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Abstract: A testing device is presented for the experimental study of dynamic compaction 

of concrete under high strain-rates. The specimen is confined in a metallic ring and loaded 

by means of a hard steel Hopkinson pressure bar (80 mm diameter, 6 m long) allowing for 

the testing of specimens large enough regarding the aggregates size. The constitutive law 

for the metal of the ring being known, transverse gauges glued on its lateral surface allow 

for the measurement of the confining pressure. The hydrostatic and the deviatoric response 

of the specimen can then be computed. The proposed method is validated by several 

numerical simulations of tests involving a set of 4 different concrete-like behaviours and 

different friction coefficients between the cell and the specimen. Finally, 3 tests performed 

with the MB50 concrete at 3 different strain rates are processed with the method and are 

compared with literature results for the same material under quasi-static loadings. 
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Keywords: 1D-strain compression test, Hopkinson pressure bar, Deviatoric strength and 

compaction law, High-performance concrete. 

 

1. Introduction 

 

Compaction of concrete with a volume decrease of 10% or more occurs under high pressures. 

Such situations are found in military applications or in studies connected with the safety of 

buildings (power plants) regarding an accidental internal loading or external loading (plane 

crash). 

 On the one hand, the stress needed for compaction is high (around 1000 MPa) with a large 

pressure component. On the other hand, the specimens must be large enough to be representative 

with respect to the size of aggregates. Consequently, the forces required are so large that only a 

few testing procedures are available in this field. In the quasi-static load regime multiaxial tests 

use compression cells that are able to support very high pressures [1, 2]. Dynamic plate impact 

tests are also used [3], for which the strain-rates obtainable are in the range of 105 s-1 or greater. 

 The testing device presented in this paper is a method of obtaining results between quasi-static 

and high speed loading rates (from 200 to 2000 s-1) where only a few results involving 

compaction are found. 

 In this range of loading pressures, the behaviour of concrete is generally described by means 

of plasticity theories where the hydrostatic and the deviatoric responses are considered separately. 

The major differences between different models are found in the way both responses are coupled. 

                                                                                                                                                              
 Corresponding author. Tel.: +33-3-87-54-72-49; fax: +33-3-87-31-53-66; email address: forquin@univ-metz.fr 
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A clear understanding has then to be based on well-defined loading paths. As real loading 

situations leading to compaction are generally dynamic ones, the study of strain rate effects is 

important. 

 

 A significant literature exists on rate the sensitivity of rock tested at medium strain rates, for 

example in ancient papers [4, 5], and a more recent one [6]. The early tests on concrete under 

dynamic loading were performed with pendulum and drop weight tests. An arrangement using 

impulse loading of a cylindrical specimen made of concrete was used by Goldsmith and co-

workers [7] to study the tensile fracture feature of concrete. The use of the compressive Split 

Hopkinson Pressure Bar (SHPB) to determine the rate sensitivity of concrete can be found in 

recent works [8-12]. However, the test analysis must consider both material and geometric 

aspects. For example, the increase of the stress with the strain rate can be due to the radial 

confinement induced by inertia and/or by the intrinsic rate sensitivity of the material. Indeed, for 

a material with a non-zero Poisson’s ratio, the lateral expansion associated with the compression 

is restrained by inertia effects [13, 14, 15, 16]. As rock-like materials are very sensitive to the 

lateral pressure when they are axially loaded, they can show geometry dependent strain-rate 

sensitivity. In the present case, the confinement cell considerably reduces the radial displacement 

so the radial pressure induced by inertia does not act. 

 Dynamic axial compression testing with lateral pressure is not very common. For lower lateral 

pressures, experimental data have been obtained using a SHPB axial loading system combined 

with a pressure cell [5, 12, 17, 18]. This technique does not produce the high pressures required 

for compaction. 

 A new testing device has been designed and studied by Burlion et al. [2] for the case of quasi-

static loading, involving axial and lateral stresses in the range of expected dynamic values. In the 
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present work, an attempt was made to extend this technique to the dynamic range using a SHPB 

to produce axial loading and to measure axial forces and displacements. Following a few authors 

[12, 17, 19], we then propose a test where the specimen is confined in an instrumented metallic 

ring and loaded by means of a Hopkinson pressure bar (SHPB) especially designed for this 

purpose. 

 

2. General description of the confining compression test 

 

Specimen and Cell geometry 

 

The general idea of the test is described in figure 1. A cylindrical specimen embedded in a 

steel confinement ring is compressed using 2 cylindrical plugs (Fig. 1a). The concrete specimen 

has a diameter of 30 mm and is 40 mm long. The steel plugs have the same diameter and a 

thickness of 10 mm. The steel ring has an outer diameter of 65 mm and is 45 mm long. 

 

The “MB50” concrete 

 

The selected high strength concrete “MB50” has already been extensively studied [20, 21, 22, 

23]. The specimens to be tested were machined in a concrete block after being dried (40 days) to 

prevent the effects of drying shrinkage of the concrete. The composition and the mean 

mechanical properties of MB50 are detailed in table 1. 
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Interface product between the specimen and the cell 

 

A gap, about 0.2 mm thick, is left between the concrete specimen and the ring. It is filled with 

an epoxy resin, coated with Teflon. This material is highly incompressible and hence does not 

reduce the confinement pressure. It also has a weak shear strength allowing for easier relative 

displacements between the ring and the specimen. 

 

Direct strain measurements on the cell 

 

Three hoop strain gauges were glued onto the external surface of the metallic ring. Their 

outputs allow the deduction of the radial stress and strain within the specimen. One gauge is 

located in the middle of the ring (n°2), as shown in figure 1b and the two others (n°1 and 3) are 

located at a distance from the middle equal to ¾ of the half-length of the ring. Three axial gauges 

(n°4, 5, 6) are located on the same axial planes (Fig. 1b). From their outputs, it is expected to 

deduce the friction force between the specimen and the ring and to quantify the barrelling of the 

ring. 

 

Brief description of the test 

 

The cell and its plugs are inserted between the two Hopkinson bars. The loading produces 

compression of the concrete and a subsequent increase of the internal pressure supported by the 

cylindrical cell. The signals recorded on the two Hopkinson bar gauges allow for the computation 

of the axial forces and of the corresponding displacements. The signals recorded with the gauges 

glued on the cell give information on its response under pressure from the concrete specimen. 
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3. The SHPB loading device 

 

Basic description of the SHPB system 

 

The SHPB (Split Hopkinson Pressure Bar) system, also called Kolsky's apparatus is a 

commonly used experimental technique in the study of the constitutive laws of materials at high 

strain rates. The first use of a long thin bar to measure stresses under impact conditions has been 

reported in [24]. The experimental set-up with two long bars, widely used today, was pioneered 

by Kolsky [25]. 

 A typical SHPB testing device is composed of long input (or incident) and output (or 

transmitter) bars with a short specimen placed between them. With the impact of a projectile (or 

striker) at the free end of the input bar, a compressive longitudinal "incident" wave ( )tIε  is 

created in the input bar. Once the incident wave reaches the interface between the specimen and 

the bar, a reflected pulse ( )tRε  in the input bar and a transmitted pulse ( )tTε  in the output bar are 

developed. With the gauges that are glued on the input and output bars (named A and B, 

respectively), these three basic waves are recorded. Their processing allows for the knowledge of 

forces and particle velocities at both faces of the specimen [25]. 

 

 Recall of the processing technique 

 

 As both the incident and the reflected waves have to be known, the optimal position of a single 
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gauge station “A” that allows for the longest loading time is the middle of the input bar. The 

maximum theoretical length of the striker is then half the length of the input bar. In fact, because 

of the non-zero rising time of the incident wave, the length of the striker has more often to be 

around 80% of the theoretical one. 

