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Abstract 

A numerical model is proposed for predicting scattering pressure by a fluid-loaded cylindrical 

shell stiffened by axisymmetric internal frames and impacted by an acoustic plane wave. The 

proposed developments are based on the circumferential admittance approach (CAA) which 

allows us assembling a numerical model of the fluid loaded shell with finite element models 

of the internal frames. The scattering pressure model deduced with the CAA can then take 

into account: (a), internal frames having a cross section with a complex geometry and 

thickness variations (like T-shaped stiffeners, bulkheads, hemispherical end caps); (b), 

variations of frame spacings; (c), frame-shell coupling in the three translational directions and 

tangential rotation. Comparison with the numerical and experimental results of the literature 

for a periodic stiffened shell shows that the scattering from Bragg, Bloch-Floquet, and Helical 

waves is correctly predicted. The effects on the backscattering pressure of axial and tangential 

coupling forces are highlighted. Finally, an example of a non-periodically stiffened shell is 

presented to highlight the versatility of the approach proposed. 
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1. Introduction 

 

The scattering of an acoustic plane wave by cylindrical shells has been the subject of 

numerous works. Under the pressure loading of a harmonic plane wave, an elastic shell 

vibrates and re-radiates noise, adding to the specular reflection and geometric diffraction of 

the incident wave., Certain mechanical and geometrical properties of the shell can be 

estimated by analysing this radiated pressure due to shell deformation. Different types of 

shells have been studied in the past: infinite cylindrical shells [1, 2] were modelled by using 

the elastic theory. The phase matching of shell helical waves with obliquely incident waves 

was highlighted and seen to have a significant influence on backscattered pressure. This was 

confirmed experimentally in [2]. It was shown that the compressional and shear helical waves 

are the main contributors to the scattered field in the frequency domain. The attenuation of 

these waves by using a viscoelastic layer was studied in [3]. The scattering from finite 

cylindrical shells was studied by different authors [4-6]. An asymptotic solution of scattering 

was obtained in [4] by considering that the cylindrical shell is slender and that its ends are 

simply supported. Scattered pressure due to the elastic deformation of the finite shell was 

compared to rigid shell scattering for monostatic and bistatic cases. Measurements of the 

backscattering pressure from an insonified finite cylindrical shell immersed in water were 

proposed in [5]. The frequency band of investigation corresponded to 5<ka<15 and the effects 

of membrane waves were studied. The backscattering pattern in the frequency- angle domain 

presented loci along which exist discrete areas that represent high levels of backscattering 

energy. The positions of the loci were easily associated with the membrane circumferential 

modes of an infinite shell. Comparison with an approximate theoretical model permitted 

associating the position of the high level spots to the resonances (i.e. axial and 

circumferential) of the finite shell. Measurements at higher frequencies were carried out in 

[7], showing the effect of flexural waves on the resulting loci for a thick finite cylindrical 

shell. A ray theory was proposed in [8] which allowed predicting the increased backscattering 

observed experimentally for the membrane and flexural waves. Shells of different lengths 

were investigated experimentally in [6]. A large frequency band corresponding to 10<ka<50 

was considered to highlight the effects of both membrane and flexural waves. The scattering 

of a periodically ribbed finite cylindrical shell has been studied over the last two decades. 

Monostatic measurements in the domain 2<ka<30 on two cylindrical shells, one stiffened 

with regularly spaced ring stiffeners and the other without stiffeners, highlighted the effect of 
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periodic discontinuities [9]. Bragg scattering and scattering from Bloch-Floque waves were 

observed in the mid-frequency domain: the first phenomenon was due to the interference of 

the geometrical reflexions of the incident plane waves on the ring stiffeners whereas as the 

second one results from the propagation of flexural waves interacting with the periodic 

stiffeners [10, 11]. These phenomena were found to be more dominant than those associated 

with the scattering from the compressional and shear helical waves mentioned previously. 

Models for evaluating the flexural dispersion curves of the ribbed shell were proposed. They 

permit interpreting the effect of the Bloch-Floquet waves of the scattering and approximating 

the location of the highlights on the experimental scattering patterns. A model of the 

scattering of an obliquely incident wave by a ribbed finite cylindrical shell was proposed in 

[12]. The shell was assumed to be slender, described by a thin shell theory (i.e. Donnel 

equations) and stiffened by a set of periodically spaced rings. Only the normal component of 

the reactive forces exerted by the stiffeners on the shell was considered. Backscattering 

pressures calculated with this model were in agreement with measurements published 

previously [13]. A comparison with new measurements was proposed in [10, 11] and an 

simple models were used to interpret the different phenomena. The model proposed in [12] 

was improved for dealing with a shell with irregularly spaced ribs [14]. The ribs, which could 

be coupled with axisymmetric oscillators, were described by their modal impedances and only 

the normal component of the reactive forces was considered. The backscattered pressure was 

approximated by selecting the contribution of the axial modes approximately satisfying the 

spatial coincidence condition. This model was used to study the influence of small 

aperiodicity and axisymmetric oscillators.  

 

In a previous paper by the present author [15], the Circumferential Admittance Approach 

(CAA) was presented for predicting the vibration and pressure radiated from a submerged 

cylindrical shell stiffened non periodically by axisymmetric internal frames. The external 

excitations considered in [15] were mechanical point forces on the internal frames. The (k,M) 

reciprocity technique proposed in [16] also permits use the CAA for a shell excited by the 

pressure fluctuations induced by a homogeneous turbulent boundary layer developed at the 

shell surface. In the present paper, we propose an extension of the CAA model [15] to 

estimate the reradiated pressure of the stiffened shell impacted by an obliquely incident plane 

wave. This extension could be used for studying the backscattering pressure due to the elastic 

deformation of the shell and the internal frames. Basically, the CAA consists in substructuring 

the problem: the immerged cylindrical shell is considered on one part and the internal frames 
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on the other parts. Circumferential admittances are estimated with a numerical model for the 

cylindrical shell and with the Finite Element Method (FEM) for the internal frames. The 

assembly of these admittances makes it possible to calculate the coupling forces. In the 

second step, the forces are injected into the numerical model of the fluid-loaded shell to 

calculate its vibrations and radiated noise. 

