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Abstract

The objective of this work is to develop an efficient strategy for dynamic problems
with multiple contacts. Our approach is based on the multiscale LATIN method
with domain decomposition. This is a mixed method which deals simultaneously
with the forces and velocities at the interfaces of the different subdomains. This
strategy has already been applied successfully to a variety of static problems; here,
it is extended to dynamics. First, we show how the multiscale strategy can be
extended to dynamics. Then, we illustrate the capabilities of the method through a
3D academic example and the simulation of a heterogeneous material.

Key words: multiscale computational method, transient dynamics, domain
decomposition, contact, friction, parallel processing

1 Introduction

Modeling and simulation play an important role in engineering and design de-
partments and raise multiple problems, particularly in dynamics when dealing
with large assemblies with connections. These connections have significant im-
pact on the dimensioning process because they are subject to highly nonlinear
local phenomena (contact and friction) which are even more important in
fast transient dynamic problems and require very fine meshes in order to be
represented correctly (1). Therefore, the choice of an efficient computational
method is of vital importance.

In recent years, a number of methods based on domain decomposition proce-
dures for the resolution of dynamic equilibrium equations have been proposed
in the literature (2; 3). These methods enable one to reduce both computation
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costs and the memory requirements for storing the data (thanks to parallel
processing). One of the methods often used to deal with such problems in
dynamics is the dual substructuring method: Lagrange multipliers are used to
enforce the kinematic continuity of the primary field across the interfaces de-
fined by the subdomain boundaries; the interface problem, which, in this case
is a Schur complement operator defined on the dual variable (the Lagrange
multiplier), is solved first; then, using the Lagrange multipliers thus obtained,
the resolution within each subdomain leads to the interior degrees of free-
dom. An important dual domain decomposition method is the Finite Element
Tearing and Interconnecting (FETI) method, which was initially developed
by Farhat and Roux for static problems (4). Subsequently, this method was
extended to transient problems in (5), to parallel processing in (6) and to
frictional contact problems (7; 8). The original FETI method is also known
as the single-level method. Later, the single-level FETI algorithms were ex-
tended, leading to the two-level FETI methods (9) and to the dual-primal
FETI method (FETI-DP) (10). Regarding time-dependent problems, coarse
problems were introduced in (11) and specific preconditioners were developed
in (12) to improve the convergence rate of the method in dynamics. The
dual substructuring method can also be associated with multispace-multiscale
methods: for example, in (13), this algorithm, used jointly with multigrid
methods (14), takes different space scales into account. In this paper, we fo-
cus on the case of assemblies of elastic structures connected through frictional
contact conditions. Contact problems are characterized by constraints such
as non-penetration conditions, and an active area of contact - i.e. the area
where contact actually occurs - which is a priori unknown. For these rea-
sons, such problems lead to stiff systems of nonlinear equations. There are
several approaches to the resolution of static contact problems (15; 16; 17). In
most of these approaches, the numerical methods used to enforce the contact
constraints can be categorized into Lagrange multiplier methods and penalty
methods (18). Penalty methods (19; 20) are closely related to the regulariza-
tion of the contact constraints and are usually formulated in terms of the dis-
placement variables, i.e. they are primal methods. These methods, an example
of which is the joint finite element method (21), enable contact to be treated
as a special type of material behavior. Penalty methods lead themselves to
various numerical difficulties, especially ill-conditioning, when too large or too
small a penalty parameter is introduced. Lagrange multiplier methods are dual
methods in which the multipliers, which represent the reaction forces at the
contact points, are introduced in order to enforce the non-penetration condi-
tions strictly. Augmented Lagrange multiplier methods (22; 23; 24; 25) result
in mixed formulations involving both displacement and force unknowns. The
numerical resolution schemes underlying both Lagrange multiplier methods
and augmented Lagrange multiplier methods are often related to the Uzawa
algorithm (26; 27; 28).

The objective of the present work is to develop a specific method to deal with
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the problems arising from the fact that the nonlinearities are localized in the
connections, as described previously. Our approach is based on a decomposi-
tion of the assembly into substructures and interfaces. The problem is solved in
each substructure using the finite element method. An iterative scheme based
on the multiscale LArge Time INcrement (LATIN) method developed at the
LMT Cachan (29; 30) is used for the global resolution. This approach leads
to a very significant reduction in computation cost for quasi-static problems.
The multiscale LATIN method is a mixed method which deals simultaneously
with both velocities and forces at the interfaces and solves a homogenized
macroscopic problem in order to accelerate the convergence of the numerical
scheme. When only static cases are considered, the LATIN method (without
the multiscale approach) can be derived by other means, such as in Lions (31)
or Glowinski and Le Tallec (32). While this method has already been largely
developed in statics and quasi-statics, the objective of the work presented here
concerns its extension to dynamics.