 The forces and the particle velocities at the specimen faces are calculated with waves shifted 

to the same points. For slender elastic bars, it is assumed that the elastic waves propagate without 

dispersion so that they are simply time shifted to the bar ends. 

 Let us call )(tiε , )(trε  and )(ttε the corresponding (shifted) waves. For the sake of simplicity, 

a one-dimensional analysis gives the usual relations between jumps of stress (∆σ), particle 

velocity (∆v) and strain (∆ε) [26], when a single direction of propagation is considered. 

 ∆σ = ±ρc∆v , (1a) 

and, in the 1-D purely elastic case 

  /v cε∆ = ±∆  (1b) 

where c is the bar wave speed (c = (E/ρ)1/2) of a 1-D wave propagating in the bars. Using these 

equations together with the superposition principle, the velocities and the forces at both specimen 

faces are given by the following formulas (2a and 2b). 

 
Vin (t) = −c(εi(t) −εr(t))

Vout (t) = −c(εt (t))
, (2a) 

 
Fin (t) = Sb E(εi(t) + εr (t))

Fout (t) = Sb Eεt (t)
, (2b) 
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where V is the velocity, F the force, bS  the area of the bars, E the Young's modulus of the bars. 

Subscripts in and out indicate the input and output sides, respectively. 

 

Present SHPB device and processing technique 

 

 The SHPB set-up (striker, input bar and transmitter bar) used here is made of steel bars (elastic 

limit 1200 MPa) with a diameter of 80 mm. The striker, the input bar and the output bar are 2.2m, 

6m and 4 m long, respectively. The strains at points A (middle of input bar) and B (1 m away 

from the specimen) are measured with strain gauges. Considering the elastic response of the bar 

and assuming a uniaxial state of stress at the gauges stations, an improved measurement of the 

strain is made by using a complete gauge bridge. At the given position of the gauge station, each 

couple of transverse and longitudinal gauges are diametrically opposed on the surface of the bar 

to eliminate a possible bending component of the strain. The transverse strain is equal to the 

longitudinal strain multiplied by the Poisson's ratio. The gauges that are used are “2mm, Kyowa - 

KSN-2-120-F3-11” type. The bridge is supplied by a monitored 8 Volts supply and the signals are 

amplified (amplifier gain 100-200-500-1000, six channels, bandwidth 200 kHz). They are then 

recorded with a data acquisition card (12 bits) with the time base set to the value of 1 µs. 

Knowing that the wave speed is equal to 5120 m/s, it can be simply deduced from the dimensions 

of the set up that the loading pulse duration is equal to 860 µs. The beginning of the reflected 

wave arises 300 µs later than the end of the incident pulse. Both waves are thus easily separated 

(Fig. 2). 

 The shifting of the waves to the specimen ends takes account of dispersion. We use a 

dispersion relation that is the first mode solution of the Pochhammer [27] and Chree [28] 
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equation, computed for the material constants of our bars. Since the bars have an unusually large 

diameter, it is worth checking that only the first mode is involved. A spectral analysis of the 

gauge signals recorded shows a negligible amplitude for frequencies greater than 20 kHz. The 

cut-off frequency of the second mode is, in the case of our bars, close to the same value (from 

Davies [29] it is known that the minimum phase velocity for the second mode corresponds to 

25.0=Λ
a  and the minimum group velocity corresponds to 3.0=Λ

a  where a  is the radius of 

the bar and Λ  the wavelength. Here, a and c (equation 1) are equal to 0.04 m and 5120 m/s 

respectively. The corresponding cut-off frequencies are equal to 32 kHz and 38.4 kHz 

respectively). An easy check of the quality of the dispersion correction can be performed by the 

long distance travel of a wave using the input bar with both free ends after the loading (as shown 

in [30, 31]). 

 It was also checked that below 20 kHz, the proportionality of lateral and longitudinal strain is 

true to better than 99% (from Tyas and Watson [32]) taking account of the energy spectrum of 

our waves. A complete bridge involving lateral and axial strains can then be safely used for this 

measurement. 

 For precise time shifting, an assisted delay setting method was used. This is based on the 

existence of an initial elastic response of the specimen. During the corresponding time, real 

reflected and transmitted waves are compared with theoretical ones computed from the 

knowledge of the incident wave and an assumed elastic behaviour of the specimen [33, 30]. This 

data processing method ensures precise measurements at low strains (in the range of strains lower 

than 1%) [11]. 

 Using equations (2), the forces and the velocities (and the displacements, by integration) at 

both sides of the complete specimen (including the plugs) are calculated. These data are the 
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results of a one-dimensional analysis. The force is the integral of the axial stress over the 

specimen area while the velocity is the mean velocity of the bar end. 

 

The compression device used for dynamic testing 

 

The device used for dynamic testing was briefly described in figure 1. The complete cell 

composed of the specimen, the steel ring and the plugs is inserted between two Hopkinson bars. 

It would have been easier to use a cell with the same inner diameter as bars and avoid the use of 

plugs. However, to produce the expected axial stress level (evaluated from quasi-static test 

results) of -1000 MPa, the value of the striker speed of a steel SHPB needed in this case should 

have been 50 m/s. We have experienced that such a striker speed induces the unsticking of the 

strain gauges and for this reason it is necessary to keep the striker speed under 20 m/s. A 

reduction of area between the specimen and the bar is therefore necessary. This explains the 

design dimensions of the bars and of the specimen and the use of steel plugs. 

 The elastic limit of the plugs is higher than the maximum stress obtained in our tests and the 

elastic shortening of the plugs can easily be subtracted from the total shortening measured. 

 For a more precise correction, a test with the two plugs alone was performed within the range 

of the maximum force observed in tests with the complete device. From the corresponding 

relation between the force and the displacement, a lower Young’s modulus than that for steel was 

found. The reason is that the total average displacement (regarding the section of the bar) is the 

sum of the elastic compression of the plugs and the local elastic punching of bar ends. This needs 

to be subtracted from the displacement measured in the tests with the complete device. 
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4. A method to measure states of stress and strain during 

confined 1D-strain compression tests 

 

At high stress levels, a high axial strain and rather small (but not negligible) radial strain of the 

specimen are observed. In order to evaluate the compaction law of the concrete, an accurate 

measurement of the state of stress and strain within the specimen is needed. For this, one first 

needs to know the elastic (and possibly elastoplastic) behaviour of the material of the ring. The 

identification of the mechanical behaviour of this material is presented in subsection 4.2. 

The complete method used to compute the mechanical behaviour of the sample is explained in 

subsection 4.3. With this method, the state of strain and stress is measured knowing, on the one 

hand, the axial forces and displacements at the specimen end surfaces and, on the other hand, the 

outer strain of the ring. The lateral pressure between the ring and the specimen is deduced from 

the strains measured on the ring and is corrected for the real length of the specimen. The axial 

stress is computed from the axial forces taking into account the (small) lateral expansion - the 

radial strain - of the specimen. 

Several numerical simulations were performed and are presented in subsection 4.4 with 

different sets of parameters for the Krieg, Swenson and Taylor model with 2 friction coefficients 

to validate the method and its robustness. In the section 5, this method is applied to three 1-D-

strain compression tests. 
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4.1. BASIC ANALYSIS 

 

Considering that the cell is elastic and that its cylindrical shape is undeformed (that means that a 

possible barrelling effect is neglected), a basic analysis of the test can be done. The hoop external 

strain ( ext
θθε ) and the internal pressure (Pint) are related in the following way (formula valid for an 

infinite cylinder): 

 
)(

2
22

2
int

ie

i

c

ext

RR
R

E
P

−
=θθε , (3) 

where Ec, Ri, Re are the Young’s modulus of the cell and the inside and outside radius of the cell, 

respectively. 

