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ABSTRACT.High dynamic loadings lead to material degradation and structural failure. This is
even more the case for concrete structures where the parts initially in compression break in ten-
sion due to waves propagation and reflection. The dissymmetry of the material behavior plays
a major role in such cases, dissymmetry mainly due to damage induced anisotropy. Loading
induced damage is most often anisotropic and one proposes here to take advantage of such a
feature to build a damage model for concrete, dissymmetric in tension and in compression, 3D,
suitable for dynamic computations. A single 2nd order tensorial damage variableDDD is consid-
ered with a damage law ensuring a damage rate proportional tothe square of the positive part
of the strain tensor. One focus in the present work on viscousregularizations for the anisotropic
damage model proposed, regularizations of Norton-Perzynatype. Numerical examples of dy-
namic failures illustrate the ability and the efficiency of the model to deal with 3D structures.

RÉSUMÉ.Lors d’un chargement de dynamique transitoire sur une structure en béton, il n’est
pas rare d’avoir des réflexions d’ondes de compression qui endevenant des ondes de traction
peuvent provoquer la rupture. La dissymétrie du comportement joue alors un rôle majeur, dis-
symétrie principalement due à l’endommagement anisotropeinduit. Nous considérerons donc
un modèle d’endommagement pour le béton, 3D, capable de représenter cette dissymétrie et
adapté aux chargements dynamiques. Nous considérerons unevariable d’endommagement ten-
sorielle d’ordre 2,DDD, avec une loi d’évolution proportionnelle à la partie positive du tenseur des
déformations. Le travail présenté ici traite plus particulièrement de la régularisation visqueuse
du modèle d’endommagement anisotrope proposé ainsi que sontraitement numérique. Un ex-
emple de calcul de structure montre la pertinence et l’efficacité du modèle.
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MOTS-CLÉS :endommagement, effet retard, anisotropie induite, béton,impact



2 REMN.

1. INTRODUCTION

Softening damage laws classically lead to strain localization phenomenon and to
mesh dependency if no regularization is considered: with local nonviscous models
the strain-damage localization band computed has for thickness the inter-Gauss points
distance, thickness which goes to zero as the mesh is more andmore refined. The
damage models giving for quasi-brittle materials a finite thickness to the localization
bands are in general quite complex, as the nonlocal models ([PIJ 87, deB 91, PEE 96]).
More simple models at least from the programming point of view, introduce instead
of nonlocality a "viscous" or delay damage ([LAD 89, DUB 94, ALL 97, LAD 98]).

Considering dynamics and impact applications needs efficient schemes so that the
computations are often performed with explicit ones at boththe structure scale and
the Gauss points level, with the classical stabilility difficulties in such cases (they will
be illustrated once more in section 3). One proposes in the present work to use for
the time integration of the constitutive equations the feature of an implicit scheme
whose solution can be explicited over a time increment. Sucha feature is specific
to the anisotropic damage model considered for concrete ([DES 04, DES 07]). It is
extended to the case of viscous regularization.

2. VISCOUS REGULARIZATIONS

For many damage and plasticity models, the elasticity domain is defined through
the introduction of a criterion functionf such as the domainf < 0 corresponds to
elastic loading or unloading, and the consistency conditionsf = 0, ḟ = 0 correspond
to damage evolution and/or yielding. A classical expression for concrete is the strain
formulationf = ǫ̂ − κ(D), with ǫ̂ Mazars equivalent strain ([MAZ 86]) andκ(D) a
function of the damageD. A regularization possibility is then to introduce a character-
istic time which, altogether with the consideration of the of laws dynamics, indirectly
defines a characteristic length. In the present case of elasticity coupled with damage
this is simply done by introducing a viscosity lawǫv = ǫv(Ḋ) in Mazars criterion.
The damage evolution occurs not anymore atf = 0 but atf = ǫv > 0. A classical
law for isotropic damage is Norton-Perzyna power law,ǫv = kḊ1/n, with k andn the
viscosity parameters (see also [DUB 94, GAT 02]). It leads toan unbounded damage
rate often too high at high strain rates. It is possible to bound the damage rate, for
instance by the maximum ratėD∞ = 1/τc material dependent equal to the inverse of
the characteristic timeτc ([LAD 98, ALL 97, SUF 04]). To gain this property, these
authors rewrite the criterion surface asf = g(ǫ̂) − D (with g = κ−1) and define the
viscosity law as

f = Dv > 0 with Dv = −
1

b
ln

(

Ḋ∞ − Ḋ

Ḋ∞

)

(1)

from which derives the delay-damage law, saturating at highstrain rates,

Ḋ = Ḋ∞ [1 − exp (−b(g(ǫ̂) − D))] (2)
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The viscosity parameters, material dependent, are thenḊ∞ andb. This regularization
is defined locally (i.e. at a structure Gauss point) and is well adapted for dynamics
computations. One extends it next to to the case of induced anisotropic damage.

