIVALENT STRAIN 

 

The biaxial behaviour of brittle materials like concrete has to be handled with care, due to 

the complexity of the degradation modes and crack pattern (Kupfer et al. 1973). The suitable 

representation of biaxial rupture needs to possess an adequate elasticity limit as well as 

evolution equations able to deal with confinement effects (Mazars 1984, Ramtani 1990). 

This section is devoted to evaluate the biaxial response of the previous model using different 

equivalent strains. Although being within an anisotropic framework, such an analysis can 

easily be performed due to the high level of modularity of the constitutive model based on 

the use on equivalent strains. 

 

3.1 Biaxial responses for an isotropic model and for the anisotropic model 

 

The constitutive models based on continuum damage mechanics, isotropic or anisotropic, 

exhibit a high level of brittleness in biaxial compression. If the state of stress at rupture is 

plotted in the ( )2211,σσ  plane, one can observe a decrease of the load bearing capacity in 

biaxial compression (with regards to the uniaxial response in compression, ruptσ ) while the 

experimental results show an increase of the stress at rupture of about 20 % (Kupfer & 

Gerstle 1973, van Mier 1984). In figure 2a, one shows the elasticity limit, using the Mazars 

equivalent strain as well as the rupture envelop for the isotropic (Mazars 1984) damage 

model. Kupfer (1973) and van Mier (1984) experimental data are drawn. 

 



 

In figure 2b, the brittleness increase is even more clearly emphasized. The effects of damage 

in the non convexity of the rupture limit are even more pronounced for the anisotropic 

model, by localizing the crack in a unique plane, orthogonal to the loading plane. The lack of 

concavity in biaxial compression of the initial elasticity domain (flat end with Mazars’s 

criterions) is the major source for this bad representation of biaxial responses. A possible 

remedy for compressive loadings is of course the consideration of both plasticity and 

damage mechanisms but the corresponding models becomes quite complex (Meschke & 

Lackner 1998, Ragueneau et al. 2000, Jason et al. 2006) A second remedy, much simpler in 

terms of numerical efforts, consists in keeping the elasticity coupled to damage but in 

increasing the elasticity non-symmetry by adding new invariants in the expression of the 

equivalent strain. 

 

3.2 Modification of the equivalent strain 

 

Different solutions may be adopted to improve the biaxial responses of the models subject to 

complex state of stress. By only changing the definition and expression of the elasticity 

domain, the numerical integration is kept unchanged as well as the nonlocal formulation 

allowing proceeding to structural case study without mesh dependency. Different 

formulations can be adopted for concrete, based on the original expression of the Mazars 

equivalent strain ++= εε :ε̂  completed by terms function of the strain invariants : 
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• Mazars-Drucker-Prager : Adding of the trace of the strain tensor. A complementary 

material parameter k has to be identified. Although it greatly improves the elasticity 

domain in bi-compression, the main disadvantage of this expression is to modify in 

the same way the tensile response making necessary a complete reidentification of all 

the material parameters. 

 1ˆ kIeq += εε  (14) 

• Modified Mazars-Drucker-Prager: Adding of the trace of the negative part of the 

strain tensor, without modifying the response in tension. This non-convex surface 

may generate, depending on the material parameters choice, instability of the 

mechanical response.  

 −+= 1ˆ Ikeq εε  (15) 

• Mazars-Mises-Drucker-Prager : : Adding of the trace of the strain tensor and of the 

second invariant of the deviatoric part of the strain tensor. This equivalent strain 

defines a convex elasticity domain making easier the constitutive equation 

parameters identification. 

 21
2

1
ˆ JkIeq ++= εε  (16) 

• De Vree criterion: a non-centered von Mises criterion in the strain space (de Vree et 

al. 1995). The ellipsoïdal shape, far from the previous one allows for a direct control 

of the non-symmetric behaviour of concrete through the introduction of the material 

parameter k. 



 ( ) ( )( ) ( ) 22

2
12

2

1
1

12

21

1

2

1

212

1
J

k
I

k

k
I

k

k
eq νννε ++−

−+−
−=  (17) 

 

Such a difference in the biaxial behaviour is more relevant when looking at the shear 

response of the different models. The isotropic Mazars model in shear is compared to the 

anisotropic one using the previous different expressions for the equivalent strain and 

elasticity surface. The shear behaviour of concrete, due to aggregate interlocks, roughness 

and frictional sliding along the crack surfaces should be much more ductile than the response 

in pure tension. This point is illustrated in figure 5, especially for the de Vree surface. 

 

 

4. NOORU-MOHAMED’S STRUCTURAL CASE-STUDY 

 

The classical experiment of Nooru-Hohamed (1992) is used to analyse, at the structural 

level, the effects of the changes in the expression of the equivalent strain. Due to the 

interaction between tension and shear following a non proportional path, this test is relevant 

for comparison in our case. 

 

The specimen geometry and the experimental testing set up are shown in Fig. 6. It is a 

symmetric 200 mm · 200 mm mortar square with two notches, 30 mm long and 5 mm thick. 

The case study is here carried out for a maximum shear load FMax = 10 kN exhibiting 

mixed mode fracure. The 3D Finite Element discretization of the specimen is made by the 

use of four node tetrahedron elements with one integration point. In order to perform the 

computations in 3D at reasonable cost, a FE mesh with a 5 mm width is used when the real 



width of the specimen is 50 mm. The mesh, the boundary conditions as well as the loading 

specifications are presented in the figure 6.  

 

The model parameters used for the simulation are those of section 2 for concrete: E = 42000 

MPa, ν = 0.2, 0κ = 5.10
-5

, A = 5.10
3
, a = 2.9310

-4
.  

