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Abstract

Anisotropic damage thermodynamics framework allows to ehtite concrete-like materials behavior and in par-
ticular their dissymmetric tensiggcompression response. To deal with dynamics applicatioals as impact, it is
furthermore necessary to take into account the strain fegetebserved experimentally. This is done in the present
work by means of anisotropic visco-damage, by introducingagerial strain rateféect in the cases of positive hydro-
static stresses only. The proposed delay-damage law assuimadscous fect in compression as the consideration
of inertia dfects proves diicient to model the apparent material strength increaseh-kite dynamics applications
imply to deal with wave propagation and reflection which canerate alternated loading in the impacted structure.
In order to do so, the key concept of active damage is defingééhdroduced within both the damage criterion and the
delay-damage evolution law.

At the structural level, strain localization often leadssfmrious mesh dependency. Three-dimensional Finite
Element computations of dynamic tensile tests by spalliegpaesented, with visco-damage and either without or
with non-local enhancement. Delay-damage, as introduegdlarizes the solution in fast dynamics. The location
of the macrocrack initiated is found influenced by non-losgjularization. The strain rate range in which each
enhancement, delay-damage or non-local enhancementybgslarizing &ect is studied.
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Nomenclature

| Notation | Meanning

(X), = max(x, 0) | positive part of scalax
(X)— = min(x, 0) | negative part of scalac
(T); | positive part of symmetric second order tenfor
XY, X:Y | contracted produck;; Yij, Xijx Yi
H | Heaviside functionH(x) = 1if x> 0,H(X) =0if x< 0
1 | second order unit tensor
trT | traceTy of tensorT
TP =T - %trT 1 | deviatoric part of second order tenJor
A, a | damage parameters
b, D., | delay-damage parameters
dact | active damage
D | second order damage tensor
E, v | elasticity parameters
E | Hooke’s tensor
f | damage criterion function
Ic | characteristic length
£ | Mazars equivalent strain
&" | non local Mazars equivalent strain
strain tensor
damage threshold
damage multiplier
density
stress tensor
effective stress tensor
deviatoric stress tensor
Helmholtz specific free energy
Gibbs specific free enthalpy
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1. Introduction

The degradation mechanisms of quasi-brittle materialls asconcrete are mainly governed by the nucleation and
the propagation of micro-cracks. Present within the regtgive volume element (RVE) of Continuum Mechanics,
these micro-cracks lead to strain softening and degradel#tstic properties. When unloading, the micro-cracks
partially close, some permanent strains remain and patiftess recovery is observed [1, 2].

Concrete behavior is therefore traditionally modeled by abplasticity angbr damage constitutive equations.
Plasticity models the permanent strains and the softerghg\ior if a negative hardening is considered [3, 4, 5, 6] but
the degradation of elasticity parameters is not repredefiteeories of elasto-(visco-)plasticity coupled with deya
[7, 8,9, 10, 11, 12, 13, 14] can be considered for generalitgacbnditions. They lead to numerical complexity,
often for quasi-brittle materials because of the introaucof several criterion functions written inférent spaces
(strains space for damage and stresses space for plgsdiciythey involve a large number of material parameters.
For simplicity and éficiency, a possibility (valid for not too high confinement}dasconsider elasticity coupled with
damage only. This continuous damage framework, classicatdncrete-like materials [15], is the one considered
here.

Tensorial damage has to be introduced when the observed-griacking pattern is anisotropic [16, 17, 18, 19,
20, 21, 22, 23, 24, 25, 26]. This leads to mathematical coxitgléBut taking into account the induced anisotropg.(
to put more physics in the model) allows to reduce the numbiensaterial parameters [27, 28]. This also allows to
propose damage models fully consistent with thermodynswofisolids materials [11, 13, 29]: a single (state) damage
variable represents any micro-cracking state, eitheraltemnision, to compression or to any 3D tensile or compressive
loading.
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The dynamics behavior of quasi-brittle materials has beetgeaied within Continuum Damage Mechanics frame-
work [30]. The relative increase of concrete apparent gttewith the loading rate (or strain ratffect [31, 32, 33]) is
gained by introducing viscoustects in so-called visco-damage or delay-damage laws [8&739, 40, 41, 42, 43].
Most of the damage models which do not consider plasticitg —pure visco-damage models — either give a sym-
metric tensiofcompression response, or consider an isotropic damageseaygied through a tensile damage variable
D! and a compressive ori#f. As mentioned above, this feature is not consistent withltieemodynamics definition
of a state variable representing a micro-cracking pattehatever the loading sign), but it is quitéieient to make
uncoupled (visco-)damage evolutions in tension and in gesgion (and also to make uncoupled the strain fé¢ets
in tension and in compression). Doing so, two criterion fiores and two viscosity laws have to be considered (each
time one for tension, one for compression), increasing thmber of material parameters to identify [38, 41].

Dissymmetry tensigicompression in quasi-static monotonic loading can now —moetaoo complex manner —
be modeled by means of induced anisotropic damage. The taltermated loading is quite morefficult to handle
and has not been studied much in quasi-static or slow — suskismic — dynamic loading cases [44, 45, 46], even
less in high-rate dynamics (in which wave propagation afideton dfectively leads to alternated stresses). In order
to propose an anisotropic damage model suitable for suchrdips applications, the concept of active damage is
defined and used in both the criterion function and the nosklydactive damage law (see sections 2.2 and 3). Itis
a key concept to make uncouple the rate dependent responession and in compression in dynamic and impact
cases. A modular damage model is then be proposed: with-delamage or strain rate independent, with or without
active damage, local or non local.