3. ANISOTROPIC DELAY-DAMAGE MODEL

For concrete, the microcracks due to tension are mainly orthogonal to the loading
direction, when the microcracks due to compression are mainly parallel to the loading
direction. The damage state has then to be represented by a tensorial variableDDD
(either a fourth rank tensor or a second rank tensor) ([LEC 81, KRA 85]). The use of
a second order damage tensor is more convenient for practical applications (as well
as for the material parameters identification) and this is the choice made here. The
damage anisotropy induced by either tension or compressionis then simply modeled
by the consideration of damage evolution laws ensuring a damage rate proportional to
the positive part of the strain tensor, i.e. a damage governed by the principal extensions
([MAZ 90, DRA 98]).

The basis of the present work is the rate-independant anisotropic damage model
proposed by [DES 04] (see also [LEM 05]). According to the thermodynamics frame-
work, the single damage variableDDD is considered and a single set of material param-
eters is valid for tension and compression.

The full set of proposed constitutive equations including anisotropic delay-damage
reads :

– Elasticity,

ǫǫǫ =
1 + ν

E
σ̃σσ −

ν

E
tr σ̃σσ 111 or ǫǫǫ = EEE−1 : σ̃σσ (3)

with E the young’s modulus,ν the Poisson’s ration andEEE the Hooke’s tensor.

– Effective stress,

σ̃σσ =
[

(111 −DDD)−1/2 σσσD (111 −DDD)−1/2

]D

+
1

3

[

〈tr σσσ〉+
1 − tr DDD

+ 〈tr σσσ〉−

]

111 (4)

where(•)D denotes the deviatoric part,〈•〉+ (resp.〈•〉−) the positive (resp. negative)
part of a scalar.

– Mazars damage criterion

f = κ−1(ǫ̂) − tr DDD, ǫ̂ =
√

〈ǫǫǫ〉+ : 〈ǫǫǫ〉+ =
√

tr〈ǫǫǫ〉+ (5)

using the viscous regularization (1), so that the conditionf ≤ 0 corresponds to elastic
loading or unloading and the conditionf > 0 corresponds to damage growth. In this
last case one write then:

f = −
1

b
ln

(

Ḋ∞ − tr ḊDD

Ḋ∞

)

(6)
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〈ǫǫǫ〉+ is the positive part of the strain tensor build from the positive eigen strains. Note
that to take the positive part of a second order tensorAAA and to make it at the power
α consists i) in makingAAA diagonal through the change of base matrixPPP , AAAdiag =
PPP−1AAAPPP , ii) in taking the positive part powerα of the diagonal terms defining the
diagonal matrixAAAα

pos, iii) in turning back the tensor in its initial base as〈AAA〉α+ =
PPPAAAα

posPPP
−1.

The material parameterṡD∞ andb are the delay-damage parameters and theκ−1

function is set as

κ−1(ǫ̂) = g(ǫ̂) = aA

[

arctan

(

ǫ̂

a

)

− arctan
(κ0

a

)

]

(7)

introducingκ0 as damage threshold,A anda as damage parameters.

– Induced damage anisotropy governed by the positive extensions,

ḊDD = λ̇〈ǫǫǫ〉2+ (8)

The damage multiplieṙλ is determined from the damage criterion expression forf >
0 (Eq. 6).