 

With the CAA model, the internal frames can be irregularly spaced. As the frames are 

modelled with FEM, it is easy to then consider different frame geometries: stiffeners with I or 

T-shaped sections, bulkheads with flat or curve sections, etc. Moreover, the three components 

of reacting forces and the tangential reacting moment between the frames and the shell are 

taken into account. The model developed in this paper could be used in the future for studying 

the influence of these different parameters on the backscattering pressure. In particular, it will 

permit considering bulkheads that can lead to significant changes to the scattering of 

compressional and shear helical waves due to axial and tangential coupling forces, as 

highlighted for a specific case in [17-19]. We can emphasize that the circumferential 

admittances approach is based on the same principle than the mobility matrix approach 

considered in [18-19] (sometimes called receptance, mobility or impedance approaches). 

However, in [18-19], it was developed for studying only the acoustic scattered pressure from 

a fluid-loaded cylindrical shell with one or two internal plate bulkheads, for the low 

circumferential mode order equals 0 and 2. In the present paper, the use of FEM for modelling 

the internal frames would permit to study the effect of the design of the bulkheads 

(curvatures, thickness variation, etc). Moreover, the effect on the acoustic scattering of the 

interaction between the bulkheads and the periodic ring stiffeners could also be studied. The 

dramatic increase of computer capabilities since 1995 and the use of the spectral approach for 

evaluating the shell admittances [15] allow us to consider well higher circumferential modes 

than in [18-19]. The interaction of the flexural waves with the internal frames can then be 

studied in the present paper. It was not the case in [18-19] which was limited to the interaction 

of the compressional and shear helical waves (with low-order circumferential modes).   

 

The present paper is organized as follows: 

 - After the presentation of the problem considered, the main steps of the 

circumferential admittance approach are described in Sec. III;  
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 - Section IV consists of the analytical calculation of the displacements of the 

cylindrical shell (without the frames) when it is excited by an obliquely incident plane wave. 

These displacements characterise the external excitation in the CAA; 

 - The process to estimate the radiated pressure of the shell stiffened by its internal 

frames with the CAA is proposed in Sec. V; 

 - Section VI consists in comparing the CAA results with results from the literature for 

a periodically stiffened shell; 

 - Before concluding, an illustration of the present approach is proposed in Sec. VII by 

considering a shell composed of two parts with two different rib spacings. 

  

   

 

2. Presentation of the problem 

 

 

 

 

 

Let us consider the ring-stiffened cylindrical shell immersed in water shown in Fig. 1. The 

cylindrical coordinates  , ,x r   are considered for describing this system where x is the axial 

coordinate, r the radial coordinate, and   the circumferential angular coordinate. The external 

fluid has mass density 0  and acoustic wave speed 0c . 

The shell is impacted by an acoustic harmonic plane wave of oblique incidence compared to 

the axial direction of the shell. For the sake of simplicity, the wavevector of this incidence 

wave is assumed to be contained in the plane 0   and it forms an angle ξi with the normal of 

the axial axis (see Fig. 1). The time dependence of this harmonic excitation is tje   for which 

  is the angular frequency. Considering the stationary response of the system, the time 

dependence  tje   for the excitation and response will be omitted in the notation.  

The incident pressure of amplitude 0p is given by 

  cos

0, , x rjk x jk rip x r p e
 

 . 
 

 

(1) 

with 0 sinx ik k  , 0 cosr ik k   and 0k , the acoustic wavenumber (i.e. 0 0k c ). 

 

FIGURE 1 
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The   internal frames are composed of different types of stiffeners, bulkheads, hemispherical 

endcaps, etc. These frames are assumed to be axially symmetric and located at axial 

coordinate ix ,   ,1i . The connections between the shell and the frames are rigid. The lines 

of attachment are circles of radius R, the mean radius of the cylindrical shell. The materials of 

the shell and frames are linearly elastic, homogeneous and isotropic. ρ, E, ν are, respectively, 

mass density, Young modulus E, and Poisson ratio. 

As required by the CAA, the cylindrical shell is assumed to be of constant thickness h and of 

infinite length. In order to simulate shells of finite length, boundary conditions can be 

introduced by introducing fictive frames with specific admittances (see [15]). The part of the 

shell between the two extreme frames (i.e.  1,x x x ) is called the “active part”. The rest of 

the shell can be considered as representing the boundary conditions for the shell and the fluid 

medium. We focus on estimating the pressure reradiated by the “active part” of this shell 

when impacted by the obliquely incident wave. To this end, the circumferential admittance 

approach described in [15] is used. We recall the different steps of the calculation in the next 

section. 

3. Principle of the CAA 

 

- Partitioning 

As shown in Fig. 2, the system considered is partitioned such that the fluid loaded shell 

constitutes one subsystem and the frames constitute other independent subsystems. We define 

the variables for the coupling forces and the displacements at the junction between the shell 

and the ith frame force: 

- shellshellshellshell  and ,,, iiii UVW   are the radial / tangential / axial displacements, and the 

tangential rotation ( xW  ) of the shell, respectively; 

- shellshellshellshell  and ,, iiii MLTF  are the radial / tangential / axial forces, and the tangential 

moment exerted on the shell, respectively. 
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The same quantities (noted with the exponent “frame” instead of “shell”) are defined for the 

ith frame. 

These variables are a function of the circumferential angle, . Taking the 2 periodicity into 

account, they can be decomposed into a Fourier series which is written for the variable f,  

  jn

n

n

f f e 




   with  
2

0

1

2

jn

nf f e d


 



  ,
 

 

(2) 

where n is the circumferential order and nf

 

, the associated circumferential amplitude. 