The length of the specimen will vary during the test, so that friction forces will appear 

between the specimen and the cell. These forces will contribute to the overall compression force 

measured by the SHPB. They also should induce an axial strain in the cell. Assuming a state of 

equilibrium of the cell and a constant friction force, the loading can be described with two 

opposite and symmetric homogeneous axial forces acting along the internal diameter of the cell. 

The subsequent axial strain within the steel ring will decrease (in absolute value) from the 

middle, where its value is equal to 
fraxial

maxε , to zero at the specimen ends. In that case, one has: 

 max 2 2
int

1 /( )axial i e ifr
c

f P R H R R
E

ε = − , (4) 

where H is the height of the cell and f the friction coefficient. 

 

Following this elementary analysis, the internal pressure and the friction forces could then be 
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measured and the axial stress could be calculated from the global force and from the friction 

forces. The main difficulty with this analysis is that it needs a cell thin enough to provide 

measurable strains (due to friction) but also a cell thick enough to prevent barrelling. It is shown 

in the following that both requirements cannot be met and that the processing of the strain data 

measured on the cell must be more sophisticated. 

 

4.2. IDENTIFICATION OF THE BEHAVIOR OF THE STEEL OF THE 

CELL 

 

The behaviour of the steel used for the ring component was identified by means of two dynamic 

compression tests performed at strain rates of approximately 200 s-1 and 300 s-1. The strong strain 

hardening and the high failure strain observed (Fig. 3) allow avoiding any strain localisation 

within the steel ring. The plastic behaviour of the steel is described by a piece-wise linear law 

(Fig. 3). It is assumed to be the same for any part of the cell. The Young’s modulus is taken equal 

to 2x105 MPa. 

 

4.3. NUMERICAL ANALYSIS OF THE RESPONSE OF THE CELL FOR 

THE TEST ANALYSIS 

 

In order to analyse the response of the cell submitted to internal pressure and friction forces 

numerical simulations were undertaken. They take account of the variable axial length where the 

pressure is applied (simulating the change of the specimen length during the loading) and of the 

elastoplastic behaviour of the cell. 
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4.3.1 Strains induced by a uniform pressure applied to the inner surface of the cell 

 

First, it was determined how the pressure applied by the concrete to the inner surface of the cell is 

related to the hoop strain measured at its outer surface. To do so, numerical simulations of the 

cell loaded by an internal pressure were carried out using the finite element computer code 

Abaqus Implicit [34]. A similar approach had previously been successfully applied to a smaller 

steel ring whose elastic limit was lower [35]. The computations showed a noticeable barrelling of 

the cell. In the present case, the geometry of the cell was as described before (outer diameter 65 

mm, inner diameter 30 mm and height 45 mm). Two numerical simulations were carried out to 

take account of the change in length of the specimen during the test. In both cases, a radial 

compressive stress was applied to the inner surface (cylindrical). In the first case, this pressure 

was applied to a central part of the cell 40 mm long (smaller than the cell length), equal to the 

initial length of the sample. In the second numerical simulation, the pressure was applied to a 

shorter central part 34 mm long (equal to the specimen length at the end of the test in the case of 

a nominal axial strain equal to -15%). This value is close to the ultimate level of strain that is 

reached during the tests. The two curves (internal-radial-stress versus external-hoop-strain) are 

plotted in figure 4. A linear interpolation between these 2 results is used to take account of the 

real length of the sample during the test. The length of the specimen is directly deduced from 

SHPB data. 

From both simulations, it was shown that the cell remains in the elastic range when the 

internal pressure is lower than approximately 300 MPa, and the external hoop strain is 

approximately lower than 0.1%. Anyway, the post-processing of the data proposed below, based 

on the interpolation between the above loadings, is still possible when the cell is plastically 
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loaded. In such a case, the same cell could not be used more than once. 

The radial inner stress (int)
radialσ  is related to the measured outer hoop strain εθθ

(z=0, ext) in the 

following way: 

 (int) ( 0, ) ( 0, ) ( 0, )( , ) 1 ( ) ( )z ext z ext z extaxial axial
radial axial A B

B B
θθ θθ θθ

ε εσ ε ε σ ε σ ε
ε ε

= = =   
− = − +   

   
, (5) 

where Aσ  and Bσ  are the functions identified from figure 4, associated with a null strain 

(specimen length 40 mm) and a strain Bε  equal to 0.15 (specimen length 34 mm), respectively. It 

will be assumed in the following that the radial stress is homogeneous in the sample and 

consequently is equal to the radial stress applied by the sample to the cell ( (int) S
radial rrσ σ= ). 

Moreover, in the above simulations, the strains (and stresses) can be calculated at any 

point in the cell. Fig. 5 shows the evolution of the inner hoop strain at points (z = 0, the axial 

symmetry plane and z = h0/2, the initial specimen ends) for both simulated loading cases (A and 

B) as a function of the external hoop strain (εθθ
(z=0, ext)). It appears (as expected) that the barrelling 

effect is stronger in case B (hpress = 34 mm) than in case A (hpress = 40 mm). 

It is then possible to compute the average inner hoop strain along the specimen height 

(between z = 0 to z = hspecimen/2) knowing the outer hoop strains measured on the cell and the 

axial strain of the specimen. The average radial strain of the specimen being known, the average 

specimen area may be also computed as a function of the outer hoop strain (εθθ
(z=0, ext)): 

( 0, )
0 (1 ( ))z ext

sA A f θθε == +  

The average axial stress is then: 

pe
er

-0
04

99
10

2,
 v

er
si

on
 1

 - 
9 

Ju
l 2

01
0



Acc
ep

te
d m

an
usc

rip
t 

 16

 
s

axialS
ZZ A

F
=σ , (6) 

This value axialF  is not directly computable by the SHPB analysis as the force deduced 

from SHPB measurements also includes the force induced by friction mechanisms. In order to 

evaluate the importance of the corresponding friction force, new simulations were made: the cell 

is loaded with a uniform shear stress combined with the uniform pressure previously applied to 

the inner surface. 

 

4.3.2 Effect of a uniform shear stress applied to the inner surface of the cell in addition to the 

internal pressure 

 

The above simulations confirm that the internal pressure induces a barrelling of the ring. 

Friction between the specimen and the ring would also induce barrelling. It is thus important to 

check how such friction could modify the value of the external hoop strain from which the 

internal pressure is calculated. Furthermore, as explained in subsection 4.1, the friction forces 

would induce an overestimation of the axial stress in the specimen if the stress level was directly 

deduced from the axial force given by standard SHPB analysis. 

 So, in the simulation, shear stresses were applied, in addition to the internal pressure. These 

shear stresses were set to be equal to 10% of the normal stress (corresponding to a friction 

coefficient equal to 0.1). They are imposed via nodal forces (for reasons of convenience) in the 

direction –z (for z > 0), so the direction of these nodal forces does not change with the cell 

deformation. The result of one simulation (with shear) is illustrated in figure 6 showing the 

evolution of the internal pressure according to the outer hoop strain (a slope of pressure from 0 to 
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800 MPa and shear stress from 0 to -80 MPa were applied over a height hpress of 40 mm). This 

curve is compared with the first simulation without friction previously presented in figure 4. 

 It is observed that, for the same outer hoop strain, the radial stress is decreased by 3 to 5% 

when friction is added to the internal pressure. Neglecting the friction would then lead to a 

slightly overestimated internal pressure deduced from the external hoop strain. It is explained, in 

other words, by the fact that the barrelling of the cell, and consequently the external hoop strain, 

is increased by the shear at a given pressure. 