Last, regularizationissues are studied (section 6), m&ioin a computational point of view, for fierent versions
of the modular anisotropic delay-damage model. Damagersioff constitutive equations lead to the well-known
problem of mesh dependency due to strain localization. A olassical method to deal with thisfiiculty is the
non-local enhancement [47, 48]. It has proven fiic@ncy in quasi-statics. The case of dynamics implying wave
propagation still needs attention [51, 52, 53, 54]. Anothessibility is to introduce a time dependency in the degra-
dation mechanism. Initially, this was a numerical tool teidvmesh dependency, in case of plasticity [55] but also
in case of continuous damage [30, 38, 56, 57, 58]. Withiniooous damage constitutive equations, to introduce
a saturating damage rate has proved quiieient regarding regularization [39]. The modular delayrdge laws —
with or without active damage, local or nonlocal — proposegresent work extends such a feature to the case of
induced damage anisotropy. One attempts therefore to answes question of its material representativity (in terms
of strain rate &ect reproduced) but also of itsfieiency as a localization limiter (with the same identifiedtenizal
parameters).

2. Initial anisotropic damage model

2.1. Initial model for monotonic applications

An anisotropic damage model has been proposed in the thgmaodcs framework [27, 28] introducing for
guasi-brittle materials a single damage variable (thersgooder tensoD) as the representation of the damage state
due to micro-cracking. Mainly due to induced anisotropw tlissymmetric response of concrete in tension and in
compression is obtained with a low number of material patars€5 including elasticity parameters). Mazars damage
criterion [15] is used in this initial model, with the advage of simplicity for instance from the numerical point of
view.

The full set of constitutive equations reads

e Elasticity,

1
EV&—étra-l or e=E': G 1)

with E the Young modulus andthe Poisson ratio.

E =

e Effective stress

5= |- Dyizao - oy 4 3| 1

A=) + (tro-)] 1 (2)

1The powera of a positive symmetric second order ten$ds taken in terms of principal values, makifigdiagonal ad giag = P-1TPwith P
the change of base matrix and finally = PTgiagP‘l.
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where ()P stands for the deviatoric part of a tensor and >, (resp.< . >_) for the positive (resp. negative)
part of either a scalar or a tensor (in terms of principal @g)uPrevious relationship is inverted as

1-D): &

o=(1-D)"?&(1-D) - o

1-D)+ % [(1 - trD)(tr &), + (tré)-]1 3)

e Damage criterion,

f <0 — elastic loading or unloading

: 4
f=0& f =0 — damage growth @

f=9g()-trD sothat {

wheres = <& >,:< & >, is Mazars equivalent strain and whe@) = aA‘Larctar(g) - arctar(%0 |] is used,
introducingkg as damage thresholé,anda as damage parameters. Note that other definitions of theaqat
strain can be used [50, 59].

e Induced damage anisotropy governed by the positive extegsi
D = Ue)? (5)

In the rate independent formulation the damage multiplir determined from the consistency conditibe:
0& f =0.

2.2. Damage deactivation for micro-cracks closure

Splitting into positive and negative parts the hydroststiiess in the state potential allows to reproduce naturally
a partial micro-défects closure for alternated loading (the example of terfsibowed by compression is given next).
Gibbs state potential from which derives elasticity law-(2) reads:

(L-2v) ( troy?
6E (1-uD

14y

* 2
pU* = SE + (tro)2 (6)

tr|(1- D)™?¢°(1 - D) %0P| +

Itis split into two parts, deviatoric and hydrostatic — ifsdso split into two parts. The hydrostatic part is nffeated

by damage for negative hydrostatic stressesbulk modulus is constant in compression (compaction is raueted).
Damage acts fully on shear (deviatoric) stresses, indegrglydbf their sign. Such a potential represents then partia
stiffness recovery under alternated loadings.

For a complete recovery, it would be necessary to split dlsodeviatoric term into a negative and a positive
part [11]. This makes the numerical scheme much heavier foniged interest. Note that the few experimental
results existing on concrete behavior under alternatedingg1] are not stficient to conclude on how complete is
the stifness recovery.

The initial model of section 2.1 is not able to deal properithvalternated loadings since the damage threshold
in terms of strain(tr D) = g~X(tr D) acts as the isotropic hardening of metals plasticity, buhe strains space.
Isotropic hardening is known as notfBaient to model cyclic plasticity (kinematic hardening isuaBy introduced
for such a purpose). Witk(tr D) consolidation function, the threshold is reached in caapion (resp. in tension)
for a larger strain (in absolute value) after a damagingiluaoh tension (resp. in compression) than for a monotonic
loading (Fig. 1(a)). In order to solve this problem — simtlathe one encountered when modeling metals Bauschinger
effect — the concept of active damage is introduced, derttednd defined as follows:

o = D:(e) _ Dij (¢&)+)ij @)
maXx & max g

2The positive part of a second order ten§as taken in terms of principal values, makifigliagonal, positive diagonal é?diag>+ = (P*lT P)+
and finally(T), = P(Tdiag>+ p-1,



with max g, the maximum principal extension. Definition (7) is suctdas = tr D in monotonic tension as well as
in monotonic compression. The damage threshold is thenttewr

f=0() —dact=0 (8)
keeping then unchanged the material parameters of initileh The damage threshold is now reached for the same
equivalent strain in a compression (resp. a tension) falgw damaging tension loading (resp. compression) than in
the monotonic compression case (resp. tension). Figujesh@ws the damage deactivatioffieet on an alternated
loading tension — up to a damage amount in loading dirediipr- followed by compression. The peak stress in
compression is well reduced when the compression followsnaadjing tensionA contrario, note that the ultimate
strain in compression (at vanishing stress) is tii@cted by the amount of damaBe reached in tension.
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Imposed strain (Ep. 1) Imposed strain (Ep.1)

(a) Without damage deactivation (b) With damage deactivation

Figure 1: Hfect of damage deactivation on a tension upidollowed by compression loading.