As 0  is a symmetric plane of the system considered, only the integer of the 

circumferential order will be considered (because n nf f ). In the following step, this 

circumferential order will be omitted in the notation although it will be considered hereafter 

for variables written with the tilde symbol.  

 

 

 

 

 

- Definition of the circumferential admittances and the free displacements 

 

The circumferential admittances of the shell (respectively frame) between the ith junction and 

the jth junction, shell~
ji

Y   (respectively frame~
ji

Y  ) is defined by:  

shell

shell
shell

~

~
~

i

i

ji
Y




   (respectively 

frame

frame
frame

~

~
~

i

i

ji
Y




  ),

 

 

 

 

 

(3) 

where   ,,, VUW  and  MTLF ,,, . 

The shell admittances can be calculated with the spectral method presented in [15]. These 

numerical calculations are based on the Függe thin shell theory, a resolution of the problem in 

the wavenumber space and the use of a result obtained for a simplified problem (i.e. shell with 

the fluid added mass) which allows accelerating the numerical convergence. Moreover, the 

 

FIGURE 2 
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invariance in translation about the axial direction of the problem (i.e. fluid loaded cylindrical 

shell) can be used to save considerable computation times. This is the reason why a shell of 

constant thickness and infinite length was considered. 

The Finite Element Method can be used to calculate frame admittances. In [15], axisymmetric 

shell elements and the MD NASTRAN code were considered for these calculations. In the 

present paper, the calculations were performed with the SDtool FEM code [20]. The frames 

are represented by a 3-D mesh and shell elements. The Fourier decomposition (2) was then 

done with a homemade MATLAB code. The comparison between the two methods shows 

good agreement. The second one is more costly in terms of computation time but it could be 

used in the future for dealing with non axisymmetric frames. However, it is not the subject of 

the present paper.  

The external excitation is characterised in CAA by the free displacement of the shell, 
shell

~
i  . 

This corresponds to the displacements of the fluid loaded cylindrical shell (without the 

frames) impacted by the incident acoustic waves. The calculations of these quantities will be 

given in section IV. 

  

- Assembling and calculating the coupling force  

 

The coupling between the fluid-loaded shell and the internal frames is performed in two steps: 

- the first step consists in using the linearity properties of the system to express the 

relationship at the junctions between the displacements and the forces for the shell and the 

frames, separately; 

- the second step consists in writing the continuity conditions at each junction, namely 

the force equilibrium and the equality of displacement. 
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We finally obtain the linear matrix system: 

shell frame frame shellY Y  F W     ,

 

 

 

 

(4) 

where: 

- shellY   and frameY   are  matrices containing the shell and frame admittances, 

respectively; 

- frameF  is a vector containing the coupling forces exerted by the frames on the shell; 

- frameW  is a vector containing the free displacements of the shell. 

These matrices / vectors are built by ordering the associated quantities as a function of the 

order of the junctions, i and the 4 degrees of freedom (i.e. 3 translations + 1 rotation). The 

vectors have 4 1 as dimensions whereas those of the matrices are  44 . 

By solving this system, we deduce the forces and the moments exerted by the frames on the 

shell when they are coupled together. In the second step, as described in Sec. V further on, 

these reaction forces and moments will be re-injected in the cylindrical shell model to deduce 

the pressure reradiated by the shell coupled with its internal frames. Before that, in Sec. IV we 

give the developments of the calculation of the right member of Eq. (4), namely the free 

displacements of the cylindrical shell. 

 

4. Free displacements of the immerged shell for an oblique incident wave 

 

In this section, the displacements of the cylindrical shell (without its internal frames) are 

calculated when it is impacted by an oblique incident wave. 

 

When dealing with a scattering problem [21], the standard method consists in decomposing 

the total pressure in the fluid medium as the sum of the blocked pressure, bp  and the 

reradiated pressure, rp : 
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b rp p p  . (5) 

 

 The blocked pressure corresponds to the pressure in the fluid when the shell impacted by the 

incident wave is considered as rigid. It satisfies:  

(E1), the Helmholtz equation with a source term representing the incident wave in the 

fluid domain;  

(E2), the Euler equation with a Neumann condition at the shell surface;  

(E3), the Sommerfeld radiation condition at the infinite boundary.  

This blocked pressure is used in the second step to introduce the excitation in the 

problem of the elastic shell interacting with the fluid domain.  Indeed, the difference between 

the total pressure and the blocked pressure gives us the so called reradiated (or scattered) 

pressure, rp . It satisfies: 

(E4), the homogeneous Helmholtz equation in the fluid domain;  

(E5), the Euler equation depending on the radial shell velocity at the shell surface; 

(E6), Sommerfeld radiation condition at the infinite boundary.  

 

In the equation of motions of the shell, the pressure distribution acting on the shell appears in 

the right member and can be decomposed with (5). Then, the blocked pressure bp  defined 

from (E1-E3) can be interpreted as the external excitation of the shell, whereas the reradiated 

pressure rp defined by (E4-E6) can be interpreted as the fluid reaction due to the shell 

vibrations. After determining the blocked pressure, bp  in Sec. 4.1, the shell displacement can 

be calculated in Sec. 4.2 from the shell equations of motion and the fluid equations (E4-E6).  

 

4.1. Blocked pressure 

 

(E1-E3) define the blocked pressure bp . This term can also be decomposed as the sum of the 

incident pressure ip and the scattered pressure by the rigid shell, sp : 

b i sp p p  . 
 

 

(6) 
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The incident pressure of the oblique plane wave (1) can be expressed as a function of the 

cylindrical harmonics [21]: 

   , , xjk xi i jn

n

n

p x r e p r e 




   , 

 

(7) 

with, 

   0

i n

n n rp r p j J k r , (8) 

nJ is the Bessel function of first kind of order n.  

 

The scattered pressure sp (i.e. s b ip p p  )  verifies the homogeneous Helmholtz equation, 

the Sommerfeld radiation condition and the Euler equation with the Neumann condition, 

giving: 

   , , , ,
s ip p

x R x R
r r

 
 

 
 

 . 