2 The multiscale LATIN method

This multiscale domain decomposition method consists of three components:
spatial domain decomposition, separation of the scales, and a resolution algo-
rithm. The main features of these three components are developed below. The
details of the method itself can be found in (33).

2.1 Decomposition into substructures and interfaces

An assembly is a set of substructures which communicate with one another
through interfaces (See Figures 1(a) and 1(b)). Each interface represents a
connection. The substructures and interfaces have their own variables and
equations (admissibility, equilibrium and behavior). Two connected substruc-
tures are denoted ΩE and ΩE′ and the associated interface is designated by
ΓEE′.

Each interface is a mechanical entity with its own variables and its specific
behavior, which depends on the type of connection. Many different types of
connections, such as frictional contact, can be modeled with this approach.
The interface variables consist of two force fields FE , FE′ and two dual velocity
fields WE , WE′ (See Figure 1(b)). By convention, FE and FE′ represent the
action of the interface on the substructures, and WE and WE′ are the velocities
of the substructures viewed from the interface. Thus, the interface concept can
be easily extended to the boundary, where the displacements, the velocities or
the forces are prescribed.
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(a) Reference problem (b) Exchange between interface 
              and substructure
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∂2Ω

FE
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WE
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Ud

Fd

ΩE

Fig. 1. Decomposition of the reference problem into substructures and interfaces

2.2 Multiscale extension

In order to ensure the theoretical scalability of the method, our approach
introduces a spatial description of the unknowns on two scales, called the
macroscale and the microscale. In this multiscale strategy, the interfaces play
an important role of scale separation: the definitions of the microscopic and
macroscopic fields are related to the interface quantities of the substructured
problem and are expressed prior to any discretization.

Let us consider an interface ΓEE′ whose unknowns (WE , FE) are divided into

WE = W m
E + W M

E and FE = F m
E + F M

E

where W M and W m denote respectively the macro parts and the micro com-
plements of the velocity field. The separation of the two scales is obtained by
means of the projection operator ΠΓ

EE′
defined for each interface. Over ΓEE′,

we write W M and F M in the form XM =
∑

(X, eM
i )eM

i = ΠΓ
EE′

X. The choice
of the macroscopic projector influences the efficiency of the algorithm. The
problem of the selection of the optimum projector was studied in (30). The
basis functions {eM

i } for a 2D problem are represented in Figure 2. The macro-
scopic kinematics which results from this choice consists of two translations,
one rotation and one strain.

e  (M)
4e  (M)

3
M

M

e  (M)
2

e  (M)
1

MM

Fig. 2. The affine basis functions {eM
i } of an interface ΓEE′
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2.3 The substructured problem

� The problem within a substructure

Let uE(M, t) be the displacement field at any point M of ΩE and at any time t
of [0, T ], and let U [0,T ] be the associated space. εE(M, t) is the strain field and
the current state of the structure is characterized by the stress field σE(M, t),
whose associated space is S [0,T ]. The mechanical problem to be solved within
each substructure ΩE is:

Find the evolutions of the displacement field uE(M, t) and stress field σE(M, t)
such that:

• Kinematic admissibility: ∀t ∈ [O, T ], uE ∈ U [0,T ]

· Initial conditions: ∀M ∈ ΩE

uE(t = 0) = U0
E

duE

dt
(t = 0) = V 0

E (1)

· Boundary conditions: ∀t ∈ [O, T ], ∀M ∈ ΓEE′

duE

dt

∣∣∣
Γ

EE′

= WE u
E|

∂Ω1

= Ud F
E|

∂Ω2

= Fd (2)

• Equilibrium: ∀t ∈ [0, T ], ∀u̇∗ ∈ U
[0,T ]
0 , σE ∈ S [0,T ]

∫

ΩE

(
ρ
d2uE

dt2
+ fd

)
u̇∗dΩ +

∫

ΩE

Tr (σEε(u̇∗)) dΩ =
∑

E′

∫

Γ
EE′

FEE′u̇∗dΓ (3)

• Elastic behavior: ∀t ∈ [0, T ], ∀M ∈ ΩE

σE = KEε(uE) (4)

where KE is the Hooke’s operator.