As it is planned to measure the friction from the axial strain at the outer surface, figure 7 shows a 

comparison of the ratio between the external axial strain and the hoop strain at the measuring 

middle point (z = 0) with and without friction, for a height of the loaded area equal to 34 and 40 

mm. The results are plotted as a function of the internal pressure increasing from 0 to 600 MPa 

(the pressure range observed during the tests will be given latter). The axial strain at measuring 

points n°4 or n°6 (z = 3H/8) appears very small. Consequently, it was not used in the data 

processing. 

The external axial strain appears to be much more influenced by the height of the loaded area 

than by the amplitude of the friction, so that it seems difficult to evaluate friction from the outer 

axial strain of the cell. However, figure 7 shows some indications about how the friction might be 

evaluated from the axial strain. For example, if the internal pressure was lower than 300 MPa 

(elastic deformation of the cell) and if a small axial strain of the specimen was considered (hpress 

= 40 mm), the outer axial strain would appear negative without friction or positive if friction 

forces were acting. In fact, a negative axial strain is the consequence of the uniaxial stress state 

that exists close to the outer surface of the specimen (because σθθ > 0, σzz ≈ σrr ≈ 0) whereas a 

positive axial strain is the result of the barrelling deformation due to friction. In contrast to the 
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simple analytical solution (equation 4), friction is seen to induce a positive increment of axial 

strain. 

The same figure shows that, if an internal pressure higher than 300 MPa is considered, the axial 

strain level is strongly influenced by the height of the loaded area and weakly by the magnitude 

of the friction. In this case, the ratio between the measured hoop strains at points 1 and 2 appears 

more reliable (figure 8). 

The ratio between the hoop strains measured ( ( 3 /8, ) ( 0, )/z H ext z ext
θθ θθε ε= = ) is as much influenced 

by the friction as by the internal height of the loaded area (figure 8). Nevertheless, the level of the 

remote hoop strain is much higher than that of the axial strain and the sensitiveness of the 

measure is increased. If the internal pressure is less than 300 MPa (elastic deformation of the cell) 

and if the axial strain of the specimen is lower than a few percents (hpress = 40 mm), the ratio of 

hoop strains will be equal to 0.84 without friction and to 0.76 with friction. It corresponds to a 

decrease of 9% due to friction. If the internal pressure is equal to 600 MPa, the ratio of hoop 

strains decreases to 0.70 (hpress = 40 mm) or 0.57 (hpress = 34 mm). So, knowing the internal 

pressure applied and the axial strain of the specimen, the ratio of hoop strains could be used to 

evaluate the magnitude of the friction. 

These observations show that an extra "barrelling" deformation is generated by a shear 

stress applied along the inner surface. This deformation leads to an increase of the difference 

between the outer hoop strains measured (εθθ
(z=3H/8, ext), εθθ

(z=0, ext)) and an increase of outer axial 

strain (εzz
(z=0, ext)). Moreover, a friction coefficient of 0.1 between the cell and the sample can 

induce a slight over-estimation of the inner radial stress (of approximately 4%) and of the inner 

hoop strain (of approximately 6%) not detailed above. 
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4.3.3 Evaluation of the possible influence of friction forces (added to the force resulting from 

pure axial stresses) on the computed specimen behaviour 

 

As explained before, the friction leads to an over-estimation of the axial stress. The 

corresponding maximum relative error can be related to the contact forces: 

 2
22( )

4

fr rr
ax rr

zz
ax zz

zz

hD fF hErr f
DF D

π σ σσ
σπ σ

= = = ,     with     

P

P
dev

dev

zz

rr

σ

σ

σ
σ

3
21

3
11

+

−
=  (7, 8) 

where f is the friction coefficient, h and D the height and the diameter of the sample respectively. 

σrr and σzz, are the average radial stress and the axial stress in the sample, respectively. So, the 

corresponding error can be evaluated knowing the geometry of the specimen, the friction 

coefficient and the ratio between the deviatoric strength and pressure. The smaller this ratio, the 

higher is the error (equations 7 and 8). The tests that are presented later in the paper show that the 

ratio (σdev/P) always remained above 0.9. Therefore, the maximum ratio between the radial stress 

level and the axial stress level is approximately 0.44 (equation 8). If the initial dimensions of the 

specimen are considered (h = 40 mm, D = 30 mm) it appears that the relative error in the axial 

stress induced by a friction coefficient f is always under 1.2f (i.e. 12% if f = 0.1, equation 7). The 

numerical simulations done with and without friction will give a more precise evaluation of the 

error that could arise from neglecting the friction. 

 

4.3.4 Computation of the mechanical fields involved in the material behaviour 

 

The radial stress being known, the average deviatoric stress is: 
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 S S S
deviatoric zz rrσ σ σ= − ,  (9) 

the average hydrostatic pressure and the volumetric strain are given by the formulas: 

 ( )1 2
3

S S S
hydrostatic zz rrP σ σ= − + ,  (10) 

 2(1 )(1 ) 1S S
volumic axial rrε ε ε= + + − . (11) 

Knowing the axial stress and the internal pressure, the deviatoric behaviour (i.e. the supposed 

evolution of the deviatoric stress versus the hydrostatic pressure) and hydrostatic behaviour 

(variation of the volumetric strain versus the hydrostatic pressure) can be calculated. 

 

4.4. A NUMERICAL VALIDATION OF THE METHOD 

 

In order to check the validity of the proposed method used to process the experimental data, 

artificial experimental tests were performed using numerical simulations. These simulations use 

the concrete plasticity model (the KST model, see underneath) with 4 different sets of parameters 

in order to evaluate a large enough range of possible behaviours. Meanwhile, the main hypothesis 

introduced in subsection 4.3 will be justified (influence of the specimen shortening, of the cell 

expansion, and of the friction coefficient). 

This material model is not rate-sensitive. In the dynamic range, very small rate sensitivity for the 

tested concrete will be demonstrated (chapter 5) that validates the present assumption. 

 

4.4.1 The Krieg, Swenson and Taylor (KST) model 
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The model of Krieg, Swenson and Taylor [36, 37] is relatively simple and was implemented as a 

Fortran procedure (Vumat) in the Abaqus-explicit code [38]. It describes the hydrostatic 

behaviour by a compaction law linking the volumetric strain to the hydrostatic pressure (figure 9, 

right). The final constant bulk modulus Kf (Table 2) was used for the highest pressures (P > 1 

GPa). Moreover, the Von Mises equivalent stress σ eq  cannot exceed some function of the 

hydrostatic pressure P (equation 12). 

 ( )2 max
0 1 2min ,eq misesP

a a P a Pσ σ= + +  (12) 

The coefficients (a0, a1, a2) used in the subsequent simulations where identified from triaxial 

compression tests carried out under different confining pressures with MB50 concrete [23]. These 

coefficients are given in table 2. The numerical simulations of the 1D-strain compression test 

were performed with 4 different sets of parameters illustrated in figure 9 (table 2). 

 

4.4.2 Numerical simulations of one 1D-strain compression test 

 

Half of the cylindrical concrete specimen was compressed between a cylindrical steel 

compression plug and the symmetry plane (z = 0, figure 10) where a boundary condition of null 

axial displacement is imposed. An axial velocity is imposed on the upper surface of the 

compression plug. This dynamic numerical simulation will then account for radial inertia effects. 