 

(9) 

 

The solutions of the homogeneous Helmholtz equation respecting the Sommerfeld condition 

can be expressed in cylindrical harmonics. The scattered pressure, sp  can be determined by 

introducing these solutions and the incident pressure decomposition (7-8) in (9), Finally, the 

blocked pressure can be deduced with (6): 

   , , xjk xb b jn

n

n

p x r e p r e 




  , with, 

 

(10) 

   
 

 
 (2)

0
(2)

1

cos

n rb n

n n r n r

i n r

J k R
p r p j J k r H k r

H k R

 
  
 
 

, 

 

(11) 

where (2)

nH is the Hankel function of the second kind of order n. The prime symbol indicates 

the derivative with respect to the argument of the function considered (i.e. Bessel or Hankel 

function).  

 

4.2. Shell displacement 

The shell displacements can be calculated by using the developments described in Sec. 4.A. of  

[15]. The motions of the shell are represented by the Flugge equation. With the Fourier 

transform definition, 
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     . . ,xjk xF T

xf x f k f x e dx







  
 

 

 

 

(12) 

the spectral displacements of the shell ,  ,  U V W ,  can be written in the wavenumber space 

   ,  
b b

UV VW VV UW UW UV UU VW

p p
U Z Z Z Z V Z Z Z Z   

  
,  2b

UU VV UV

p
W Z Z Z 


, 

with 
 2 2

2

1

E

h R




   


.

 

 

 

 

(13) 

Analytical expressions of Z  and   are given in [15]. These quantities depend on the 

wavenumber 
xk , the circumferential order n  and the geometrical and mechanical properties 

of the shell.   

The spectral blocked pressure bp  is expressed from (10): 

     2b b

n x x x np k k k p R   
 

 

 

(14) 

where   is the Dirac delta function.  

 

The shell displacement can then be written along the x-axis by an inverse Fourier transform:  

 
 

       

 
 

       

 
 

      2

, , , , ,
,

, , , , ,
,

W , , , .
,

x

x

x

b

n
n UV x VW x VV x UW x

x

b

n
n UW x U

jk x

j

V x UU x VW x

x

b

n
n UU x VV x UV x

x

k x

jk x

p
U x Z k n Z k n Z k n Z k n

k n

p
V x Z k n Z k n Z k n Z k n

k

e

n

p
x Z k n Z k n Z k n

k

e

n

e

  
  

  
  

  
  

 

 

 

 

 

 

 

(15) 

 

 

 

The free displacements of the shell which intervenes in the right member of (4) can finally be 

deduced from the previous displacement expressions evaluated at each junction position on 

the axial axis: 

             ,  ,  ,  ,shell shell shell shell

i n i i n i i n i i ix nU U x V V x W x xjW Wk      1,i  

 

 

 

(16) 

 

For a given incident angle
i  (i.e. 

xk  and 
rk fixed), the free displacements can be calculated 

with little computing time using (15-16). Then, the matrix system (4) allows calculating the 

coupling forces exerted by the frames on the shell when they are coupled together. In Sec. V, 
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these forces will be introduced in the cylindrical shell model to estimate the reradiated 

pressure in the far field.   

 

5. Reradiated pressure from the stiffened shell 

This section consists in the calculation of the reradiated pressure by the cylindrical shell 

coupled to its internal frames when it is impacted by an obliquely incident wave. We recall 

that the reradiated pressure is defined as the complement of the blocked pressure to give the 

total pressure in the fluid medium (see equation (6)). It does not take the specular and 

geometric scattering of the rigid body into account. This is not dealt with, however, in the 

present paper as these phenomena are not influenced by the internal frames and the elastic 

deformation of the shell. On the other hand, as the cylindrical shell is assumed infinite for the 

sake of convenience in the CAA, we focus on estimating the reradiated pressure from the part 

previously called the “active part” which corresponds to the truncated shell between the two 

extreme frames. 

The calculation is then decomposed into three steps: first, the spectral displacements of the 

framed shell are calculated with the spectral method given in [15]; second, the spectral 

displacements of the “active part” are estimated by spatial windowing; lastly, the reradiated 

pressure is estimated in the far field by using the stationary phase theorem. 

5.1. Spectral displacement of the framed shell 

When the shell is coupled with its internal frames and impacted by an acoustic plane wave, 

the pressure distributions exerted on the fluid loaded cylindrical shell are due to the line forces 

exerted by the frames on the shell, the blocked pressure and the reradiated pressure. In the 

mathematical formulation, they intervene in the right member of the motion equations of the 

shell. The reradiated pressure respects the homogeneous Helmholtz equation, the Sommerfeld 

condition and the Euler equation links it to the radial velocity of the shell.  The problem is 

solved in the wavenumber space by again calling on the spectral method [15] In the present 

case, the spectral pressure distributions can be written as: 

 

1

1

1

,

 ,  

.

x i

x i

x i

jk x frame

UU i

i

jk x frame

VV i

i

jk xb frame frame

WW i x i

i

p e L

p e T

p p e F jk M


























  








 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

(17) 
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One deduces the radial spectral displacements of the framed shell [15]:  

     2

UU UV VW UW VV VV UW UV VW UU WW UU VV UVp Z Z Z Z p Z Z Z Z p Z Z Z
W

    



.

 

 

 

 

 

 

 

 

 

 

(18) 

This formula gives us the radial displacements as a function of the axial wavenumber xk  and 

the circumferential order. 

5.2. Spectral displacements of the active part of the framed shell 

The spectral displacements of the “active part” are deduced from (18) by applying space 

windowing. To do this, an inverse Fourier transform of the spectral displacements is 

considered to express them as a function of the axial coordinate x. Consequently, this 

transform cannot be obtained analytically but is deduced numerically. 

 The wavenumber space xk  is truncated with a sampling wavenumber xk  (i.e. ,x x xk k k    ) 

and sampled with a wavenumber resolution xk . In order to avoid aliasing and loss of 

information, the criteria for defining these parameters were given in [15] (see Eq. (26-27)  in 

this reference). These criteria are considered in the following.  