� The problem at the interfaces

The mechanical problem to be solved at each interface ΓEE′ is:

Find the evolutions of the force fields FE(M, t), FE′(M, t) and velocity fields
WE(M, t), WE′(M, t) such that:

• General case: ∀t ∈ [O, T ], ∀M ∈ ΓEE′

(FE, FE′) = AΓ
EE′

(WE , WE′) (5)

where the behavior is expressed as an evolution law AΓ
EE′

. Here, two exam-
ples of interface behavior are given.
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• Perfect interface: The velocity is continuous at the interface and equilibrium
is verified. The constitutive law is given by the relations:

FE + FE′ = 0 and WE − WE′ = 0 (6)

• Unilateral contact with friction: The contact history must be taken into
account during the loading in order for the friction conditions to be verified
(34). A time discretization must be chosen. The interface displacement field
UE is introduced:

W t
E =

U t
E − U t−∆t

E

∆t
=

∆U t
E

∆t

Let µ denote the friction coefficient, nE the outward normal at a point
of ΓEE′, and g the initial gap (Figure 3). PT is the tangential projector
associated with Interface ΓEE′ such that WE = (nE .WE)nE + PTWE .

n
E

Γ
EE'

Ω
E'

Ω
E

g

Fig. 3. A contact interface

The constitutive law (Equation 5) is described by the unilateral contact
conditions:

If nE · (U t
E′ − U t

E) + g > 0 then F t
E = F t

E′ = 0 (separation)

If nE · (U t
E′ − U t

E) + g = 0 then





F t
E + F t

E′ = 0

nE · F t
E ≤ 0

(contact)

and by the frictional conditions:

If ‖PT F t
E‖ < µ|nE · F t

E| then PT (W t
E′ − W t

E) = 0 (sticking)

If ‖PTF t
E‖ = µ|nE ·F t

E| then





PT (W t
E′ − W t

E) ∧PT F t
E = 0

PT (W t
E′ − W t

E) · PT F t
E ≥ 0

(slipping)

2.4 Resolution strategy: the LATIN method

The LATIN (LArge Time INcrement) method (35) is a general, mechanics-
based computational strategy for the resolution of time-dependent nonlinear
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problems which operates over the entire time-space domain. It has been ap-
plied successfully to a variety of problems (30; 36; 37; 38).

In the case of linear elastic substructures which is considered here, the solu-
tion uE(M, t), σE(M, t) can be calculated from the boundary values WE(M, t),
FE(M, t). Thus, a solution s is represented solely by the force and velocity
fields on both sides of an interface. The solution of Problem sref is expressed
as a set of time-dependent fields within each substructure and at the corre-
sponding interfaces:

sref =
∑

E

sE sE = {FE(M, t), WE(M, t)}

� Separation of the difficulties

The LATIN approach is based on the idea of dealing with each difficulty sepa-
rately in order not to have to solve a global problem and a nonlinear problem
at the same time. The equations are divided into global linear equations and
local nonlinear equations, so that sref = Ad ∩ Γ is the intersection of two
subspaces:

• Ad, the space of the solutions of the linear equations associated with the
substructures ΩE : kinematic admissibility, equilibrium, elastic behavior and
admissibility of the macroquantities;

• Γ, the space of the solutions of the local equations related to the interfaces
ΓEE′ and expressing their behavior.

� A two-step iterative strategy

The LATIN method consists in seeking fields of Γ and Ad alternatively along
two search directions E+ and E−, as shown in Figure 4. Each iteration involves
two stages, called the local stage and the linear stage:

Local stage: Given sn = {FE, WE} ∈ Ad, find ŝn+1/2 = {F̂E , ŴE} such that:

ŝn+1/2 ∈ Γ (interfaces)

ŝn+1/2 − sn ∈ E+ (search directions)
(7)

Linear stage: Given ŝn+1/2 = {F̂E, ŴE} ∈ Γ, find sn+1 = {FE, WE} such that:

sn+1 ∈ Ad (substructures)

sn+1 − ŝn+1/2 ∈ E− (search directions)
(8)
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+

−

^
sn+1/2

sn+1

sn

sref

Γ

Ad

E

E

Fig. 4. An iteration of the LATIN method

In the case of linear elastic substructures which is considered here, the search
directions are defined as follows:

ŝn+1/2 − sn ∈ E+ ⇐⇒ F̂E − FE = k0(ŴE − WE) (9)

sn+1 − ŝn+1/2 ∈ E− ⇐⇒FE − F̂E = −k0(WE − ŴE) (10)

where k0 is a scalar parameter of the method. As long as k0 remains positive,
the solution of the problem does not depend on the value of this parameter,
which affects only the convergence rate of the algorithm. For the dynamic
cases being addressed here, the optimum value of k0 for a 1D problem was
given in (38): k0 =

√
ρE, where E is the Young’s modulus and ρ the density.

k0 can be viewed as a local impedance of the material. This parameter is very
similar to the penalty term of the augmented Lagrangian method. However,
in our case, the interfaces are discretized using finite elements. Consequently,
for the 3D case, the force fields at the interfaces correspond to stress fields.
Thus, one takes the same value of the parameter, i.e.