 

In order to avoid any spurious mesh dependency due to strain localisation, nonlocal 

computations have been performed on a medium mesh. The characteristic length is set to 2 

mm for all the analyse. The convergence of the computations has been numerically shown 

using three types of mesh in a previous work (Desmorat et al. 2007). Two types of 

computations are performed with the two models giving the most different responses in bi-

compression and in shear. The first one uses the original anisotropic model, i.e. with the 

damage threshold based on Mazars equivalent strain. The second one uses the de Vree 

equivalent strain. The results are given in the following using the medium mesh. The 

comparisons between the experimental crack pattern and the anisotropic D11 and D22 damage 

fields are plotted in the figure 7. Whatever the criterion, the damage fields obtained are quite 

close so that only the results obtained with the original Mazars equivalent strain are plotted 

in figure 7. 

 

One can observe that the crack path is well suited by the numerical computations with the 

non-symmetric boundary conditions of figure 6. The difference between the two criteria is 

emphasized in figure 8, for which the results obtained with the two different equivalent 

strains are plotted in the tensile load – vertical displacement diagram. The ductility as well 

as the peak displacement is better simulated using the de Vree equivalent strain. Although it 

allows for a better response modelling in the biaxial regime, the de Vree criterion 



overestimates the shear response. This point may explain the overload registered in the 

numerical computations in figure 8. 

 

 

 

CONCLUSIONS 

 

Dealing with multiaxial behaviour of brittle materials like concrete needs to account for 

micro-cracks orientations. A 3D robust model introducing damage induced anisotropy is 

presented in this paper, as well as its stresses computation numerical scheme. Important 

feature, even if Euler backward scheme is used no iterations are needed at the Gauss point 

level. The model only needs the consideration of a single thermodynamics tensorial variable 

and the identification of 6 material parameters (2 for elasticity, one damage threshold, 2 for 

damage growth and a new parameter k for both the shear and the biaxial response) to handle 

the non-symmetric response of concrete in tension and in compression. Benchmarking the 

modelling responses under biaxial compression state of stress emphasizes the lack in 

ductility encountered by models based on continuum damage mechanics, whatever the 

damage kinematics, scalar or tensorial. The modifications of the damage threshold and the 

definition of new equivalent strains improve the multiaxial response. The elasticity domain, 

defined thanks to the different equivalent strains and the high level of modularity of the 

model here exposed allows for ‘parametric’ analyses of different yield surfaces. The 

equivalent strain, by the addition of strain tensor invariants, is modified to account for a 

better asymmetry in the elastic response of the material in tension and in bi-compression. 

Equivalent strain, based on a modified non-centered von Mises criterion proves its efficiency 

to deal with the bi-compression state of stresses. When applied to a structural case study of a 



concrete sample subject to both shear and tension, this equivalent strain, coupled to the 

anisotropic model predicts an overestimation of the specimen load bearing capacity, due to 

the local shear ductility increase. 

Some intermediate solutions should be retained in the future to improve the numerical 

responses of continuous anisotropic damage based models. For example, the permanent 

strains, as well as the confinement effects induced by dilatancy help the model to catch the 

ductility increase in confined cases without penalising the shear response. But in any case, 

the definition of an equivalent strain is the key-feature for 3D modelling. 
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 LIST OF FIGURES 

 

Fig 1 : Uniaxial response of the anisotropic damage model. (a) Tension/compression non 

symmetric feature and (b) volumic behaviour in compression ( εTrV =ε ). 

 

Fig 2. Elasticity domain and ultimate state at rupture for (a) the isotropic model (Mazars 

1984) and (b) the initial anisotropic model using the Mazars equivalent strain. 

 

Fig 3. Elasticity domains comparisons for the different equivalent strains. The k parameter 

has been adjusted to obtain for each model the same responses in tension and in compression 

as in figure 1. 

 

Fig 4. Elasticity domain and ultimate state at rupture for (a) the anisotropic damage model 

using Mazars-Mises-Drucker-Prager equivalent strain and (b) the de Vree Criterion. 

 

Fig 5. Shear response for the isotropic and the anisotropic damage models using the different 

expressions for the equivalent strains. 

 

Fig 6. Nooru-Mohamed test. Mesh, boundary conditions and loading history 

 

Fig 7. Nooru-Mohamed test. Experimental crack pattern. Damage fields in the direction 1 

(horizontal) and 2 (vertical). 

 

Fig 8. Nooru-Mohamed test. Comparisons of two types of damage threshold during the 

loading. 
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Fig 1 : Uniaxial response of the anisotropic damage model. (a) Tension/compression non 

symmetric feature and (b) volumic behaviour in compression ( εTrV =ε ). 
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Fig 2. Elasticity domain and ultimate state at rupture for (a) the isotropic model (Mazars 

1984) and (b) the initial anisotropic model using the Mazars equivalent strain. 
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Fig 3. Elasticity domains comparisons for the different equivalent strains. The k parameter 

has been adjusted to obtain for each model the same responses in tension and in compression 

as in figure 1. 
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Fig 4. Elasticity domain and ultimate state at rupture for (a) the anisotropic damage model 

using Mazars-Mises-Drucker-Prager equivalent strain and (b) the de Vree Criterion. 
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Fig 5. Shear response for the isotropic and the anisotropic damage models using the different 

expressions for the equivalent strains. 
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Fig 6. Nooru-Mohamed test. Mesh, boundary conditions and loading history 
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Fig 7. Nooru-Mohamed test. Experimental crack pattern. Damage fields in the direction 1 

(horizontal) and 2 (vertical). 
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Fig 8. Nooru-Mohamed test. Comparisons of two types of damage threshold during the 

loading. 

 

 

 

 

 

 

 

 