An Inverse Discrete Fourier Transform (IDFT) of the spectral displacements W  expressed in 

the discretized wavenumber space gives us the displacements W  as a function of the discrete 

values of the axial coordinate x: 

         IDTF

xW k W x .

 

 

 

(19) 

 

In order to extract the displacements corresponding to the “active part” (i.e.  1,x x x ), a 

Tukey function is considered: 

       

 
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1
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  
    

   

  
   

   
    

   

                   otherwise,













 

 

 

 

 

(20) 

where α is the Tukey coefficient. At α = 0,   x  becomes rectangular, and at α = 1 it 

becomes a Hann window.  
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The windowed displacements  wW x  are then defined by: 

           wW x W x x  .

 

 

 

(21) 

 

The Tukey coefficient can be used to avoid strong discontinuities of the windowed 

displacements. In practice, if the ends of the “active part” are clamped (by using fictive 

frames with null admittances) or they are stiffened by thick bulkheads, the radial 

displacements of the shell at the ends (i.e.  1W x  and  W x ) are already null or negligible.  

α = 0 can be used in this case. 

 

The spectral displacements of the “active part” are finally obtained using the Discrete Fourier 

Transform (DFT): 

         DTFw w

xW x W k .

 

 

 

(22) 

Another way for calculating these windowed displacements consists in making a convolution 

of the original displacements with the Fourier transform of the Tukey function. However, 

when taking the MATLAB algorithms into account, the process related to (19-22) seems the 

least time consuming. 

5.3. Reradiated pressure in the far field 

The stationary phase theorem is used to estimate the reradiated pressure in the far field. As 

illustrated in Fig. 1, an observation point M in the fluid medium defined by  , ,   is 

considered, where   is its distance from the origin O of the cylindrical coordinate system 

(such that 1

02 c  ),   is the angle OM with the normal of the axial axis and   is the 

circumferential angle related to the cylindrical coordinates. The pressure at this point M 

reradiated by the “active part” of the frame shell, wp  is finally given by the stationary phase 

theorem: 

       , , ,w w jn

n

n

p p e   




   ,

 

 

 

 

(23) 
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(24) 
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It should be emphasized that only the values of the spectral displacements of the shell w

nW  for 

axial wavenumbers xk in the acoustic domain are required (i.e.  0 0,xk k k  ). 

 

The summation of (23) is theoretically infinite. In practice, we will truncate this sum to a 

maximal circumferential order N . The choice of this parameter will be discussed for a 

numerical example in Sec. VI. 

On the other hand, as 0   is a symmetrical plane of the system considered, the reradiated 

pressure field has the same property. Since the pressure is a scalar, we obtain w w

n np p  . Eq. 

(23) can be rewritten as: 

         0

1

, , , 2 , cos( )
N

w w w

n

n

p p p n    


     .

 

 

 

 

(25) 

 

 

To conclude the theoretical part of this paper, the different steps of the developed method can 

be summarized for each circumferential order, n: 

- The shell and the frame admittances, shell frameY ,  Y , are calculated with the spectral 

approach [15] and FEM, respectively; 

- For a given incident angle, the free displacements of the shell, shellW are calculated 

with Eq. (15); 

- The forces exerted by the frames on the shell, frameF  are deduced by resolving Eq. 

(4); 

- These coupling forces are injected in the spectral model of the fluid loaded shell to 

calculate the radial spectral displacements of the framed shell, W with Eq. (17, 18); 

- The spectral displacements of the “active part” and wW are deduced by the 

windowing process (19-22); 

- The circumferential reradiated pressure in the far field for the incident angle 

considered, w

np , is obtained with Eq. (24). 

The reradiated pressure at a given point in the far field, wp , is finally given by the sum about 

the circumferential order of w

np  (i.e. Eq. (25)).  
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6. Application to a periodically stiffened shell 

6.1. Presentation of the test case 

 

For the first application of the present approach, we consider a periodically stiffened shell 

previously studied in the literature. The numerical values defining this case are those 

considered in [10, 11]. This will allow comparing the results of the present approach with the 

numerical and experimental ones presented in [10, 11].   

The finite shell has a length of 750 mm, a radius of 50 mm and a thickness of 1 mm. It is 

stiffened by a set of 49 evenly spaced internal rings having a 5 mm x 1 mm rectangular cross-

section. The spacing between two rings is 15 mm. The extremities are closed by 1mm thick 

disks. The shell and the rings are made of steel (E=2.4 1011 Pa, ρ=7900 kg/m3, ν=0.3). The 

shell is immersed in water (c0=1470 m/s, ρ0=1000 kg/ m3). Experimental measurements were 

performed in a water tank and transducers were used as the emitter and the receiver. The 

monostatic backscattered pressure as a function of the frequency and the incident angle were 

obtained after having removed the effect of the specular reflection and the reflections at the 

two extremities. These results obtained by Liétard et al. (Fig. 5 in [10]) are shown in Fig. 3. 

The graph is proposed as a function of the non dimensional frequency, ka (i.e. the product of 

the acoustic wavenumber and the shell radius). High scattering pressure values were linked to 

different phenomena [10, 11]: 

- the Bragg scattering due to the interference of the geometrical reflection of the 

incident plane wave on the rings; 

-  the helical wave scattering due to the propagation of the shear and compressional 

helical waves in the shell; 

- the scattering of Bloch-Floquet waves resulting from the interaction of the flexural 

waves with the ribs. 

 

 

 

 

6.2. Simulation with the approach presented 

Calculations were performed with the CAA. As the damping of the shell and the ring was not 

characterized in [10], we consider a fixed value of 0.2% (i.e. 0.002  ). We introduced it in 

the model as a complex Young modulus, *E  (i.e.  * 1E E j  ). 

 

FIGURE 3 
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The ring was modelled by FEM using the SDtool code [20] as already mentioned in Sec. III.  