The delay-damage law (2) is recovered from previous equations and extended to
induced anisotropy as:

tr ḊDD = Ḋ∞ [1 − exp (−b (g(ǫ̂) − tr DDD))] (9)

The use of a damage criterion functionf written in terms of strains instead of
stresses altogether with the logarithmic regularization (1) allows for a simple imple-
mentation in a Finite Element computer code (see section 4.2). Note that at the final
stage of the numerical implementation the elasticity law needs to be inverted. This
can be done in a closed form as:

σσσ =(111 −DDD)1/2 σ̃σσ (111 −DDD)1/2 −
(111 −DDD) : σ̃σσ

3 − tr DDD
(111 −DDD) (10)

+
1

3
[(1 − tr DDD)〈tr σ̃σσ〉+ + 〈tr σ̃σσ〉−] 111 (11)

Figure 1a shows the monotonic stress-strain curves for concrete in tension. Quasi-
static and dynamic responses (at different strain rates) are plotted. The material pa-
rameters describing well concrete quasi-static behavior are: E = 42 GPa,ν = 0.2,
κ0 = 5 10−5, A = 5 103, a = 2.93 10−4. The viscous regularization parameters are
b = 1 andḊ∞ = 50000 s−1. Figure 1b shows different damage rate evolutions for
b × D∞ = 50000 constant.

4. EXACT IMPLICIT NUMERICAL SCHEME

The initial [DES 07] quasi-static anisotropic damage modelcan be simply imple-
mented in finite element computer codes, ”simply” meaning byuse of Euler backward



Anisotropic 3D delay-damage 5

0

2 10
6

4 10
6

6 10
6

8 10
6

1 10
7

0 10
0

1 10
-4

2 10
-4

3 10
-4

4 10
-4

5 10
-4

6 10
-4

Quasi-static
10-1 s-1

1 s-1

10 s-1

Strain

S
tr

e
s
s
 (

P
a
)

0

5000

1 10
4

1,5 10
4

2 10
4

2,5 10
4

0 0,1 0,2 0,3 0,4 0,5 0,6 0,7 0,8

D∞ = 10000
D∞ = 25000
D∞ = 50000
D∞ = 500000

T
r 
D

g(ε) - Tr D

.

^

Figure 1. a/ Stress-strain curves for concrete at different loading rates, b/ Saturation
of the damage rate for differenṫD∞

scheme and without any need of Newton or quasi-Newton iterative processes at the
Gauss point level. One proposes here an equivalent scheme for the dynamic case, the
resolution of the scalar delay damage law (2) needing to be studied first.

4.1. Exact implicit scheme for the delay-damage evolution law

An implicit scheme is preferred here as the consideration ofthe delay-damage
law may lead to oscillating solutions. To illustrate the difficulties encountered, the
loading is here a linear increase of Mazars strain,ǫ̂(t) = ǫ̇Maxt with for the present
exampleǫ̇Max = 10−1s−1 the applied strain rate. For the set of delay parameters
Ḋ∞ = 50000s−1, b = 1, the maximum time increment for the correct time inte-
gration (thick black lines) is∆t = 4 10−5s for Euler explicit scheme, it is only
∆t = 5.3 10−5s in the Runge-Kutta case. It can be increased by a factor of almost 10
to ∆t = 4 10−4s by considering the implicit scheme proposed next. Figures2a and 2b
show the oscillatory responses (grey lines) obtained for time steps just a bit too large
for the explicit scheme compared to previous limit values. Note that increasing the
loading rate and addressing then faster dynamics range makes the things much better.

In order to derive a new efficient implicit scheme, consider the logarithm of the
regularized form (Eq. 1) and take its derivative with respect to time,

g′(ǫ̂) ˙̂ǫ − Ḋ =
1

b

D̈

Ḋ∞ − Ḋ
(12)
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with here:

g′(ǫ̂) =
dκ−1

dǫ̂
= A

[

1 +

(

ǫ̂

a

)2
]

−1

(13)

Using Euler backward scheme,D̈(tn+1) ≈ (Ḋn+1 − Ḋn)/∆t, Ḋ(tn+1) ≈ (Dn+1 −
Dn)/∆t, ˙̂ǫn+1 = (ǫ̂n+1 − ǫ̂n)/∆t, gives

g′(ǫ̂n+1) ˙̂ǫn+1 − Ḋn+1 =
1

b∆t

Ḋn+1 − Ḋn

Ḋ∞ − Ḋn+1

(14)

so that the damage rate at timetn+1 is solution of the second degree equation,

Ḋ2
n+1−

(

g′(ǫ̂n+1) ˙̂ǫn+1 + Ḋ∞ +
1

b∆t

)

Ḋn+1+g′(ǫ̂n+1) ˙̂ǫn+1Ḋ∞+
Ḋn

b∆t
= 0 (15)