√
ρE, for 1D, 2D and

3D cases. For an interface between two materials with different impedance,
one takes the mean value.

An error indicator η is used to control the convergence of the algorithm toward
sref . This indicator is a measure of the distance between the two solutions sn+1

and ŝn+1/2:

η2 =

∑
E ‖sn+1 − ŝn+1/2‖2

∑
E ‖sn+1‖2 +

∑
E ‖ŝn+1/2‖2

where:

‖sn+1‖2
E =

T∫

0

∫

∂ΩE

F T
E k−1

0 FE + W T
E k0WEdSdt
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2.5 The local stage: ŝn+1/2

The local stage consists in building ŝn+1/2 ∈ Γ knowing sn ∈ Ad. Then,
(ŝn+1/2 − sn) must follow the search direction E+ defined in Equation 9.

� Perfect interface

Let us consider the case of a perfect interface ΓE′E between Substructures ΩE

and ΩE′. The unknowns are (ŴE , ŴE′, F̂E , F̂E′), which must verify the behav-
ior equation (Equation 6) and follow the search direction E+ (Equation 9).
The solution of these equations is:

ŴE = ŴE′ =
1

2

[
WE + WE′ − k−1

0 (FE + FE′)
]

(11)

F̂E = −F̂E′ =
1

2

[
FE − FE′ − k0(WE − WE′)

]
(12)

� Contact interface with friction

For contact interfaces, the introduction of two indicators gN and gT (28; 30)
enables one to obtain the contact status (separation, contact, sticking or slip-
ping) explicitly. At each point of the interface, the normal contact indicator
gN for the current load step t + ∆t is given by:

gt+∆t
N =

1

2
nE .

(
W t+∆t

E′ − W t+∆t
E +

Ŵ t
E′ − Ŵ t

E

∆t

)

+
g

2
− 1

2k0
nE .(F t+∆t

E′ − F t+∆t
E ) (13)

The non-penetration condition is expressed as: If gt+∆t
N > 0, separation occurs;

otherwise, contact occurs. Let us note that at load step t + ∆t the “hat”
quantities with the superscript t are known.

The friction indicator gT is defined by:

gt+∆t
T =

k

2
PT (W t+∆t

E′ − W t+∆t
E ) − 1

2
PT (F t+∆t

E′ − F t+∆t
E ) (14)

The frictional condition can be written as: If gt+∆t
T < µ|nE·F̂ t

E|, slipping occurs;
otherwise, sticking occurs. Finally, the normal and tangential components of
the interface quantities Ŵ t+∆t

E , Ŵ t+∆t
E′ , F̂ t+∆t

E and F̂ t+∆t
E′ are determined ac-

cording to the contact status.

9



2.6 The linear stage: sn+1

The linear stage consists in building sn+1 ∈ Ad knowing ŝn+1/2 ∈ Γ:

• Macroadmissibility: in order to ensure the admissibility conditions of the
macro variables, we introduce Lagrange multipliers W̃ M

E at the interfaces.
• Search direction: the unknowns (WE , FE) must follow the search direction.

Equation 10 must be modified by introducing the Lagrange multipliers de-
fined at the interfaces. The new search direction E− is defined as follows:

(FE − F̂E) + k0(WE − ŴE − W̃ M
E ) = 0 (15)

• Equations associated with the substructures: the unknowns (WE, FE) must
verify the dynamic equilibrium and the elastic behavior (Equations 3 and 4).

These equations lead to the resolution of an independent problem, called the
“micro” problem, in each substructure:

Find uE(M, t), ∀t ∈ [0, T ], ∀u̇∗ ∈ U
[0,T ]
0 , σE ∈ S [0,T ]

∫

ΩE

(
ρ
d2uE

dt2
+ fd

)
u̇∗dΩ +

∫

∂ΩE

k0
duE

dt
u̇∗dS +

∫

ΩE

KEε(uE)ε(u̇∗)dΩ =

∑

E′

∫

Γ
EE′

(
F̂E + k0ŴE + k0W̃

M
E

)
u̇∗dΓ (16)

� Discretization

In each substructure, using a classical finite element discretization uE(M) =
{N}T{U} and εE(M) = [B]{U}, Equation 16 leads to the resolution of an
evolution problem:

Find Ut, ∀t ∈ [O, T ] such that:

[ME ]Üt + [cE ]U̇t + [KE ]Ut = F̂t + k0(Ŵt + W̃ M
t ) (17)

where [ME ] and [KE ] are the classical finite element mass and stiffness matri-
ces. Matrix [cE ] is less classical and is specific to the LATIN method. These
matrices are defined by:

ME =
∫
ΩE

ρ{N}T{N}dΩ

cE =
∫
∂ΩE

k0{N}T{N}dS

KE =
∫
ΩE

[B]KE [B]dΩ

(18)
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In order to solve the evolution problem 17, the finite element discretization
must be associated with a time integration scheme. We chose to use the clas-
sical Newmark scheme:

U̇t+∆t = U̇t + ∆t
(
(1 − γ)Üt + γÜt+∆t

)

Ut+∆t = Ut + ∆tU̇t + ∆t2
(
(1/2 − β)Üt + βÜt+∆t

) (19)

For the numerical example, let γ = 1/2 and β = 1/4, which corresponds to a
trapezoidal rule with constant mean acceleration.

Then, the linear system which needs to be solved at each time step takes the
form:

(
1

γ∆t
[ME ] + [cE] +

β∆t

γ
[KE]

)
U̇t+∆t = F̂t+∆t

+ k0

(
Ŵt+∆t + W̃ M

t+∆t

)
+ f(t) (20)

where

f(t) = −[KE ]Ut +

(
1

γ∆t
[ME ] −

(
1 − β

γ

)
∆t[KE ]

)
U̇t

+

((
1 − 1

γ

)
[ME ] −

(
1

2
− β

γ

)
∆t2[KE ]

)
Üt

System 20 cannot be solved because there are two unknowns, U̇t+∆t and W̃ M
t+∆t.

Therefore, one divides Field U̇ into two fields, U̇1 and U̇2, such that U̇ =
U̇1+U̇2 and Fields U̇1 and U̇2 are solutions of the following two microproblems:

(
1

γ∆t
[ME ] + [cE] +

β∆t

γ
[KE]

)
U̇1

t+∆t = F̂t+∆t + k0Ŵt+∆t + f(t) (21)

(
1

γ∆t
[ME ] + [cE] +

β∆t

γ
[KE]

)
U̇2

t+∆t =k0W̃
M
t+∆t (22)

With this decomposition, Equation 21 can be easily solved after a local stage
because fields F̂t+∆t, Ŵt+∆t and Function f(t) are known. Equation 22 cannot
be solved without one’s knowledge of W̃ M , but this problem can be easily
inverted because of the very small number of degrees of freedom of W̃ M (nine
DOFs per interface for a 3D problem), and one can write:

W 2,M = L−1
E W̃ M (23)

where W 2,M = ΠΓ
EE′

U̇2
∣∣∣
Γ

EE′
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LE represents a condensation operator for Substructure ΩE of Problem 22 on
the coarse scale of the interfaces. These operators are calculated only once for
all the substructures at the beginning of the algorithm: Problem 22 is solved
for each value of W̃ M and the result at the interface is projected onto the
coarse scale to obtain the corresponding value of W 2,M (the macro part of the
restriction of U̇2 to the interfaces).
The decomposition of Field U̇ into U̇1 + U̇2 using the search direction (Equa-
tion 15) and the projector ΠΓ

EE′
involves some other relations for W 1,M and

W 2,M (the macro parts of the restrictions of Fields U̇1 and U̇2 to the inter-
faces):

W M = W 1,M + W 2,M

F 1,M − F̂ M + k0(W
1,M − Ŵ M) = 0 (24)

F 2,M + k0(W
2,M − W̃ M) = 0

� The macroproblem

The admissibility of the macroquantities at all the interfaces along with the
condensation operator of all the substructures (Equation 23) lead to the defi-
nition of the macro problem.

In order to present the construction of the macroproblem, let us consider a
perfect interface. The admissibility of the macroquantities at such an inter-
face corresponds to the continuity of the macroscopic velocities and to the
equilibrium of the macroscopic forces.

With such admissibility conditions, one must introduce two Lagrange multi-
pliers per interface, as shown in Figure 5.