The values for two ring admittances –  f r a m e

WFY  (i.e. excitation – reception in the radial 

direction) and frame

MY  (i.e. excitation – reception in the tangential rotational direction) – are 

proposed in Fig.4. For each frequency, the first admittances,  frame

WFY  exhibit a resonant peak 

which can be associated with the flexural motions of the ring. A basic 1D beam model allows 

finding approximately the same result in the low frequency range. The second admittance, 

frame

MY  exhibits two resonances. They correspond to torsional motions of the ring with 

deformations of the cross section. This behaviour cannot be reproduced by a 1D rod model 

with the assumption of a non deformable cross section, thus illustrating one advantage of 

using the present approach. The complex geometry of the frames (T-shaped stiffener, 

bulkhead, etc) can be modelled easily, so they can be represented by FEM using shell 

elements. We emphasize that these calculations should be performed only for each type of 

frame and they are independent of the frame spacing and the incidence angle.  

 

 

 

On another hand, simply supported boundary conditions are simulated at the ends of the 

“active part” of the shell by inducing two fictive frames with specific admittances. These 

admittances for the different directions are nulls (i.e. blocked boundary condition) except for 

the tangential rotation, end

MY  for which a relatively high value allows us to simulate a soft 

torsional spring. This value was defined in comparison with the shell admittance, end

MY . It was 

set at 100 times the highest values of these admittances. We underline that the admittances of 

the end disks can be calculated by FEM and included in the CAA model. However, as the 

cylindrical shell has the same thickness as the disks and it extends outside the “active part” in 

the CAA model, it is preferable not to increase the rotational stiffness at the ends by adding 

the admittances of the end disks. 

The shell admittances were calculated with the process described in [15] (including the 

acceleration convergence method). A numerical study was performed to define a criterion for 

the maximal circumferential order N . Fig. 5 illustrates the observations of this study.  

 

 

FIGURE 4 

 

FIGURE 5 
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The blocked pressure exciting the shell is plotted in Fig. 5a for ka=30 as a function of the 

incidence angle, i  and the circumferential order, n. A dashed line corresponding to 

 0 0int cos in Rk   was added to this figure. It can be seen that the blocked pressure 

decreases quickly when n increases above these values. Only the circumferential orders below 

or near 0n  are therefore significantly excited. Fig. 5b-5d shows the implication on the free 

displacements in the three directions, ,  ,  n n nU V W . The longitudinal and tangential 

displacements present significant values only for a small circumferential order, well below 0n . 

These orders can be associated with quasi-longitudinal and quasi-shear waves. On the other 

hand, the radial displacements are significant for values below and around 0n , as could be 

expected, but also for orders higher than 0n . Indeed, a plot of high spot values can be observed 

for n  between 30 and 40. This plot can be associated with the quasi-flexural waves (taking 

the fluid added mass effect into account). Although the shell is slightly excited on these orders 

(i.e. low blocked pressure), it can react significantly on its natural flexural motions. This 

phenomenon occurs only when the excitation frequency approaches the critical frequency 

associated with the flexural motions (i.e. when ka=40 for the present shell).  In this case, the 

orders which can be associated with the flexural waves are relatively close to 0n . We can then 

define a criterion for the maximal circumferential order N from 0n by taking a margin 

coefficient  large enough to encompass this phenomenon: 

    0N n .

 

 

 

(26) 

Our numerical study shows that 2   is largely enough for the present case. For a damped 

shell, this value can be slightly reduced. 

 

For the results presented in this section, Eq. (26) is considered and the Tukey coefficient, α , 

defined for windowing the shell displacement in the “active part” (i.e. Eq. (21)) was set at 5 

mm. As simply supported boundary conditions were imposed at the ends of the “active part”, 

the radial displacements are negligible at these ends. The backscattering pressure is therefore 

only slightly influenced by the value of the Tukey coefficient (so it remains small compared 

to the length of the “active part”). 
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6.3. Results 

 

Two calculation cases with the present approach were considered:  

- The “reduced” case takes only the radial reaction forces between the frames and the 

shell into account. In this calculation, the frame admittance in the radial direction, frame

WFY , 

calculated with FEM is considered, whereas large values compared to the shell admittances 

are prescribed for the other directions of the frame admittances (so simulating very soft 

springs); 

- the “full” case takes into account the reaction forces between the frames and the shell 

along the four degrees of freedom (i.e. longitudinal, tangential, and radial forces and the 

tangential moment). In this case, the 16 components of the frame admittance matrix are 

calculated by FEM. 

 

6.3.1.  Reduced model 

 

 

 

 

 

 

The “reduced” CAA calculation allows comparing our results with that presented in [10] and 

obtained with the numerical method described in [12]. We emphasize that the model 

considered in these two references [10, 12] does not have exactly the same assumptions as the 

present one: the rings are represented by a rod of circular curvature and the acoustic field in 

the fluid is approximated by a continuous distribution of sectorial spherical harmonics 

adapted for a slender body. However, both models consider only the effect of the radial 

reaction forces of the rings on the shell. The results of the “reduced” model are proposed in 

Fig. 6. They can be compared with the numerical results presented in Fig. 6 of Ref. [10]. 

Good agreement between the two calculations can be observed, especially for the scattering 

from Bragg and helical waves. The trajectories of the Bloch-Floquet (BF) scatterings are 

globally similar. It can be noticed, however, that the width of the trajectories is larger with the 

present approach and two branches appear below a given incidence angle (noted (A) and (B) 

in Fig. 6). Our results can be explained by analysing the scattering field for different 

circumferential orders. In order to illustrate the phenomenon involved, we consider the simple 

scattering/interference model described in [10] for estimating the BF trajectories. The quasi-

flexural waves at the origin of the Bloch-Floquet scattering can propagate in the shell along 

 

FIGURE 6 
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the both axial and circumferential directions. For a given circumferential order, n, the axial 

decomposition of the flexural wavenumber  xfk n  is  

 
2

2

xf f

n
k n k

R

 
  

 
,

 

 

 

 

(27) 

where fk , is the flexural wavenumber of the equivalent plate taking the fluid loading into 

account. 