2.3. Extension to nonlocal

Classical mesh dependency occurs when using previousdan@ge model in a Finite Element code. A non-local
enhancement can be used to gain the mesh independency.gDhaguo replace local Mazars straiim the damage
criterion f by nonlocal strair™ and to set

f= g(énl) = Cact 9)

Mazars nonlocal equivalent strain can be defined by use afitegrial form (next with a Gaussian nonlocal weight
function) or of an implicit second gradient form. One use®hke non-local integral averaging over the whole domain

[47]:
_qR
= (x) = Vir Lexp(—émﬂizsﬂ)é(s)ds

Cc
(10)
_ 4x - 8
Vi) = | exp|-——5—|ds
Q Ic
with | the characteristic length. Let us mention the implicit geatienhancement [60, 48]
g —12v2e = & (11)

which can be used instead of Eq. (10).



3. Anisotropic delay-damage model

Experiments show that concrete tensile strength can bepiedt by a factor of 10 or more for high strain rates
(high meaning of the order af=150 s [35]) while in compression the dynamic increase factor —rti® fcdy”/ fe
of the dynamic strength to the quasi-static one — does naezk2 or 3. In compression, strain raféeets can be
explained at high rates by inertia consideration [61, 62, iB8rnal forces due to acceleration lead to a confinedstre
state which makes concrete more ductile and resistant [A4gnsion at low strain rates, the strength enhancement
can be related to viscoudfects due the presence of water inside the cement matrix y@%le when the strain
rate is increased there is a transition from a single maraokdailure to a multiple cracking pattern due to defects
obscuration mechanisms [69]. Itis chosen next to reprothecstrain rateffect in compression simply by considering
the inertial terms in the global equilibrium. The only "ma&#’ strain rate &ect which will need modeling will then
be the tensile one. Berent possibilities exist in the litterature, dependingl@ndeformation mechanism considered,
visco-plasticity [66, 41], visco-elasticity [42], viscetnardening [40], visco-damage [9, 38]. In present workfithe
dependency is introduced through a viscosity law for danesglution, extended to induced anisotropy.

3.1. Viscgdelay-damage laws

A modeling possibility for high-rate dynamics and impachsists in making the strain ratect the stress-strain
response of concrete. The introduction of a charactetistie in dynamics indirectly defines a characteristic length
In the present case of elasticity coupled with damage thioree by introducing a viscosity or visco-damage law
D, = D\(tr D) in Mazars criterion [67, 68]. The damage evolution occursamymore af = 0 but atf = D, > 0.

A classical law for isotropic damage is Norton-Perzyna polae, D, = kD¥™, with k and m the visco-damage
parameters [38]. Such a law leads to an unbounded damag#texteoo important at high strain rates.

It is possible to bound the damage rate, for instance by thérmen rateD., = 1/, @ material parameter equal
to the inverse of a characteristic timng[39]. To gain this property in the thermodynamics framewanke sets

(M) (12)

1
f=9g@E-trbD=Dy,>0 Dy=--1In 5

b
from which derives the delay-damage law extended in inddesdage anisotropy
tr D = Do, [1 — exp(-b(g(é) — tr D))] (13)

bounding trD at high strain rates.

This regularization is defined locally.€. at RVE scale, at a structure Gauss point in Finite Elementssawell
adapted for dynamics computations. It allows for the deiteation of the damage multiplier (of eq. 4) and replaces
the consistency conditioh= 0, f = 0 of the rate independent case.

Note that for small values of the criterion functiér= g(&) — tr D the exponential simplifies as the linear lam=1):

1-expltbf)~bf — f:DVz%trD (14)

Expression (13) models the strain ratéeet encountered in concrete materials as shown in figure 2. vidtous
effect obtained with law (13) is of the same order of magnitudemmsion and in compression when material evidences
exhibit a smaller fect in compression. For quasi-brittle materials, one psepdhen the following exponential law,

H(tre) tr D = Do, [1-exp(=b(g(&) - tr D))] (15)

which bounds the damage rate for positive hydrostaticrsgrand which deactivates the delajeet for negative
hydrostatic strainsk{(x) = 1 if x > 0, H(X)= 0 otherwise is Heaviside function).



3.2. Damages deactivation in dynamics

In dynamics, loading sign changes are frequently encoedtéue to wave propagation. Following the develop-
ments of section 2.2 for quasi-static loadings, the actarmalge can be introduced in the delay-damage model, both
in the damage threshold and the viscosity law, in order tbwith alternated loadings. It is possible in these cases to
make the damage state due to compression (previously egpieeksby trD) not afect the strain rateftect in tension.
This is a key point to properly model with anisotropic damag&es induced dynamics failure. In that purpose, the
novel anisotropic delay-damage evolution law is writteteirms of active damagt; (defined by Eq. (7)):

H(tr &) dact = Deo [1 — eXp(-b(g(Z) — dacy)] (16)

3.3. Constitutive equations of delay-active damage model
The full set of constitutive equations now reads

e Elasticity
1+v

= [(@- Do - Dy 2 +

E =

1-2v [ {tror),

= |iovs T 0')} 1 (17)

e Damage criterion (localj = g(&) — dact , Using the viscous regularization (12),