~
~ ΩE

ΩE

WE

WE

ΓEE

Fig. 5. Lagrange multipliers W̃ M
E and W̃ M

E′ for a perfect interface

The contribution of the perfect interface ΓEE′ to the macroproblem (Equa-
tions 25 and 26) is expressed through Equations 23, 24 and the admissibility
conditions.
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Continuity of the macroscopic velocities:

W M
E = W M

E′ ⇐⇒
[
LE −LE′

]



W̃ M
E

W̃ M
E′


 =

[
−W 1,M

E + W 1,M
E′

]
(25)

Equilibrium of the macroscopic forces:

F M
E + F M

E′ = 0 ⇐⇒
[
k0(1 − LE) k0(1 − LE′)

]



W̃ M
E

W̃ M
E′


 =

[
−F 1,M

E − F 1,M
E′

]
(26)

The quantity W̃ M
E is a vector which contains all the Lagrange multipliers of

Substructure ΩE . Thus, this problem couples all the macro variables of the en-
tire structure and enables the Lagrange multiplier W̃ M

E to be defined for all the
substructures. W 1,M

E is the macro part of the solution of the first microprob-
lem (Equation 21); F 1,M

E is calculated using the search direction (Equation 24).

� Comparison with the coarse problem introduced by Farhat-Shen-Mandel

In (11), the introduction of the coarse problem into the FETI method for the
dynamic case enables a specific rigid body motion to be applied to each float-
ing subdomain in order to reposition this subdomain globally at the beginning
of each iteration. The evaluation of the rigid body correction is carried out
in a projection step. This problem couples all of the subdomain rigid body
corrections. For the 3D case, its size is, at the most, 6Nf × 6Nf , Nf being the
number of floating subdomains. Once the floating subdomains have been po-
sitioned globally, the local corrections are calculated using a PCPG algorithm.

In that approach as in ours, the coarse problem leads to the scalability of the
iterative strategy. The main difference concerns the coarse space. In (11), the
coarse space consists of the rigid body motions of all floating subdomains.
In our approach, the scale separation is performed at the interfaces and the
coarse space consists of the linear parts of the interface fields. We enforce
continuity of the velocities and equilibrium of the forces in the macro parts.
The macroproblem is somewhat larger in our case: (2 × 9Np) × (2 × 9Np) for
the 3D case, Np being the number of perfect interfaces.
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2.7 The algorithm and its parallelization

The LATIN method associated with the mixed domain decomposition method
is inherently parallelizable (34). In our case, this strategy was programmed
in C++ in the framework of the finite element platform developed by H.
Leclerc (39). Libraries such as MPI (Message Passing Interface) for the transfer
of information among machines were used in order to be able to use PC-cluster
types of architectures. In order to parallelize the strategy, the first step is to
allocate the substructures and interfaces among the different processors. This
is done through the METIS libraries (40), which enable the number of data
which must circulate among the processors to be minimized in order not to
result in an excessive decline in speedup. Then, the different operators specific
to the substructures are constructed on each processor. During the iterative
resolution phase, the first and second microproblems are solved simultane-
ously. The macroproblem, which has not been parallelized yet, is solved on a
single processor. Finally, the local stage is completely parallelized because the
interfaces are distributed among the different processors.

- Linear stage
Loop over time (∀t ∈ [0, T ])

• Loop over the substructures (on each processor):
First microproblem: determination of (U̇1

E , W 1
E) given (ŴE, F̂E)

(Equation 21). Calculation of W 1,M
E = Πγ

EE′
W 1

E, then F 1,M
E , using

the search direction and the admissibility conditions of the macro-
quantities.

• Macroproblem (on a single processor):
Determination of W̃ M

E given W 1,M
E and F 1,M

E (Equations 25, 26)
• Loop over the substructures (on each processor):

Second microproblem: Determination of (U̇2
E , W 2

E) given W̃ M
E (Equa-

tion 22)
Calculation of U̇E = U̇1

E + U̇2
E at time step t

End Loop

- Local stage
Loop over time (∀t ∈ [0, T ])

• Loop over the interfaces (on each processor):
Determination of (ŴE , F̂E) given (WE , FE) (Equations 11, 12)

End Loop
Iteration until convergence

Algorithm 1. The micro/macro LATIN method (velocity approach)

The LATIN method consists in perform linear stages and local stages alter-
natively. The iterations concern the whole time interval, i.e. a solution over
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the whole time interval is calculated at each iteration of the method. In the
linear stage, an incremental formulation is used to solve problems within the
substructures over the whole time interval. Thus, only two time steps of a sub-
structure’s fields (displacement, velocity and acceleration) need to be stored:
the current time step being calculated and the previous time step. However, the
interface quantities (F̂ , Ŵ , F, W ) must be stored over the whole time interval.
The fields are saved during the last iteration of the method for post-processing
purposes. Algorithm 1 shows the key steps of an iteration of the multiscale
method.