 

 

Applying the scattering/interference model to axial waves characterized by the 

wavenumber, xfk  gives the BF trajectories shown in Fig. 7 for different circumferential orders 

(i.e.  0,  5,  10,  15,  20n ). The trajectories are plotted when the condition 
1.2

cos i

n
ka


 is 

respected, ensuring that the shell is sufficiently excited by the incident wave on the 

circumferential order considered. Fig. 7 shows that when n increases, the BF trajectories shift 

to the higher frequencies, beginning from a decreasing incident angle. This phenomenon 

explains the spreads of the BF trajectories at positions noted (A) and (B) in Fig. 6. However, 

these trajectories are not spread uniformly. Two branches appear that can be explained by the 

resonance of the rings. Indeed, Fig. 4 indicates that for ka  around 18, the resonance occurs 

for n around 15. For circumferential orders around this number, the rings do not oppose 

reaction forces, the flexural waves can propagate freely. BF waves are therefore not generated 

for these orders. This explains the hole (between the two branches) observed in the BF 

trajectory at position (A) in Fig. 6. The same analysis allows explaining the two branches at 

position (B), so the present model gives results in agreement with the different models 

presented in [10]. 

Now, let us compare the results of Fig. 6 with the experimental results obtained by Lietard et 

al and presented in Fig. 3. The scattering from the Bragg, Bloch-Floquet, and helical waves 

predicted by the model is effectively observed experimentally. The first BF trajectory seems 

less predominant than those predicted by the “reduced” model. The peak energy (indicated by 

an asterisk * in Fig. 3) is also noted in our prediction at the intersection between the Bragg 

and BF trajectories.  

 

FIGURE 7 
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The simulation with the “reduced” model indicates that the helical waves induce the highest 

pressure levels while the experimental spectrum does not show significant trajectories for the 

low incidence angles. It should be emphasized that the results of our predictions are related to 

the damping loss factor introduced in the model. This dependency on the damping of the 

scattering from the helical waves had already been observed [3]. Without experimental 

values, we considered a fixed value of 0.2 %.  A higher value would reduce the backscattering 

pressure due to the helical waves. 

6.3.2. Full model 

 

 

 

 

 

 

The results obtained with the “full” CAA model are shown in Fig.8. Before analysing the 

figure, we underline that the tangential moments exerted by the frames on the shell do not 

significantly influence the monostatic spectrum for the present case. Indeed, the calculations 

including the radial forces and the tangential moments between the frames and the shell give 

practically the same results as in Fig. 6. The comparison of Fig. 8 with Fig. 6 makes it 

possible to study the effect of the frame reaction forces about the axial and tangential 

directions.  

Three main changes on the spectrum can be observed between the two calculations: 

- In the low frequency (noted (I) in Fig. 8), the first BF trajectory no longer appears 

clearly and the critical angle associated with the helical shear waves increases slightly (i.e. 

22° in Fig. 6 and 27° in Fig. 8). Moreover, dashed trajectories appear more significantly for 

 10,20ka ; 

- Additional dashed trajectories (noted (II) in Fig.8) appear for  40 ,80i     in the 

mid frequency; 

- Quasi-horizontal patterns (noted (III) in Fig.8) seems to link the Bragg and BF 

trajectories in the higher frequencies. 

It is difficult to explain these modifications at first sight so analysis of the backscattering 

spectrum for each order was carried out. It should be recalled that without the rings, the 

coupling of the shear and longitudinal waves with the flexural waves is due to the shell 

 

FIGURE 8 
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curvature and the Poisson effect. Above the ring frequency of the shell (i.e. 4ka  ), the effect 

of the shell curvature vanishes and quasi-flexural waves can propagate. In the presence of the 

rings, an additional coupling scheme between the different types of waves appears due to the 

elastic deformations of the rings. The Bloch-Floquet scattering no longer remains related only 

to the propagation of quasi-flexural waves, but also to the complex coupling of the shear, 

longitudinal and flexural waves. This coupling of different types of waves could explain why 

the first BF trajectory corresponding to low circumferential orders virtually disappeared and 

the dashed trajectories corresponding to higher circumferential orders appeared in the parts 

noted (I) and (II). It explains also why a slight change of the critical angle associated with the 

helical shear waves was noticed. It is more difficult to interpret the origin of the quasi-

horizontal patterns. It appears that they result from interferences between the Bragg and BF 

scatterings. 

The predictions given by the “full” CAA model agree with the experimental ones. The first 

BF trajectory which appeared clearly with the “reduced” model is found only partially with 

the “full” model, as with the experiment. The dashed trajectories and the quasi-horizontal 

patterns were not demonstrated by the experiment. However, these characteristics are of 

secondary importance for the present case which remains dominated by the scattering of 

Bragg, helical waves and Bloch-Floquet quasi-flexural waves. The modifications induced by 

the axial and tangential coupling forces depend on the frame stiffness. For example, 

bulkheads of higher thickness than the present rings would certainly modify the 

backscattering spectrums more significantly (as observed in [17] for a shell stiffened by a 

single bulkhead). Simulations and experiments should be performed in the future on specific 

shells making it possible to highlight the phenomenon related to the axial and tangential 

coupling forces. 

The different comparisons discussed in Sec. VI reinforce our confidence in the results 

obtained by the presented approach. In order to illustrate the versatility of the CAA, we 

propose to apply it to a shell stiffened by two sets of stiffeners in Sec. 7. 

7.  Results for a shell with two sets of stiffeners 

 

The cylindrical shell described previously (i.e. h=1mm, R=50mm, L=0.75 m) is now stiffened 

by two different types of stiffeners and two different stiffener spacings: 

- the first part (i.e.  0.015 m,  0.3 mx ) is uniformly reinforced by steel stiffeners with 

a T-cross section of 2 24 1 mm /1 3 mm  . The spacing of these stiffeners, d1, is set at 15 mm. 
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- the second part (i.e.  0.31 m, 0.75 mx ) is uniformly reinforced by the rings 

described in Sec. VI. The spacing of the rings, d2 , is 10 mm. 