The axial velocity imposed at one face of (half) the specimen is time dependent, in a close way, 

to the (half) difference of input and output speeds measured with SHPB. It then takes account of 

axial transient effects in the specimen. Only the axial movements of rigid bodies are neglected. 
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They are proved to be negligible by the fact that, at the end of the test, the global relative 

displacement between the specimen and the cell is then than 2 mm. These assumptions follow 

usual assumptions used to process standard SHPB tests [25]. Under-integrated axi-symmetric 

finite elements CAX4R were used. The numerical simulation of figure 10 uses parameters given 

in table 2 (concrete n°1). Figures 10a and 10b show the iso-contours of the axial and hoop strains 

for a nominal axial strain nearly equal to -20%. One can notice the continuity of the hoop strain 

field between the sample and the cell. The axial strain and the stress fields are also almost 

homogeneous in the sample (–1100 MPa > σzz > –1400 MPa). A concentration of stresses is 

observed near the contact between the plug and the sample. This is due to the smaller diameter of 

the plug (figure 10d). Moreover, it is observed that the radial stress is homogeneous in the sample 

and is constant at the contact surface between the plug and the sample (figure 10c). This point 

reinforces the assumptions used for the numerical simulations involving the cell only (figure 4). 

 

4.4.3 Validation of the processing method by its application to numerically simulated data 

 

The following figures (11 to 13) show the results of the procedure applied to numerical 

simulations. The loading is applied up to an axial strain of -25%. The left-hand side figures 

present the deviatoric behaviour (evolution of the deviatoric stress versus the hydrostatic 

pressure) while the right-hand ones show the hydrostatic behaviour (compaction). As explained 

in section 4.3, in the processing method, the mean radial stress and the mean strain of the 

specimen are computed knowing the external hoop strain of the cell and the mean axial strain of 

the specimen (equation 5); the axial stress is computed as a function of the axial force and the 

radial strain of the specimen (equation 6). Therefore, the “measured” (i.e. processed) deviatoric 
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stress ( " "measured
deviatoricσ ), the “measured” hydrostatic pressure ( " "measured

hydrostaticP ) and the “measured” 

volumetric strain ( " "measured
volumicε ) are deduced from equations 9, 10 and 11 using the variables defined 

underneath (13, 14 and 15). 

 ( , )S ext cell S
rr axialθθσ ε ε−  (13) 

 ( , )S ext cell S
rr axialθθε ε ε−  (14) 

 ( , )S S
zz axial rrFσ ε  (15) 

 Independently of the processing method, a direct knowledge of the specimen/cell contact force 

(Fradial) is provided by the numerical simulations. A new mean radial stress may be computed 

from this contact force and the axial strain of the specimen (defined in 16). This radial stress may 

be compared, at any time, with the one of the processing method computed with equation 5 

(defined in 13). 

 ( , )S S
rr radial axialFσ ε  (16) 

The “contact” deviatoric stress ( " "contact
deviatoricσ ) and the hydrostatic pressure ( " "contact

hydrostaticP ) are deduced 

from equations 9 and 10 using the variables defined in15 and 16. 

 

Consequently, for each following graph, three curves are presented: the first curve (A -plain line) 

corresponds to the imposed material behaviours according to figure 9 (table 2). The second (B -

dotted curves with triangles) is obtained with the method proposed in subsection 4.3 that will be 

used to process experimental data (defined in 13, 14 and 15). The third curve (C -with round 
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symbols) is plotted using the stresses (defined in 15 and 16) obtained from the contact forces 

directly given by the numerical simulation. A comparison of the 3 curves on the right and left-

hand sides in the corresponding figures shows the influence of the main assumptions. The 

difference between the plain curve (A) and the dotted curve (C) indicates the error made by 

neglecting the heterogeneity of the stresses in the sample. The difference between curve (B) and 

the previous one (C) especially highlights the effects of a possible imperfect relation between the 

external hoop strain and the internal pressure. 

 

4.4.4 Discussion and validation of the method with the concrete model n°1 

 

The first figures 11 and 12 correspond to the 1D-strain compression tests performed on concrete 

n°1 assuming zero friction. No difference is observed between A (imposed material behaviour) 

and B (processing method) (figure 11). This very good agreement proves the quality of the 

processing method when there is no friction (satisfactory interpolation taking account of the 

specimen length). On the other hand, the poorer comparisons seen in figure 12 show the effect of 

neglecting the axial contraction of the sample (figure 12a, definition 17), or its radial swelling, to 

evaluate the axial stress (figure 12b, definition 18) or neglecting again the radial swelling to 

compute the volumetric strain (figure 12c, definition 19). 

 ( )S ext cell
rr θθσ ε −  (17) 

 ( )S
zz axialFσ  (18) 

 0S
rrε =  (19) 
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It would appear essential to take into account the plastic behaviour of the cell despite its 

thickness. Indeed, with the assumption of purely elastic behaviour, one notes an important error 

in the analysis of the deviatoric and hydrostatic behaviours when the inner pressure reaches 

approximately 400 MPa. However, this pressure is largely exceeded in the tests presented later. 

 

4.4.5 Influence of the concrete behaviour on the precision of the analysis 

 

Figure 13 presents the analysis of the numerical simulations for types-2, 3 and 4 concretes. When 

the compaction of the sample is more important (figures 13a and 13c) the analysis appears even 

more precise. This is explained by the lower stresses and radial strains in the sample. One can 

note that the method remains relevant up to an equivalent stress of 1000 MPa (figures 13b and 

13c). The final bulk modulus, which is reached for a pressure higher than 1 GPa, is correctly 

described (figure 13b). These 4 numerical simulations confirm that the method correctly predicts 

the hydrostatic and deviatoric behaviours of geomaterials for a large range of volumetric strains 

and hydrostatic pressures. The influence of friction on the quality of the analysis is discussed in 

the following section. 

 

4.4.6 Influence of the friction on the precision of the analysis 

 

In the calculations leading to figure 14, a coefficient of friction equal to 0.1 was used at the 

concrete sample/ring interface. The contact between the plug and the sample is assumed to be 

frictionless. In the first case (figure 14a, concrete n°1), one observes a maximum difference (≈ 

9%) between curves A and B which is definitely more important than the case without friction 
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(figure 11). A significant difference (between 10% and 17%) is also observed between curves A 

and C. This last comparison shows that the difference does not come from a poor estimation of 

the radial stress but is rather due to the shear stresses induced by the friction. It is also seen that 

the volumetric strain (from curves B or C) is underestimated at the end of the loading. Both 

results are in very good agreement with the evaluation of the effects of the friction made in 

subsections 4.3.3 (overestimation of the axial stress, equation 7) and 4.3.2 (increase of radial 

strain). Finally, the observed difference between curves A and B (volumetric strain) is less than 

about 5%, up to a pressure of 900 MPa (figure 14a). 

Surprisingly, for the type-3 concrete, the deviatoric stress given by curve (B) is not over-

estimated compared to that calculated from curve (C). Once again, this is explained by the 

calculations of subsection 4.3.3 (see equations 7 and 8 with σdev/P ≈ 1 and f = 0.1). Indeed, it is 

shown that a friction coefficient equal to 0.1 leads to a relative over-estimation of the axial stress 

close to 10% and to a relative over-estimation of the radial stress close to 4% (figure 6). When 

the deviatoric stress increases with pressure with a ratio (σdev/P) close to one (as it is the case in 

figure 14b), these two effects compensate very well and the deviation (comparing curve B to 

curve A) in the analysis disappears in spite of the friction (see equations 9 and 10). It follows that 

curve (B) is very close to curve (A) (figure 14b). 

These calculations with friction (f = 0.1) were also performed in the case of type-2 and 4 concrete 

models (corresponding to 20% compaction for a hydrostatic pressure of 1 GPa). One observes a 

relative deviation smaller than that obtained with the concrete models 1 and 3 due to a lower 

radial stress level. 