The solution which recovers the quasi-static damage lawḊn+1 = g′(ǫ̂n+1) ˙̂ǫn+1 for
b → 0 is finally:

Ḋn+1 =
1

2
Bn+1



1 −

√

√

√

√1 −
4Cn+1

B2
n+1

(

1 +
Ḋn

b∆tCn+1

)



 (16)

Dn+1 = Dn + Ḋn+1∆t (17)

here in a form which avoids the difference of large numbers with as initial conditions
D0 = 0, Ḋ0 = 0 and where:

Bn+1 = g′(ǫ̂n+1) ˙̂ǫn+1 + Ḋ∞ +
1

b∆t
Cn+1 = g′(ǫ̂n+1) ˙̂ǫn+1Ḋ∞ (18)

This new implicit scheme is efficient as it does not need iterations, as it allows for
much larger time steps, it avoids the oscillatory features even when the convergency
is poor (Fig. 2c) but also as it recovers the quasi-static case.

The numerical scheme proposed can easily be applied to the anisotropic delay-
damage law (9), just by replacingDn, Dn+1, Ḋn andḊn+1 in equations (17)-(18) by
tr DDDn+1, tr DDDn, tr ḊDDn andtr ḊDDn+1.



Anisotropic 3D delay-damage 7

4.2. Exact Euler backward scheme for the anisotropic damage model

The time integration procedure for the full anisotropic delay-damage model is
given next. It takes place at a Gauss point. The strainǫǫǫn+1 = ǫǫǫ(tn+1) at timetn+1,
the damageDDDn and the trace of the damage ratetr ḊDDn at timetn are the inputs of the
procedure. The outputs are the stressσσσn+1 and the damageDDDn+1, but also the trace
of the damage ratetr ḊDDn+1 at timetn+1. Euler backward scheme is used, i.e. the
variables are replaced by their value at timetn+1 in the constitutive equations when
the damage ratėDDD and the damage multiplieṙλ are replaced by∆DDD = DDDn+1 −DDDn

and∆λ = λn+1 − λn in the damage law.

In order to integrate the damage model proceed as follows:

1. Compute the equivalent strain,

ǫ̂n+1 =
√

〈ǫǫǫn+1〉+ : 〈ǫǫǫn+1〉+ (19)

2. Make a test on the criterion functionf = g(ǫ̂n+1) − tr DDDn.
If f ≤ 0, the material behaves elastically, set thenDDDn+1 = DDDn andtr ḊDDn+1 = 0.
If f > 0, the damage must be corrected by using the delay-damage evolution law
discretized as

∆DDD = DDDn+1 −DDDn = ∆λ 〈ǫǫǫn+1〉
2
+ (20)

Gainingtr DDDn+1 from equations (17)-(18) allows to derive the exact expression for
the damage multiplier increment∆λ, even if the scheme is implicit,

∆λ =
tr DDDn+1 − tr DDDn

ǫ̂2n+1

(21)

and the exact actualization ofDDD,

DDDn+1 = DDDn + ∆λ 〈ǫǫǫn+1〉
2
+ (22)

3. Compute the stresses using first the elasticity law written

σ̃σσn+1 = EEE : ǫǫǫn+1 (23)

using then eq. (11),

σσσn+1 = (111 −DDDn+1)
1/2 σ̃σσn+1 (111 −DDDn+1)

1/2

−
(111 −DDDn+1) : σ̃σσn+1

3 − tr DDDn+1

(111 −DDDn+1)

+
1

3
[(1 − tr DDDn+1)〈tr σ̃σσn+1〉+ + 〈tr σ̃σσn+1〉−] 111 (24)

The numerical scheme is fully implicit, therefore robust, but it has the main advan-
tage of the explicit schemes: there is no need of a local iterative process as the exact
solution of the discretized constitutive equations can explicited.
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StrickerInput barSample

Strain gages V

Figure 3. Principle of the dynamic tension test

When damage reaches large values, one must be carefull to ensure the damaged
elastic tensor to remain positively defined. This is done forinduced anisotropic dam-
age by using a specific procedure for the numerical control ofrupture ([DES 07]).

5. STRUCTURES COMPUTATIONS

5.1. Dynamic tension tests

The anisotropic delay-damage model has been implemented inthe implicit Finite
Element code CAST3M developed by the CEA Saclay. The numerical scheme for the
time integration of the viscosity law is the Euler backward scheme solved explicitly
of section 4.1.