Although the stiffener spacing is different for the two parts, the shell admittances were 

obtained with the same numerical process as that used for the periodically stiffened shell of 

Sec. VI. The admittances of the T-shaped stiffener were calculated by FEM with the SDtool 

code. It was not necessary to recalculate the admittances of the ring. Indeed, as they were 

calculated for the case of Sec. VI and saved in a database, it was only necessary to extract 

them from the database which is one of the advantages of the present approach.  

 

 

 

 

 

 

 

The results are proposed in Fig. 9. As the shell is more complex than that in Sec. VI (i.e. 2 

types of stiffener and 2 spacings), the backscattering spectrum is more complicated than in 

Fig. 8 and it becomes more difficult to analyse at first sight. In order to identify the Bragg (B) 

and Bloch-Floquet trajectories (BF), we estimated their positions with the simple 

scattering/interference model [10] considering the two stiffener spacings. The trajectories 

estimated for the circumferential order, n=0, are plotted in Fig. 10 making it possible to 

clearly identify in Fig. 9 the Bragg and the low-frequency Bloch-Floquet trajectories due to 

each part of the shell. A large and chaotic trajectory can be observed in the high frequency. In 

this frequency range, the simple model presents a superposition of the Bloch-Floquet 

trajectories of the two parts (due to the relation 1 22 3d d ). It should be remembered that the 

trajectories of Fig. 10 were estimated from the flexural wavenumbers. They do not take into 

account the effect of the frame-shell coupling on the wave propagation in the shell. As the two 

parts of the shell are not stiffened by the same stiffeners, the superposition of the BF 

scatterings is not as perfect as predicted in Fig. 10. Moreover, interferences with trajectories 

of higher circumferential orders (not plotted on Fig. 10) certainly contribute to the assembly 

of this wide and chaotic trajectory.  

 

 

FIGURE 9 

 

FIGURE 10 
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The example shown in this section illustrates the versatility of the approach proposed. This 

approach can also be used to simulate the presence of bulkheads and hemispherical end caps 

as small or large variations of the stiffener spacings. In the future, it could be used in parallel 

with experimental measurements to analyse the scattering of complex stiffened shells. 

 

8. Conclusions 

 

This paper proposed the extension of the Circumferential Admittance Approach [15] to 

obliquely incident plane wave excitations. It allowed us to predict scattering pressure using 

cylindrical shells stiffened by axisymmetric internal frames. In principle, the method consists 

in assembling a numerical model of the fluid loaded shell with finite element models of the 

internal frames. The coupling between the internal frames and the shell is ensured by 

considering the reaction forces in the three directions and the reaction moment in the 

tangential direction. The complex geometry of the frame cross-section and thickness 

variations can be taken into account through the finite element calculations. Thus internal 

frames like T-shaped stiffeners, curved bulkheads, and hemispherical end caps can be 

considered in the approach proposed to study their influences on scattering pressure. 

Moreover, as no assumption is made as to the axial position of the frames, periodically or 

non-periodically stiffened shells can be considered with this approach.  

Results for a periodic stiffened shell were compared with numerical and experimental results 

taken from the literature showing that the model correctly predicts scattering from Bragg, 

Bloch-Floquet, and Helical waves. However, calculations including the axial and tangential 

coupling forces highlighted the influence of these coupling terms on backscattering pressure. 

They lead to changes in the scattering of the helical waves at low frequencies and the 

signature of the Bloch-Floquet waves appear more complex than when they are neglected. 

These changes are, however, of secondary importance for the shell considered.  

The versatility of the approach presented was illustrated using a numerical application. The 

CAA model can be used to study the scattering pressure from a shell stiffened by bulkheads, 

hemispherical end caps and different types of stiffeners. Small or large variations of the 

stiffener spacings can also be simulated. In the future, this approach could be used in parallel 

with experimental measurements to analyse the scattering of a complex stiffened shell. 
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FIGURE CAPTIONS 

 

 

Figure 1. Illustration of a fluid loaded cylindrical shell stiffened by axisymmetric internal 

frames and impacted by an oblique incident wave. 

 

Figure 2. Illustration of the partitioning.  

Upper part, the fluid loaded shell; lower part, the different types of internal frames. 

 

Figure 3. Experimental spectra of backscattered pressure obtained from Ref. [10]. 

 

 

Figure 4. Admittances of the ring: upper part, frame

WFY ; lower part, frame

MY .  

 

Figure 5. Values of excitation terms for ka=30 (i.e. 140 )f kHz  as a function of the 

incidence angle and the circumferential order: (a), blocked pressure, b

np  (i.e. Eq. (11)). Free 

displacements of the shell (i.e. Eq. (15)) in the following directions: (b), longitudinal, 
nU ; (c), 

tangential, 
nV ; (d), radial, 

nW . 

 

Figure 6. Numerical spectrums of monostatic backscattered pressure obtained with  the 

“Reduced” CAA model (i.e.  ring-shell coupling through the radial direction only). 

 

Figure 7. Trajectories of Bragg waves (B) and Bloch-Floquet waves for different 

circumferential orders, n (BFn). Calculations with the simple scattering/interference model 

presented in [10]. 

 

Figure 8. Numerical spectrums of monostatic backscattered pressure obtained with the “Full” 

CAA model (i.e.  ring-shell coupling through the 4 degrees of freedom). 

 

Figure 9. Numerical spectra of backscattered pressure of the shell reinforced with T-shaped 

stiffeners spaced at 15 mm and rings spaced at 10 mm. 

 

Figure 10. Bragg (Bi) and Bloch-Floquet (BFi) wave trajectories linked to the stiffener 

spacing, di: i=1, d1=15mm; i=2, d2=10mm. Calculations for n=0 with the 

scattering/interference model [10]. 