3 Numerical examples

3.1 3D linear academic problem

In order to test the method described previously, let us consider the simple
3D example of the propagation of a compression wave in a bar composed of
two parallelepipeds (Figure 6). The bar is 1 m long and 0.25 m wide, with
Young’s modulus 200 GPa, mass density 7,800 kg/m3 and Poisson’s ratio 0.3.
The loading consists in a prescribed velocity going from 0 m/s initially to
a maximum value of 1 m/s over a period T of 60 µs. For the purpose of
this test, each parallelepiped can be decomposed into several substructures.
The interface between the two parallelepipeds can be perfect or can involve
frictional contact.

V(m/s)

60

V
O

x

Interface Parallelepiped

1

t(   )µs

1m

Fig. 6. The numerical example

The purpose of the test was to evaluate the efficiency of the multiscale method.
In order to do that, we assumed a perfect interface between the two paral-
lelepipeds and decomposed each parallelepiped into 2 substructures. Figure 7
shows the mesh used for the test, which contains about 5,600 DOFs. We used
79 time steps of 5 µs each for a total duration of 395 µs.
Figure 8 shows the velocity field along the (O, x) axis (defined in Figure 6) as a
function of time. The result of the multiscale LATIN method is compared with
that of the single-scale LATIN method (37). The single-scale LATIN method
is similar to the method developed here except that there is no macroproblem.
Using the single-scale method (Figures 8(a), 8(b) and 8(c)), several iterations
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(a) Meshes used for the interfaces (b) Meshes used for the substructures

Fig. 7. The meshes used for the example

are necessary for the wave to propagate throughout the structure. With the
multiscale method (Figure 8(d)), the first iteration gives a good approximation
of the solution, thanks to the macroproblem which provides a representation
of the macroscopic part of the solution.
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(a) Single-scale method, Iteration 1
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(b) Single-scale method, Iteration 5
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(c) Single-scale method, Iteration 10
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d) Multiscale method, Iteration 1

Fig. 8. Evolution of the velocity field V along the (O,x) axis (m/s) as a function of
time (µs) and x (cm)

3.2 Scalability and speedup

In order to illustrate the convergence of the multiscale LATIN method, let us
consider the same example as in Figure 6, but use a finer mesh which enables
us to decompose the two parallelepipeds into 4, 12 or 24 substructures. Figure 9
shows the convergence rate of the multiscale method for each decomposition.
The multiscale approach is scalable: the convergence rate does not depend on
the number of substructures.
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Fig. 9. Convergence rate of the multiscale method

The efficiency of the multiscale method is illustrated by the rate of evolution
of the error indicator during the process. Figure 10 shows the convergence rate
of the single-scale method using 4, 12 and 24 substructures along with that
of the multiscale method. These curves show that the convergence rate of the
single-scale method is highly dependent on the number of substructures and
that the convergence rate of the multiscale method is better than that of the
single-scale method.
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Fig. 10. The convergence rate of the single-scale method

Figure 11 shows the speedup of the parallel algorithm obtained with the pre-
vious example of Figure 6. For this application, we used a 150,000-DOF mesh
decomposed into 144 substructures of 1,000 DOFs each.
With a small number of processors, the speedup is very good because the
calculation of the macroproblem and the data exchanges among the proces-
sors are negligible compared to the calculation of the two microproblems.
This is no longer true when the number of processors increases. Moreover, the
macroproblem is not parallelized and, therefore, as the number of processors
increases the macroproblem becomes more and more significant compared to
the microproblem.
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Fig. 11. Speedup of the academic example

3.3 Frictional contact with gap

The objective of this section is to show that the multiscale LATIN method is
indeed capable of carrying out nonlinear calculations such as frictional contact.
In order to do that, let us consider the same example of two parallelepipeds,
this time with a gap of initially 40-µm and a frictional contact interface with
a friction coefficient of 0.3. The gap between the two parallelepipeds creates a
shock wave when they come in contact. We analyzed this problem with both
the multiscale LATIN method and the finite element code LS-DYNA3D, using
the same mesh in both cases.
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(a) Multiscale LATIN method (b) LS-DYNA3D

Fig. 12. Displacement of a point on either side of the interface as a function of time

Figure 12 shows the displacement of a point on either side of the interface as
a function of time. In the result obtained with the multiscale LATIN method
(Figure 12(a)), the behavior of the interface is verified: the gap can be ob-
served at the beginning of the curve; then, the two parallelepipeds come into
contact. In the result obtained with LS-DYNA3D (Figure 12(b)), the behavior
of the interface is not verified exactly. One can see that at times the two paral-
lelepipeds are not in contact as they should be, and that they interpenetrate at
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the end of the calculation. These results show that, contrary to LS-DYNA3D,
the multiscale LATIN method is suitable for studying the influence of the
friction coefficient on the solution.