These numerical simulations made it possible to evaluate the quality and the robustness of 

the proposed processing method for 1D-strain compression tests. It appears necessary to take into 
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account the plastic strain of the confining cell when the inner pressure exceeds approximately 

400 MPa. Moreover, as shown in the numerical simulations of the test, one also needs to take into 

account the sample shortening and its small radial expansion. Friction has a limited influence 

when the friction coefficient does not exceed 0.1. To conclude, according to these numerical 

simulations, the deviation from real values of the deviatoric stress and of the volumetric strain 

due to the method will remain less than 10% and 5%, respectively. According to the last 

numerical simulation, the deviation of the deviatoric stress will not exceed a few percent if the 

deviatoric stress increases with pressure with a ratio (σdev/P) close to one. This situation 

corresponds to the concrete tested, the results of which are presented in the next section. 

 

5. Dynamic behaviour of MB50 concrete 

 

Three dynamic 1D-strain compression tests were carried out with MB50 concrete samples 

(diameter: 30 mm, height: 40 mm) and with the confining cells described above. These samples 

were loaded with the Split Hopkinson Pressure Bars described in section 3. The method used for 

the analysis of the test results has been presented in section 4.3. The assumption of negligible 

friction between the cell and the specimen was especially addressed. The deviatoric behaviour 

(evolution of the deviatoric stress versus the hydrostatic pressure) and the hydrostatic behaviour 

(evolution of the hydrostatic pressure versus volumetric strain) are computed. A comparison 

between the 3 tests will allow for an evaluation of the strain-rate effect. 
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5.1 GENERAL FEATURES 
 

 As explained in section 3, SHPB data processing provides forces and displacements at the 

bar ends. Checks were performed that the input and output forces were close enough to each 

other to ensure the homogeneity of stress fields in the specimen. Equation 2b shows that the 

output force is a direct measurement (directly proportional to the strain of the transmitted wave) 

by contrast with the input force (proportional to the algebraic sum of waves with opposite signs). 

This input force is therefore more affected by experimental noise. Confidence in the specimen 

equilibrium having also been obtained by numerical simulations (not reported in the paper), the 

axial force is, in the following, deduced from the output force only. This is in perfect agreement 

with the traditional data processing of the SHPB [25]. The nominal axial strain-rate is directly 

derived from formula 2a. Its evolution versus time basically depends on the stress-strain response 

of the specimen, as is always the case with the SHPB. Having measured the variation of strain-

rate with time, the average strain rate is arbitrary defined, in what follows, as the mean value 

between the time corresponding to the maximum strain rate (≈ 110 µs, figure 15a) and the end of 

the test (≈ 870 µs, figure 15a). The strain versus time shown in figure 15a looks monotonic as the 

result of integration. 

 The results of three tests are presented corresponding to three axial strain-rates: 80 s-1, 141 

s-1, 221 s-1 (associated with striker speeds of 6.13, 12.5 and 19.23 m/s, respectively) 

5.2. TEST ANALYSIS (special focus on test n°2) 

 

Note that, in the case of tests n°1 and 3, the same figures as those presented later may be found in 
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appendix A, with particular comments when needed. A special focus on test n°2 is made. This 

test corresponds to a 1D-strain compression test carried out at a mean strain rate equal to 141 s-1. 

The velocity of the striker is equal to 12.5 m/s. The maximum strain rate reached during the test 

is equal to 223 s-1. 

 

5.2.1 Experimental data 

 

The evolution of the hoop strains (figure 15b) shows that the strain level at gauge G2, middle of 

specimen (z = 0 in figure 1b), is higher than at gauges G1 and G3 (z = ± 3H/8) which is in 

agreement with calculations made in subsection 4.3 (figure 8). 

The maximum hoop strain G2 is equal to 0.15%. Consequently, the cell does not have a purely 

elastic behaviour (by contrast with test n°1 – see appendix A). Moreover, the strain recorded by 

the G5 (axial, z = 0) gauge is negative during the first 100 µs. This axial strain evolution (εzz
(z=0, 

ext)) is in agreement with the simulations done without friction (f = 0) that are presented in section 

4 (figure 7 for instance). When the shortening of the sample is small, the positive hoop strain due 

to internal pressure induces a negative axial strain (by the Poisson’s ratio effect). The barrelling 

of the cell which appears later with the shortening of the specimen induces a positive (tension) 

axial strain. 

 

5.2.2 Data processing using the proposed method 

 

Looking at the average stress fields in the sample (figure 15c), two phases are observed. Between 

0 and 200 µs, the axial stress increases whereas the radial stress remains very low, just as in a 
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uniaxial compression test. The deviatoric stress is then very close to the axial stress. Between 200 

and 800 µs, the deviatoric stress increases slowly. The radial stress reaches 450 MPa at the end of 

the loading while the hydrostatic pressure exceeds 640 MPa. The axial strain evolves from 0 to -

12% (figure 15d) and the inner radial strain remains negligible by comparison with the axial 

strain (|εrr
max/εzz

max| = 3.4%). The test is thus proved to be a quasi-1D-strain compression test. 

 

5.2.3 Hydrostatic and deviatoric behaviours 

 

The deviatoric and the hydrostatic behaviours of this test are plotted in figure 16. The deviatoric 

stress shows a change in the response for a pressure of the order of 100 MPa. The hydrostatic 

behaviour is quasi-linear for a pressure greater than 100 MPa and has an apparent bulk modulus 

around 6 GPa. Very close values are found in the three tests (figure 17). 

The measured hydrostatic and deviatoric behaviours do not show strong differences with those 

assumed for the KST model (particularly in the case of concrete model n°4 that compares figure 

13c with figures 16 and 17). It confirms that the above numerical simulations are realistic. 

 

5.3. DISCUSSION 

 

5.3.1 Comparison of the deviatoric and the hydrostatic behaviours obtained for the 3 tests 

 

The results obtained in the 3 tests are very close to each other (figure 17, left hand side). Indeed, 

the corresponding curves are almost superimposed in the pressure range from 50 to 500 MPa. 

This suggests that the strain rate has a weak influence on the deviatoric behaviour in the observed 
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domain. 

In the same way, the curves describing the hydrostatic behaviour of the 3 tests are well 

superimposed in the volumetric strain range from 0 to -11% (figure 17, right hand side). The 

hydrostatic behaviour also seems weakly influenced by the strain rate in the observed range. 

 

5.3.2 Comparison of the results given by test n°2 with those found in the literature 

 

Figure 18 shows a comparison of the results of the 1D-strain test n°2 (141 s-1) with results found 

in the literature for the same concrete (MB50): quasi-static 1D-strain tests performed by Gatuingt 

[21] with a smaller cell (external diameter: 50 mm) allowed the hydrostatic (figure 18, right hand 

side) and the deviatoric behaviours (figure 18, left hand side) [39] to be obtained. Despite the 

small variations in properties of MB50 concrete, the purpose of the following comparison is not 

to elaborate a precise concrete model. It is to reinforce the validation of the test and of the 

processing method by showing that the results are not in contradiction with other results found in 

the literature. MB50 concrete was also submitted to quasi-static tri-axial tests [23], the results of 

which are also plotted in figure 18 (left hand side). During these tests, the specimen was first 

loaded under a pure hydrostatic pressure and then submitted to an axial loading. Several loading 

paths are shown in figure 18 (left hand side) ending with the maximum deviatoric stress which is 

reached. The hydrostatic response to pure hydrostatic loading is shown in figure 18 (right hand 

side). 