IA

f 0 — elastic loading or unloading
f = Dy >0— damage growth (18)

« Induced damage anisotropy governed by the positive extessidamage multipliet being determined from
f = Dy(dacy) rewritten as Eq. (16) o
D = Xe)+ (19)

Note that a non-local model, is gained simply by replacinigy non-local equivalent straig""(Eq. 10) in
damage criterion:

f = g(E") - dact (20)
The non-local delay-active damage evolution law is then:

H(tr(8))dact = Deo [ 1 — exp(-b(g(E") — dact))| (21)

3.4. Positivity of the intrinsic dissipation

It has been shown in previous works [70, 28] that Itheal initial model of section 2.1 was thermodynamically
consistent, for instance that it leads to an intrinsic gsson due to damag® =Y : D > 0 positive for any loading,
even non proportional, even random. The proof, not recédlézd, is valid for a family of thermodynamics potential
py* —including potential (6) — and does not need the expliciivdgipn of the thermodynamics fordé = p%. It
just needs the featuf@ > 0 of a positive (tensorial) damage rate and applies to nardara damage models, for
which the damage evolution law is not gained by normalityrfr convex criterion functior.

For the delay-damage model, the damage Eate A(¢). is a positive tensor, built from the positive eigenstrains,
as the damage multipliet is as usual positive (wheh = D, > 0, damage growth) or zero (wheén< 0, elastic
unloading).

The case ofon localmodeling is more complex in the general case as it strongigés on the thermodynamics
formulation for the nonlocal enhancement [71, 48, 50]. A panison of nonlocal and gradient-enhanced softening
continua can be found in [49] (it is shown for instance thavevaelocity is unbounded for the explicit gradient
enhancement, which is not a physical feature). Strain ipatEdn and dispersive wave propagation in softening
plastic Cosserat media has been studied in [72]. A receiwen the implicit gradient thermodynamics formulation
[73] summarizes the fferent approaches (called micromorphic in Forest’s workjigarous formulation recovering
Eq. (11) considers the variabdeahd gradient variabl€é as additional state (thermodynamics) variables. Follgwin
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[74] and [73],€is derived from virtual work consideration as equakthdiven by Eq. (11). In order to allow this,
note that Hemholtz free energy becomes (withndl. as material parameters),

oM = py*?(s D) + % |- 82 +12ve. ve| (22)
with py'°% = sup.(o : &€ — py*) gained by Legendre transform of Gibbs free enthalpy (6)teNbat the elasticity
law is changed into a nonlocal one as

o local L 08 o local & énl
o=p lgs +a/(s—e)£=p lgs +a/T(s)+ (23)

which recovers Eq. (17) only if a small value f@iis considered. Another pragmatic formulation simply ptzdes
the non-local enhancement (for example as Eq. (11) or amthgral averaging (10)) and does not derive it from
virtual work consideration. o e ‘

In both cases, the (conjugate) thermodynamics fhfrce—pd(;”on = —pd‘gga = p% remains unchanged compared
to the local model. And it is still defined in a local manner.eTgroof [70] of the positivity of the dissipation due to
damage holds then. Recall that for thermodynamics potgglidt only needsD > 0 (as one only needs a positive
scalar rateD > 0 in case of nonlocal isotropic damage [74]). The seconctipia of thermodynamics is fulfilled for
the nonlocal anisotropic delay-damage model.

4. Strain rate effect and its consequence on damage growth

4.1. Monotonic loading

Experiments made either on hydraulic testing machinesférdint controled strain rates, or performed with
Hopkinson bars at larger strain rates, exhibit the so-dalite €fect: the larger the strain rate the larger the apparent
tensileftdyn or compressiva‘cdyn strengths. The results for concrete are gathered in thegﬁtrmcreasétdy”/ fy and
fcdy”/ fc vs e curves of figures 2 and 3, with = fi(e = 0), fc = fc(¢ = 0) the quasi-statics ultimate stresses in tension
and in compression.

16
+ synthesis brara 1997 B | o
14=--| = brara1997 S
& Brara 2007 wet : ! .
12 d--| #  HKepasczko 20070 wet | oLy ?_ _____
*  Klepasczko 2001 dry H 1 ?"
104 e brara 2006 wet I S S - L
+  brara 2006 dry : ! g
5 : ; : : i=
-

strength increase

i i i i
1E-08 1E-06 10,0007 0,07 1 100
Strain rate [/s]

Figure 2: Strain rateftect in tension for concrete , after [32, 33, 34, 35, 36].

As already mentioned, the strength increase observed ipm@ssion is weaker than in tension (Fig. 3) and can
be related to inertiaftects that confine the material. This same enhancement i$ysiegyoduced by Finite Elements
if inertial forces are considered (Fig. 4). The model of mecB has been used for this computation with the set of
material parameter€ = 42 GPay = 0.2,xp = 5.10°%, A = 5000,a = 2.93.103, D, = 50000 s andb = 1.
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Figure 3: strain rateféect in compression for concrete , after [31].
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Figure 4: Inertia &ect in compression .

The computation is performed on a single cubic element ldadeainiaxial compression. Recall that damage
evolution occurs without viscosity in compression (neitfrem delay-damage law (15) nor from law (16) due to
H(tre) = 0). In tension H(tre) = 1), delay-damage allows to represent the strain réiezeshown in Fig. 2. Itis
exactly the same without or with active damage (as long ag ikeno initial compressive stage).