In order to get tensile results at very high strain rates, tensile tests by scabbing were
developed ([KLE 01, SCH 06]). Figure 3 shows the principle ofthe test. The setup
consists of a striker (launch at the velocity V), an input barand the tested specimen.
The input bar of [KLE 01] experiment has a diameter of 40 mm fora one meter length,
while the concrete sample has the same diameter for a length of 120 mm. After the
impact of the striker, an incident wave propagates in the input bar. One part of the
wave is transmitted into the specimen and another one is reflected at the bar/specimen
interface. The transmitted compression wave is reflected atthe free end and becomes
a tensile wave. This lead to fracture in the spall plane.

The Finite Element meshes used are given in Figure 4a. The coarse mesh is made
of 1584 6-nodes prism elements, the medium mesh of 3168 and the fine mesh of
6336. At timet = 0 the mesh boundaries are free and the experimental pressure wave
is applied on the right face of the specimen. The simulation of the test must make it
possible to find the rupture of the sample experimentally observed,i.e. a single main
rupture crack at the distanceX = 65.8 mm of the impacted face.

Figure 4b shows the damage fieldD11 associated with the axial axe−→e1 . When the
material is subjected to compression the imposed strain is not sufficient to damage the
material. To the opposite, when the state of tension becomessufficiently large after
the compressive wave reflection on the free surface, one obtains a damageD11 close
to 1 in a cross section.

In order to illustrate the mesh independency (due to the viscous regularization of
the delay-damage model), the results are presented on the coarse, medium and fine
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Figure 4. a/ Coarse, medium and fine mesh, b/ Damage in the concrete sample

meshes (Figure 4a). The damage maps obtained for the three meshes are shown in
Figure 4b. One can notice that the width of the localized damage band is the same for
the three meshes and equal to approximately5×lc, therefore of the order of magnitude
of a characteristic length introduced from the knowledge ofthe wave celeritycL, lc =
cL × τc = cL/D∞.

5.2. Impact on a reinforced concrete slab

The anisotropic delay-damage model has been also implemented in the explicit Fi-
nite Element code LS-Dyna. In order to evaluate the ability of the anisotropic damage
model to describe the concrete behavior in a case rather complex but representative of
an industrial application, a test in which a projectile impacts a concrete slab has been
carried out. The projectile is a cylinder representative ofa Cessna engine (masse=200
kg, velocity=83,3 m/s, cross section=1m2) with an elastic behavior.

Figure 5 shows the finite element mesh used for the simulations on a 4 meters
width and 0.5 meters thick slab. The slab is meshed with 240003D underintegrated
elements and the reinforcements are represented by 2300 truss-bars. The impacted
area has a refined mesh whereas the other part of the slab has a coarse one.

Figure 6 shows the damagesD11, D22 and D33 into the slab. One can notice
that due to the symmetry condition, the damageD11 andD22 have a similar pattern.
The damageD33 represents the cracks in the slab thickness and is representative of
the scabbing phenomenon. In our simulation, damagesD11 andD22 are quite large
exhibiting a shear rupture of the concrete slab with the apparition of a punch cone
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as experimentally observed in cases of thin slabs. In the same time, the damageD33

remains small and does not exhibit scabbing.

6. CONCLUSIONS

As a conclusion, a 3D anisotropic delay-damage model has been presented. The
dissymetry tension/compression is mainly due to the loading induced damage anisotropy
and a single (tensorial) damage variable is introduced. Thenumber of material param-
eters introduced in the model is quite low : 2 for elasticity (E, ν), 1 as damage thresh-
old (κ0), 2 for damage evolution (A, a) and 2 for saturating viscous regularization
(Ḋ∞, b).

An efficient implicit scheme has been derived, avoiding numerical iterations at the
Gauss point level and therefore well adapted to fast dynamics. An important feature is
also that the quasi-static case is recovered at a low computational cost. Both the delay-
damage model and the numerical schemes have proven satisfactory on 3D dynamics
computations.

6.1. Bibliographie

[ALL 97] A LLIX O. , DEU J.F.,“ Delay-damage modelling for fracture prediction of laminated
composites under dynamic loading ”,Engineering Transactions,vol. 45, 1997, p. 29–46.