The deviatoric behaviours are very similar in the intermediate range of pressure (300 MPa-600 

MPa). In this range, the influence of the strain rate and of the loading path appears quite small. 

For higher pressures, a difference appears: the dynamic test can lead to a higher deviatoric stress 

(950 MPa, test n°3, 221 s-1, figure 17) than that of the triaxial test (550 MPa, figure 18) 
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performed with the highest pressure of confinement (800 MPa). 

When quasi-static and 1-D strain tests are observed together, the hydrostatic behaviour of 

concrete MB50 appears to be influenced by the loading rate. When quasi-static 1D-strain test and 

the response under a pure hydrostatic loading are compared, it appears to significantly depend on 

the loading path. 

 

Conclusion 

 

 The three 1D-strain compression tests show that the deviatoric and hydrostatic behaviours 

appear almost independent of the strain rate in the (rather narrow) studied range of strain rates 

(80-221 s-1). The deviatoric strength increases monotonically with the hydrostatic pressure to 

reach 950 MPa under a pressure of 900 MPa (test n°3). 

 This result is different from that obtained in triaxial quasi-static compression tests on the same 

concrete (MB50), for which a maximum in the deviatoric resistance of around 550 MPa was 

observed [23]. This difference can be attributed to a strain-rate effect (4 orders of magnitude 

between quasi-static and the present tests) or it indicates a possible influence of the loading path 

on the response. 

 Considering the hydrostatic behaviour, an almost constant dynamic bulk modulus (around 5 to 

6 GPa) was observed with the three 1D-strain compression tests up to a pressure of 900 MPa. 

This is smaller than that deduced from purely hydrostatic compression tests (9 to 20 GPa in that 

case) using a tri-axial cell (same concrete) [23] but greater than that obtained with a quasi-static 

1D-strain test (3 to 4 GPa in that case). The influence of the strain-rate for equivalent loading 

paths (1D-strain) appears sizeable. However, the comparison between the two quasi-static tests 
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underlines once again the importance of the loading path. 

 New information is provided by the tests presented in this paper. The most important, at the 

present stage, is the description of a new testing device giving 1D strain loading of geomaterials 

in the dynamic range and the proposition of a method to efficiently analyse experimental data. 

This method leads to the knowledge of the deviatoric and hydrostatic behaviours of the material 

tested. It is shown that the plastic behaviour of the cell as well as the shortening and the swelling 

of the specimen have to be taken into account in the analysis. The possible influence of a friction 

coefficient (smaller than 0.1) between the specimen and the cell was investigated by means of 

numerical simulations of the cell loaded by internal pressure and internal shear stress. Various 

numerical simulations of the test were carried out with different sets of parameters for the 

concrete plasticity model of Krieg, Swenson and Taylor. The method was applied successfully to 

artificial experimental data (free of noise) provided by those simulations. Moreover, two 

numerical simulations were performed with a constant friction coefficient equal to 0.1. These 

proved there is a weak influence of friction (between the cell and the sample) on the computed 

response of the concrete behaviour. This is especially true when the deviatoric resistance 

monotonically increases with the hydrostatic pressure with a ratio close to one. In addition, two 

methods of assessing the friction based on the outer strains ratio were also proposed and 

discussed. These two methods were used in experiments showing the friction coefficient is closer 

to 0 than to 0.1. 

 A high level of compaction strain (20%) can be produced with this testing device. It mostly 

operates in a 1D-strain situation. Stresses up to 1000 MPa, confinement pressures up to 600 MPa 

and a strain rate range between 100 and 500 s-1 can be achieved to provide suitable data to 

evaluate the dynamic behaviour of concrete and other rock-like materials under multiaxial 

dynamic loadings. 
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Appendix A 
 
 

TEST N°1 (average strain rate: 80 s-1) 

 

The striker velocity for this test was 6.13 m/s, leading to a maximum strain rate of 145 s-1 and to 

an average strain rate of about 80 s-1. The external hoop-strains that were recorded on the cell are 

presented in figure 19b. The maximum hoop strain G2 is 0.064%. Consequently and according to 

the numerical simulations presented in subsection 4.3 (figure 4), the behaviour of the cell remains 

in the elastic domain. The difference between the signals of gauges G1 and G3 could be due to a 

slight relative global displacement between the specimen and the cell. 

The average radial stress in the sample (figure 19c) and its average radial strain (figure 19d) are 

deduced from the measured hoop strains. The axial stress is deduced from the output force and 

corrected for the above computed radial strain. It is observed that the loading can be divided into 

two phases: Between 0 and 200 µs, the axial stress increases and the radial stress remains very 

low, like in a uniaxial compression test. The deviatoric stress is therefore very close to the axial 

stress. Later, between 200 and 800 µs, the deviatoric stress increases slowly. The hydrostatic and 

deviatoric behaviours corresponding to test n°1 are shown in figure 17 (curve “80 s-1”). 

 

TEST N°3 (average strain rate: 221 s-1) 

 

This test corresponds to a 1D-strain compression test carried out at a mean strain rate equal to 

pe
er

-0
04

99
10

2,
 v

er
si

on
 1

 - 
9 

Ju
l 2

01
0



Acc
ep

te
d m

an
usc

rip
t 

 35

221 s-1. The striker velocity was 19.23 m/s. The strain rate reached a maximum value equal to 

415 s-1. Experimental data are plotted in figures 20a and 20b. 

The maximum hoop strain G2 was 0.2%. Consequently, the cell did not have a purely elastic 

behaviour, according to the numerical simulations presented in the subsection 4.3. According to 

figure 7 in section 4.3., the negative sign of the axial strain (G5 gauge, z = 0) at the beginning of 

the test indicates that the friction coefficient was closer to 0 than to 0.1 The same conclusion is 

deduced from the small value of the ratio ( ( 0, ) ( 0, )/z ext z ext
zz θθε ε= =  < 0.25) observed when the axial 

strain was equal to 15% (t = 600 µs). 

It is observed that the loading can again be divided into two phases (figure 20c). Between 0 and 

100 µs, the axial stress increases and the radial stress remains very low, as in a uniaxial 

compression test. Between 100 and 800 µs, the deviatoric stress and the hydrostatic pressure 

increase up to 1000 MPa and 900 MPa, respectively. The radial stress reaches 570 MPa at the end 

of the test. The axial strain reaches a maximum value of –19%. The inner radial strain remains 

very small. Consequently this test was close to a 1D-strain compression test. The hydrostatic and 

deviatoric behaviours corresponding to test n°3 are shown in figure 17 (curve “221 s-1”). 