The two delay-damage parametei3,, andb, have been identified such as one has simultaneously a ablice
strength increase starting from a strain rate of about had still a brittle softening behavior at 200tqcf. Fig.

5). A good fit for the strain ratefiect is obtained with the common valbe= 1 and withD., = 50000 s* (which
corresponds to a characteristic time= 2.5.10°s).

Further investigations on the consequences of such a nmgdeti computations of impacted structures are pre-
sented in section 6.
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Figure 5: Calculated stress-strain curves ffedent strain rates (anisotropic delay-damage model).

4.2. Alternated loading

Figure 6 shows that the deactivation of damage in dynamisliie use ofly; in the delay-damage law, Eq. 21)
allows to reproduce a physically consistent strain rditece in tension after a first damaging stage in compression.
The example presented consists in a numerical simulatiomedaout on a single cubic element first damaged in
compression along direction 1 until

0O 0 O
D=0 05 O
0O O 05

and then loaded in tension at a strain rateqf= 10s. The numerical response for a monotonic tension loading
at the same strain rate is also represented for comparisomen\the law in trD is used (Eq. 15, without active
damage), the strength reached in dynamic tension is fougerd: 25 MPa) after a damaging compression than
in case of the undamaged material 10 MPa). This is quite not realistic ! With damage deactvat{law 16),

the strength enhancement in dynamics is found of the sangr ofanagnitude with or without the initial damaging
compressive stage. This shows the importance of the adiveade concept (7) for dynamics.

5. Numerical implementation in a Finite Flement code

The numerical implementation in a Finite Element computafeccan take advantage of the strain form of the
damage criterion in order to avoid the use of an iterative@ss at the local Gauss point level. This key feature is
of most importance in explicit dynamics as many (small) teteps are needed. The scheme proposed next for the
anisotropic delay-active damage is detailed in two steps:fiost focus on the delay-damage law time discretization,
second on the numerical scheme for the full anisotropic de@maodel. The straig,,; at timet,,1 is assumed known
as well as quantities at tintg, and one seeks the dama@g,; and stressm, 1.

5.1. An explicited Euler backward scheme for delay-damage |

Let us consider a damaging increment.
The case of negative hydrostaticg£tk 0) leads to the same resolution as in quasi-statics as ortaédwas! (tr £)
=0 and:

Jactrv1 = 9(En+1) (24)
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------------- Without damage deactivation
H With damage deactivation
— —— Monotonic tension

Stress (Sig. 11) [MPa]

g

Figure 6: Hfect of damage deactivation on the tensile strain riseeE = 10s1).

Imposed strain (Eps. 11)

In case of positive hydrostatic strain £t> 0), the derivative with respect to time of the delay-damage (16)

leads to: .
A\ A K 1 dact
/ — ot = — = -
g (g)g act b Doo - dact
with here
IR A
g = 2
1+ (5)
Using Euler backward scheme,
d‘ ~ dactml - dactn
act +1 7At
A én+1 - én
Enpl R ————

At

equation (25) becomes

dact n

bAt

: o . 1. e
(dactml)2 — (9 (énr1)éns1 + Doo + @)dactml +0'(En+1)én+1Doo +

=0

(25)

(26)

(27)

(28)

(29)

so that the active damage rate at tithg is solution of the second degree equation (here in a formiwénoids the

difference of large numbers),

Cn+1 ( dact n )
1-4/1-4 1+
\/ B§+l bAtCh41

Jactne1 = dactn + At actne1

dactml = éBn+1

with as initial conditionlacto = 0, dacto = 0 and where:

e A . 1
0'(En1)éns1 + Doo + BAL

Bn+l

Cn+1 g' (§n+1)én+1 Doo

11

(30)

(31)

(32)
(33)



5.2. Explicited Euler backward scheme for anisotropic gledative damage model

The time integration procedure for the full anisotropicajetiamage model takes place at a Gauss point and
solves in a coupled manner the constitutive equations dicse2. The strairn,1 = &(tn,1) at timety,1, the damage
D and the active damage ratig.;, at timet, are the inputs of the procedure. The outputs are the stresses
and the damag®y,1, but also the active damage raitg,,1 at timet,,;. Euler backward implicit scheme is used
for stability reasoni.e. the variables are replaced by their value at time in the constitutive equations when the
damage rat® and the damage multipliélrare replaced baD = Dp,1 — Dy andAA = 2,1 — 4, in the damage law.
In order to integrate the damage model proceed as follows:

1. Compute the equivalent stragn.1 = V< &n+1 >+:< Ent1 >+
2. Make a test on the criterion functidn= g(&n+1) — dactn

e If f <0, the material behaves elastically, set tlign; = Dy, Oactri= 0 aNAdactrer = Jactn

e If T > 0, the damage must be corrected by using the damage evolationliscretized as\D =
Dni1— Dn = A Xen1)+ . Gainingdgeiny1 from equation (24) if te,,1 < 0, from equations (30)-(33)
if tr 441 > 0, allows to derive the exact expression for the damage pfieitincrementA4,

_ (maxeini1) dactner — Dn : (Env1)+

52

AL (34)

n+1

and the actualization of the damage tenBor
Dns1 = Dn+ Ad(eni1)+ (35)

3. Compute the stresses using first the elasticity law wriitg; = IE : &n,1, with E isotropic Hooke’s tensor.
Using then eq. (3) witlor = 0,1, 6 = 6'n1, D = Dpyg finally gives the stress tensor at the end of the increment

Ontl-

The complete numerical scheme is fully implicit (it is Eubackward scheme) therefore robust and stable, but it
has the main advantage of the explicit schemes: there isefoe a local iterative process as the exact solution of
the discretized constitutive equations are analyticaipfieited.