[deB 91] DE BORST R., SLUYS L.J.,“ Localisation in a Cosserat continuum under static and
dynamic loading conditions ”,Comp. Meth. Appl. Mech. Eng., vol. 90, 1991, p. 805–827.

[DES 04] DESMORAT R., GATUINGT F. , RAGUENEAU F., “Explicit evolution law for
anisotropic damage : application to concrete structures ”,NATO Advanced Research Work-
shop Multi-physics and Multi-scale Computer Models in Non-linear Analysis and Optimal
Design of Engineering Structures under Extreme Conditions, Bled, Slovenia, 2004.

[DES 07] DESMORAT R., GATUINGT F. , RAGUENEAU F., “Local and nonlocal anisotropic
damage models for quasi-brittle materials”,Engineering Fracture Mechanics, vol. 74,
2007, p. 1539–1560.

[DRA 98] DRAGON A., HALM D., “ An anisotropic model of damage and frictional sliding for
brittle materials ”,European Journal of Mechanics, A/Solids, vol. 17, 1998, p. 439–460.

[DUB 94] SUFFIS A., “Modélisation simplifiée et comportement visco-endommageable des
structures en béton ”,Thèse de Doctorat, IENS Cachan, 1994.

[GAT 02] GATUINGT F., PIJAUDIER-CABOT G., “Coupled damage and plasticity modelling
in transient dynamic analysis of concrete ”,Int. J. Numer. Anal. Meth. Geomec., vol. 26,
2002, p. 1–24.

[KLE 01] K LEPACZKOJ.R., BRARA A., “An experimental method for dynamic tensile testing
of concrete by spalling ”, International Journal of Impact Engineering, vol. 25, 2001,
p. 387–409.

[KRA 85] K RAJCINOVIC D., “Continuous damage mechanics revisited: basic concepts and
definitions ”,J. Appl. Mech., vol. 52, 1985, p. 829-834.



12 REMN.

[LAD 89] L ADEVÈZE P., “About a damage mechanics approach ”,Mechanics and Mecanisms
of Damage in Composite and Multimaterials, Baptiste D, ASME: London, 1989, p. 119-
142.

[LAD 98] L ADEVÈZE P., ALLIX O., GORNETL., LEVEQUED., PERRETL., “Computational
damage mechanics approach for laminates: identification and comparison with experimen-
tal results”, in ’Damage Mechanics in Engineering Materials. Section A’, Publisher Elsevier,
Editor Voyiadjis G., 1998.

[LEC 81] LECKIE F. A, ONAT E. T., “Tensorial nature of damage measuring internal vari-
ables”, Section Physical Non-Linearities in Structural Analysis, J. Hult and J. Lemaitre eds,
Springer Berlin, 1981, p. 140-155.

[LEM 05] L EMAITRE J., DESMORAT R., “Engineering Damage Mechanics : Ductile, Creep,
Fatigue and Brittle Failures”, Springer pubs, 2005.

[MAZ 86] M AZARS J., “ A description of micro and macroscale damage of concrete structures
”, Journal Engineering Fracture of Mechanics, vol. 25, 1986, p. 729–737.

[MAZ 90] M AZARS J., BERTHAUD Y., RAMTANI S., “The unilateral behaviour of damaged
concrete”,Engineering Fracture Mechanics, vol. 35, 1990, p. 629–635.

[PEE 96] PEERLINGSR. H. J.,DE BORSTR., BREKELMANS W. A. M., DE VREE J. H. P.,
“Gradient enhanced damage for quasi-brittle materials”,International Journal for Numeri-
cal Methods in Engineering, vol. 39, 1996, p. 3391–3403.

[PIJ 87] PIJAUDIER-CABOT G., BAZANT Z.P., “Nonlocal damage theory”,Engng Mech.,
ASCE, vol. 113, 1987, p. 1512–1533.

[SCH 06] SCHULER H., MAYRHOFER C., THOMA K., “Spall experiments for the measure-
ment of the tensile strength and fracture energy of concreteat high strain rates ”,Interna-
tional Journal of Impact Engineering, vol. 32, 2006, p. 1635–1650.

[SUF 04] SUFFIS A., “Développement d’un modèle d’endommagement à taux de croissance
contrôlé pour la simulation robuste de structures sous impact”, Thèse de Doctorat, INSA
Lyon, 2004.