Figure 13 shows the evolution of the error indicator for problems with frictional
contact, contact without friction and without contact (perfect interface). This
curve shows that the convergence rates for problems with contact with and
without friction are the same. Moreover, the comparison of this curve with the
convergence rate for problem without contact shows that there is a difference,
but that it is small.
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Fig. 13. Speedup of the academic example

3.4 Application to a 3D heterogenous material

This example concerns the propagation of a compression or traction wave in a
3D heterogenous material composed of a matrix and several grains of different
sizes (Figure 14)(c). There is frictional contact at the interfaces between the
grains and the matrix. The friction coefficient is equal to 0.3. The Young’s
modulus of the grains is 200 GPa, their mass density 7,800 kg/m3 and their
Poisson’s ratio 0.3. The Young’s modulus of the matrix is 50 GPa, its mass
density 7,800 kg/m3 and its Poisson’s ratio 0.2. These choices enable us to
have different wave velocities in the materials and also to have both reflection
and propagation when a compression wave reaches a grain/matrix interface.
The loading consists of a prescribed velocity as shown in Figure 14 (Vmax = 1
m/s).

In order to deal with this problem, we decomposed the matrix into several
substructures. Figure 14(a) shows the 3D mesh used for one cell. This decom-
position led to a good speedup of the parallel algorithm. We used 64 elemen-
tary cells of 60,000 DOFs each. Each cell was divided into 7 substructures, for
a total of 448 substructures and 1,326 interfaces, including 384 frictional con-
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Fig. 14. Composition of the heterogenous material

tact interfaces. The direct resolution of this problem would involve 3,840,000
DOFs. For this example, we used an implicit scheme for the time integration
with 99 time steps of 3 µs each for a total duration of 300 µs.

We used a PC cluster of 48 processors to carry out this simulation. These
calculations took 15 hours (150 iterations). Figure 15(a) shows the velocity
fields obtained at time step 20 for a compression wave. The left-hand side
shows the velocity field on the external skin of the structure. The right-hand
side shows the velocity field inside the structure, in a plane going across the
grains. One can observe the progression of the wave within the grain and the
discontinuity of the velocity between the grain and the matrix. Figure 15(b)
shows the displacement field at time step 40 for a compression wave. Here,
one can observe the separation of the matrix from the grain.

(a) Velocity (m/s)

-1               -0,2               0,6

time step 20

time step 40

   0            0,00035           0,0007 

(b) Displacement (mm) 

Fig. 15. Results of the calculation
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4 Conclusion

We presented the extension of the multiscale LATIN method to dynamic prob-
lems for complex 3D structural assemblies. As had already been proven in
statics, the multiscale method marks a significant improvement compared to
the single-scale method. The multiscale approach leads to the scalability of
the method and a better convergence rate.

Our approach is based on two components: a mixed decomposition of the
structure which provides significant modularity to the problem description,
and an iterative resolution scheme. Compared to other commercial finite ele-
ment tools, this method is particularly well-suited for the study of problems
with frictional contact. The strategy is also fully parallelized. Its implementa-
tion into a cluster architecture leads to good behavior of the parallel algorithm
and enables one to treat complex real-life structural assemblies with very large
numbers of degrees of freedom.

The next step will be the application of this strategy to larger 3D assemblies,
taking into account variations of the the friction coefficient. The multiscale
LATIN method enables one to reuse the solution of a problem in order to
solve similar problems. This strategy has already been applied successfully to
a variety of static problems (41) and is an efficient strategy for the parametric
analysis of problems with multiple contacts.

References

[1] J.O. Hallquist, G.L. Goudreau and D.J. Benson, “Sliding interfaces with
contact-impact in large-scale lagrangien computations”. Computer Methods
in Applied Mechanics and Engineering, 51, 107-137, 1985.

[2] M. Barboteu, P. Alart, and M. Vidrascu, “ A domain decomposition strat-
egy for nonclassical frictional multi-contact problems.”. Computer Methods
in Applied Mechanics and Engineering, 190:4785–4803, 2001.

[3] P. Alart, M. Barboteu, P. Le Tallec, and M. Vidrascu, “ Méhode de scharwz
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scale applications on parallel computers of a mixed domain decomposition
method.”, Computational Mechanics, 19, 253-263, 1997.
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