When damage reaches large values, one must be carefullireghe damaged elastic tensor to remain positively
defined. This is done for induced anisotropic damage by wsspecific procedure for the numerical control of rupture
[28].

6. Dynamictensiletest by spalling

6.1. Experimental set-up and 3D Finite Elements computatio

The example developed here is the numerical simulation gharmhic tensile test. This setup has been developed
in order to obtain the tensile strength of concrete at highirstrate [35]. Its principle is described in figure 7. The
setup consists in a striker (launched at the velo¥ityan input bar and the tested specimen. The input bar of the
experimental set up has a diameter of 40 mm for a 100 mm lengite the concrete sample has the same diameter
for a length of 120 mm. After the impact of the striker at thghtiend, an incident stress wave propagates in the input
bar. One part of the wave is transmitted into the specimeraanther one is reflected at the fsgrecimen interface.
The transmitted compression wave is reflected at the freeaaddoecomes a tensile stress wave. Because of the
dissymmetric tensignompression material behavior, this leads to fracture@gecimen in the spall plane.

The first computations presented here reproduce the expetéhtonditions (specimen size and impact velocity).
The applied loading consists in an imposed motion of the etgEh(right) face of the specimen. The motion evolution
is gained from experimental datas, the loading functiomésented in figure 8. The 3D mesh is composed of prismatic
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Figure 9: 3D mesh for numerical simulation of dynamic temgiist

elements with 6 nodes. There are 48 elements in the direofite specimen length (elements lengtl2.5 mm).

The mesh is represented in figure 9.
Experimentally, one observes that the main crack appedgtatcm from the impacted face [36]. The exper-

imental material parameters are not known with accura@yptirameters taken for the model are given in table 1.

6.2. Strain rate and micro-cracks closurgets in impacted structures

This example illustrates the role of the strain rate and efrtticro-cracks closurefiiect since the macro-crack
position is strongly dependent on the concrete tensilegthen dynamics, which is, as mentioned before, influenced
by the consideration of these two phenomenons. Indeed}riiia sate in this example is of the order of 100 ,sa
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Parameter Value

E 42 GPa
% 0.2

Ko 510°
A 5000
a 2.9310%

If strain rate &ect
b 1
Do 50000 s*

Table 1: Parameters for the anisotropic delay-damage model

value for which the strain ratefect is very influent. Furthermore and as shown in figure 10rtbielent compression
wave (alongx-axis) strongly damages the specimen. The damage in cosipmnegache®y, = D,, = 0.75 (with

Dyx = 0) in the most damaged zone. This means that the problem otth toa high apparent concrete strength in
tension following compression is encountered if damagetiledion is not considered (recall that damage deactiva-
tion through the consideration of active damalgg represents in a macroscopic way the micro-cracks closneg.
can notice that the specimen is not damaged near to the ftee fa this zone, due to the reflexion of the incident
wave, compression and tension waves are superimposedahtbla quasi vanishing stress state at this stage.

Dyy/Dzz
1.5000
0.75000
Impacted
Free FaEe 0.50000
Face
0.25000
- > y
X

Figure 10: Damage mapyy = D, after the incident compression wave

Let us compare computations with four versions of the madaifésotropic damage model: with and without
strain rate &ect and with and without damage deactivation. The damage feaiDx (due to tension) at the times
corresponding to failure for the filerent model versions are given in figure 11. One can see thgtasition of the
crack and the time at which failure occurs depend on theaeisithe model choseng. on if the strain rateféect is
represented or not, if damage deactivation is consideredtoStrain rate #ect leads to a later failure in an area more
distant to the (left) free face because the maximal streisgtiension is enlarged. If one compares the two models
without damage deactivation to the experimental resulé, aloserves that the major crack is too close to the free
face in the version without delay-damage, and too far fromwith delay-damage written in B. Damage deactivation
allows then to correct the position of failure. With both dage deactivation and delay-damage, failure occurs close to
the middle of the specimen, which fits well with the experita¢result. It is important to notice that without damage
deactivation, failure occurs in the less resistant are#;twib, for the delay-active damage model the area fietted
by damage in compression (close to the free face). In that tas principal element that governs the position of the

crack is more damage state (through the tradetf the damage tensor) than the strength enhancement duaito st
rate dfect.
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Free Face Impacted Face

No strain rate effect
0,075 ms No damage
deactivation
Dxx
0,066 ms ' No strain rate effect 1.0000
Damage deactivation
0.75000
0.50000
Strain rate etfect
0,098 ms No damage 0.25000
deactivation '
0.0000
0,089 ms Strain rate effect
Damage deactivation

5,42 cm

Experimental
position of failure

Figure 11: Damage mdpxx for the diferents version of the anisotropic damage

6.3. Regularization in dynamics

Delay-damage and non-local computations dfieient tools do deal with localization issues, but each o$¢he
model enhancements has its own domain of validity in ternstrain rate. In this section, one quantifies for which
strain rate range it is relevant to apply these localizdtmiters

The micro-défects closure modeling — by means of the active damage contegstno influence on théfeiency
of the regularization. Therefore, the results presented wihout damage deactivation are relevant to qualify the
quality of the regularization. Four models are comparedh@uit damage deactivation then):

e initial local model, no visco-damaged. without regularization case),
¢ local delay-damage model with criterion function expreldseterms of tiD,
e initial non-local model, no visco-damage,

e non-local delay-damage model which combines the two puswnodels, the delay-damage law reading:
H(tre) tr D = D |1 - exp(-b(g(e") - tr D))] (36)

The parameters are still those of tabla.&, the delay-damage parameters are those representing thereaptal
strain rate &ect and are therefore not chosen for regularization purpose
In order to study the regularization, two results are ob=sgrid,, damage fields and the evolution of the ejection
velocity. If damage is localized in one (or a few) elementeomnhatever the size of the elements, regularization is
not dficient. What is called ejection velocity corresponds to tawion of axial velocityvy of the center of the free
15



face. When failure occurs, the part of the specimen locatetthe left of the crack is ejected. The ejection velocity
depends on where and when this happens, therefore it is aigdiodtor of the mesh dependency.