 

The ratio of the outer hoop strains (εθθ
(z=3H/8, ext)/εθθ

(z=0, ext), figure 21) was computed from the 

experimental data shown in figure 20b. It should be emphasised that this ratio remains equal to 

approximately 0.8 whereas the axial strain is lower than -0.1. This ratio can be compared with 

that calculated by numerical simulation in the case of a cell subjected to an internal pressure 

(figure 8, section 4.3). In the case of hpress = 34 mm, the computed ratio varied from 0.64 to 0.68, 

depending on the internal pressure applied. The same ratio varied from 0.58 to 0.62 when an 

internal shear loading corresponding to a friction coefficient equal to 0.1 was added. The value 
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found in the experiments (0.8) is closer to the result of the 1st numerical simulation (f = 0) than to 

the result of the second simulation (f = 0.1). Thus, as explained in section 4.3, this ratio could be 

used to compute an estimated value of the friction coefficient. In the present test, it indicates 

again that the friction coefficient is closer to 0 than to 0.1. 
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Tab. 1. Composition and mechanical properties of MB50 concrete 

Composition of MB50 [20] 

Sand (kg/m3) 1783 

Cement (kg/m3) 400 

Water (kg/m3) 200 

Admixture (kg/m3) 12 

Water/Cement 0.5 

Max grain size (mm) 5 

Mechanical properties of MB50 [20] 

Compressive strength (MPa) 70 

Tensile strength (MPa) 3.0 
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Tab. 2. Parameters of the Krieg, Swenson and Taylor model used in the numerical simulations 

Density, Young’s modulus, Poisson’s ratio: 

First point of the compaction curve: 

Initial and final bulk moduli: 

ρ, E, ν 

εv
(1), P(1) 

Ki , Kf 

2.386, 36 GPa, 0.2 

-0.003, 60 MPa 

20 GPa, 20 GPa 

Coefficients of the elliptic equation: a0, a1, a2 1800 MPa2, 240 MPa, 0.6 

4 sets of parameters used in the numerical simulations (cf. figure 9) 

Concrete n°1: 

Concrete n°2: 

Concrete n°3: 

Concrete n°4: 

 

σmises
max, εv

(2), P(2) 

 

550 MPa, -0.1, 1 GPa 

550 MPa, -0.2, 1 GPa 

1000 MPa, -0.1, 1 GPa 

1000 MPa, -0.2, 1 GPa 
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metallic ringconcrete cylinder

metallic compression plugs Fig.1a  Fig.1b Position of the 6 gauges 

 

Fig.1. Complete loading cell 

G1 G2 G3

G4 G5 G6

3H/8 3H/8 
H 
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Fig. 2. Basic waves recorded in test n°2 (striker speed: 12.5 m/s). 
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Fig. 3. 1D stress-strain behaviour of the steel of the cell 
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Fig. 4. Internal pressure versus external hoop strain, from the numerical simulation of a cell 

internally loaded by a pressure applied to its central part (case A: 40 mm, case B: 34 mm) 

pe
er

-0
04

99
10

2,
 v

er
si

on
 1

 - 
9 

Ju
l 2

01
0



Acc
ep

te
d m

an
usc

rip
t 

 45

 

 

Fig. 5. Internal hoop strains (z = 0 and z = h0 /2) versus external hoop strain (εθθ
(z=0, ext)), 

from the numerical simulation of a cell internally loaded by a pressure applied to its central part 

(case A: 40 mm, case B: 34 mm) 
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Without shear loading: 

 

 

 

 

With shear loading: 

Fig. 6. Numerical simulation of a cell under internal pressure (0-800 MPa) and shear (0-80 MPa) 

loading. Height of the loaded area: 40 mm 

hpress /2 

hpress /2 
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Fig. 7. Ratio of the external axial strain at middle point (z = 0) to the hoop strain at the same 

point 
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Fig. 8. Ratio of hoop strain at point z = 3H/8 to the hoop strain at middle point (z = 0) 

pe
er

-0
04

99
10

2,
 v

er
si

on
 1

 - 
9 

Ju
l 2

01
0



Acc
ep

te
d m

an
usc

rip
t 

 49

 

 

Fig. 9. Behaviour laws used for concretes n°1, 2, 3 and 4 (Left hand side: deviatoric strength 

versus pressure, Right hand side: pressure versus volumetric strain) 
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Fig. 10a Hoop strain εθθ Axial strain εzz Fig. 10b 

 

 

 

 

 

 

 
 

 
 

Fig. 10c Radial stress σrr (Pa) Axial stress σzz (Pa) Fig. 10d 

Fig. 10. Main results of the numerical simulation of the test (εaxial = -20%, concrete n°1, friction 

coefficient = 0 at contact faces) 
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Fig. 11. Results of the numerical simulation of the 1D-strain compression test (no friction 

between the specimen and the cell, Concrete n°1) 
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Fig. 12. Illustration of possible uncompleted assumptions used in the processing of experimental 

data (based on the results of the numerical simulation of the 1D-strain compression test - no 

friction, concrete model n°1) 

Fig. 12a, left. The shortening of the specimen is neglected to compute the radial stress 

Fig. 12b, centre. The swelling of the specimen is neglected to compute the axial stress 

Fig. 12c, right. The swelling of the specimen is neglected to compute the volumetric strain 
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Fig. 13a 

 

 

Fig. 13b 

 

 

Fig. 13c 

 
Fig. 13. Results of numerical simulations of 1D-strain compression test 

Fig. 13a. Concrete model n°2, no friction between the specimen and the cell 

Fig. 13b. Concrete model n°3, no friction between the specimen and the cell 

Fig. 13c. Concrete model n°4, no friction between the specimen and the cell
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Fig. 14a 

 

Fig. 14b 

 

Fig. 14. Results of numerical simulations of 1D-strain compression test 

Fig. 14a. Concrete model n°1, friction between the specimen and the cell: f = 0.1 

Fig. 14b. Concrete model n°3, friction between the specimen and the cell: f = 0.1 

pe
er

-0
04

99
10

2,
 v

er
si

on
 1

 - 
9 

Ju
l 2

01
0



Acc
ep

te
d m

an
usc

rip
t 

 55

 

Fig. 15a Fig. 15b

Fig. 15c Fig. 15d
Fig. 15. Second dynamic 1D-strain compression test: evolution of stresses and strains with time 

Fig. 15a. Nominal axial stress and strain of the specimen versus time (experimental data) 

Fig. 15b. Strains measured on the outer surface of the cell (εθθ
(z=0, ext), εθθ

(z=3H/8, ext), εθθ
(z=-

3H/8, ext), εzz
(z=0, ext)), (experimental data) 

Fig. 15c. Average stresses in the specimen (from processed data) 

Fig. 15d. Average strains in the specimen (from processed data) 
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Fig. 16. Behaviours of concrete MB50 at strain rate of 141 s-1 compared with that of concrete 

models n°1 and 4 
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Fig. 17. Comparison of the behaviour deduced from tests 1 to 3 

pe
er

-0
04

99
10

2,
 v

er
si

on
 1

 - 
9 

Ju
l 2

01
0



Acc
ep

te
d m

an
usc

rip
t 

 58

 

  
Fig. 18. Comparison of behaviours of concrete MB50 based on measurements made with three 

different experimental devices: 1D-strain test n°2; Quasi-static 1D-strain tests [21, 39]; Quasi-

static triaxial and purely hydrostatic compression tests (from Buzaud [23]). 
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Fig. 19a Fig. 19b

Fig. 19c Fig. 19d
Fig. 19. First dynamic 1D-strain compression test: evolution of stresses and strains with time 

Fig. 19a. Nominal axial stress and strain of the specimen versus time (experimental data) 

Fig. 19b. Strains measured on the outer surface of the cell (εθθ
(z=0, ext), εθθ

(z=3H/8, ext), εθθ
(z=-

3H/8, ext)), (experimental data) 

Fig. 19c. Average stresses in the specimen (from processed data) 

Fig. 19d. Average strains in the specimen (from processed data) 
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Fig. 20a Fig. 20b

Fig. 20c Fig. 20d
Fig. 20. Third dynamic 1D-strain compression test: evolution of stresses and strains 

Fig. 20a. Nominal axial stress and strain of the specimen versus time (experimental data) 

Fig. 20b. Strains measured on the outer surface of the cell (εθθ
(z=0, ext), εθθ

(z=3H/8, ext), εθθ
(z=-

3H/8, ext), εzz
(z=0, ext)), (experimental data) 

Fig. 20c. Average stresses in the specimen (from processed data) 

Fig. 20d. Average strains in the specimen (from processed data) 
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Fig. 21. Ratio of external hoop strains (εθθ

(z=3H/8, ext)/εθθ
(z=0, ext)) 
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