One compares the results for 3 meshes (coarse 3300 DOF,médit8 DOF et fine 12804 DOF, cf. Fig. 12).
To illustrate the need of regularization, a computatiorhwlite same meshes and the initial model (without non-local
regularization nor delay-damage) is performed first (tssolFig. 13 and Fig. 14).

Finally two different impact velocities are compared in order to estabtigthich strain rates the regularization
methods areféicient. The case called "fast impact” corresponds to theexmtal case described above. The loading
for the case called "slow impact”, described in paragraph €onsists in applying the same maximum displacement
butin a 4 times longer time. The specimen geometry has to &jeted.

Coarse mesh

3300 DOF H _
IMPACT
mnen (L g
6468 DOF VZ\TY
-
X
Fine mesh
12804 DOF

Figure 12: 3 Meshes used for fast impact

6.4. Fastimpact

6.4.1. Without Regularization

Without regularization, damage is classically localize@ithin area (Fig. 13), which reproduces well the kind of
failure observed. If one looks at the ejection velocity (Fig), the result is clearly mesh dependent. The three curves
obtained for the three meshes are not superimposed anymoonglie time at which strain and damage localization
occurs (t~ 0.75 ms). This is typical from a non-regularized computatidhe results are not reliable since they
depend on the discretization chosen.

Coarse mesh

3300 DOF - Dxx
1.0000
IMPACT
0.75000
Medium mesh ‘
0.25000
Fine mesh

Figure 13: Damage maji3x without regularization - fast impact
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Figure 14: Ejection velocity without regularization - fastpact

6.4.2. Delay-damage regularization

In that case, the thickness of the damaged area is not lindtadow number of elements. For the coarser mesh,
the critical damage is reached in 2 rows of elements (Fig. Thg velocity evolution (Fig. 16) shows less important
differences between the results for thatent meshes than without regularization. We can considemn the weak
mesh dependency, that the solution is regularized in theet ¢feoretical results with delay damage can be found

in [39]). For the strain rate range considered (of the ordenagnitude of 100 3), delay-damage is anfficient
regularization tool.

Coarse mesh

3300 DOF - Dxx
1.0000
IMPACT
0.75000
Medium mesh
0.25000
Fine mesh

Figure 15: Damage mai3x with delay-damage regularization - fast impact

6.4.3. Non-local regularization

The internal lengtH. is taken equal to 1.5 cm for the three meshes, which corresptn3 elements (in the
longitudinal direction) for the coarse mesh, 6 for the madane and 12 for the fine one.

The 3 damage maps (Fig. 17) exhibit a larger damage zoneréadbpsly (about 3 cm), which tends to decrease
with the mesh size. It looks as if non-local regularizatiomynamics spreads damage in a too important zone. The
association of non-local enhancement, which averagegjthieadent strain in a defined area (therefore make non-local
damage evolution), with fast wave propagation is not abiesscribe a localized failure. Nevertheless, the soluson i

perfectly regularized, as seen on the ejection velocityesi(fig 18), in which the results exhibit absolutely no mesh
dependency.
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Figure 16: Ejection velocity with delay-damage reguldita - fast impact

Coarse mesh

3300 DOF _ Dxx
1.0000
IMPACT
0.75000
Medium mesh
6468 DOF 0.50000
0.25000
Fine mesh
12804 DOF 0.0000

Figure 17: Damage mafi3xx with non-local regularization - fast impact
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Figure 18: Ejection velocity with delay-damage and norelagegularization - fast impact

6.4.4. Delay-damage and non-local regularization

The idea of combining delay-damage and non-local reg@toz aims at taking advantage of both: good regu-
larization thanks to non-local formulation and represeoieof the experimental strain rat@ect with visco-damage.
But, as seen in figure 19, this choice seems not appropridtéeasls to an non-homogeneous damage state inside the
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specimen. The edgdfect of non-local averaging is found very high around thertdtiace, so that a too low damage
level is obtained far from the center of the spall plane (mand bottom areas of cross section view). Furthermore,
failure occurs close to the (left) free face of the specinaanif the strain rateféect were not represented. However,
as shown by both the damage maps and the velocity evolutignZB), the solution is perfectly regularized.

Coarse mesh
3300 DOF

Dxx
1.000

0.7500
Medium mesh
6468 DOF 0.5000

0.2500

Fine mesh
12804 DOF

0.000

Front vue Cross-section vue

Figure 19: Damage mafi3xx with non-local regularization - fast impact
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Figure 20: Ejection velocity with delay-damage and noraloegularizations - fast impact

6.5. Slow impact

In the previous paragraph, it has been established thay-delmage regularization was the best adaptated for
high-rate dynamics. One aims here at studying the casewésldynamics, where the strain ratéeet is lower or
even negligible. Therefore, the same impact computatiomperformed but with a slower loading. The maximum
displacement imposed to the right face specimen remainsatine, but the loading duration is multiplied by 4. If the
bar length is kept unchanged, the incident wave starts tectafh the left free face before the maximum displacement
is reached. rom this results that the stress state is a crsygberimposition on tension and compression waves which
does not lead to failure. For that reason, the geometry dereil next is chosen longer (96 cine, 4 times previous
length) but keeps the same diameter (2cm). Thréerdint meshes, with the same number of degrees of freedom as
before, are compared (Fig. 21). For that example, the aeestagin rate is around 3%
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Coarse 3300 DOF

Medium 6468 DOF

Fine 12804 DOF

Figure 21: 3 meshes for slow impact

6.5.1. Without Regularization
Without regularization, damage is localized in a thin bamlich decreases when the mesh is refined (Fig. 22).

1 8660
Coarse R 0.75000
Medium s 0.50000
Fine o 0.25000

0.0000

Figure 22: Damage mai3xx without regularization - slow impact

When localization occurs (around 0,4 ms), ejection velocity curves (Fig. 23) stop to supeosgand exhibit
large diferences between them (mesh dependency).

1 1
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(a) Complete evolution (b) Detall

Figure 23: Ejection velocity without regularization - slémvpact

6.5.2. Delay-damage regularization
With delay-damage (Fig. 24), damage maps exhibit mesh digmey as in the no regularization at all case. Two
different localization bands are obtained, even three with tiee fnesh.
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Figure 24: Damage maji3xx with delay-damage regularization - slow impact

Ejection velocity evolution curves (Fig. 25) confirm the tfdlcat for low-rate dynamics delay-damage cannot
be considered as a regularization method if the delay-damatameters are identified from the material strain rate
effect. In the case studied, to model the strain réitecé has a small influence on the result (the localization b&nd
more distant from the (left) free face where reflection tgklese, which means that the concrete strength is higher),
but not on the mesh dependency.
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Figure 25: Ejection velocity with delay-damage regulaita - slow impact

6.5.3. Non-local regularization

As expected and as for fast dynamics, non-local reguldoizd¢ads to a perfectly regularized solution in terms
of damage maps (Fig. 26) as well as for velocity evolutiong.(27). The localization band remains however quite
large in that case.

6.5.4. Delay-damage and non-local regularization

Delay-damage associated with non-local enhancement teagisolution which does not present the same reg-
ularization quality as single non-local enhancement oglsinlelay-damage, separately. The damage maps present
a variable number of localization bands (Fig. 28) and tHEedinces observed between the velocity evolutions are
significant (Fig. 29).

21



Dxx

1.0000
Coarse NN 0.75000
vedivm 0.50000
e S 0.25000

0.0000

Figure 26: Damage mai3xx with non-local regularization - slow impact
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Figure 27: Ejection velocity with non-local regularizat®- slow impact
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Figure 28: Damage mayi3xx with delay-damage and non-local regularizations - slowaatp

Conclusion

A 3D anisotropic viscfilelay-damage model for concrete in dynamics is developedrmodular formulation.
Each modeling elementary block, the delay-damage one, dtieeadamage one, the nonlocal enhancement, can
be activated or not. Important feature, the material patare@lready identified are kept unchanged when switching
from one model version to another one. The numerical scheapmped is robust and quite simple (as Euler backward
scheme is used and as there is no need for iterations at Gainstepel).
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Figure 29: Ejection velocity with delay-damage and noralaegularizations - slow impact

Thanks to the introduction of Heaviside terHfi(tre) in delay-damage evolution law, the model represents the
strain rate &ect observed in tension while the apparent strength iner@asompression is simply obtained by con-
sidering inertia forces.

Active damage has been defined and introduced in the sadaatlisotropic delay-active damage model. It has
proven to be a key concept to deal with alternated loadings{msual in wave propagation and reflection cases). It
is introduced in both the damage criterion function and tekaytdamage evolution law, for both quasi-statics and
dynamics applications. A main conclusion of present workhet active damage should not be considered as an
optional elementary brick of the model but should be inctuigtethe basic constitutive equations of the anisotropic
damage model.

Regularization properties have been studied from 3D coatjoumis of dynamics tension tests with Hopkinson bars
for different versions of the anisotropic model. The corresponctinglusions are:

— Classically, the anisotropic delay-damage model prasesility to regularize the Finite Element solution if the
strain rate is large enough to have a significdfeat on the stress-strain response and on the apparentthtreng
increase. Less classically and result specific to conctieéeparameters identified to represent the material
strain rate &ect are #icient for high-rate dynamics regularization purpose.

— With the same delay-damage model (and parameters), theatevdynamics computations have not been reg-
ularized.

— Non-local enhancement, affieient regularization method in quasi-statics as well ayimagnics, has not given
satisfactory results for the location of the failure plaregn when combined with delay-damage). The non-
local averaging seems to interact too much with wave prajp@gand changes much the location of the failure
plane. Edgesfect have also been found too pronounced.

Both non-local enhancement and delay-damage have ther(dbparate) domain of validity in terms of strain rates.
A model valid for any strain rate will combine both, but willake the non-local characteristic length a decreasing
function of the strain rate, setting for example

le = 1o(&) = |2exp[— (gi*)n} (37)

with 12 the usual quasi-static characteristic lengthandn additional material parameters. At low strain ratgs) ~
19 = Cstand the model recovers the classical non-local model, whhigh strain rate. — 0 and the model tends
toward the local delay-damage model.
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