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Abstract

ABSTRACT: Many anisotropic damage models have been proposed for
different materials, including concrete. The main drawback of the corre-
sponding analyses is that a large number of material parameters is often
introduced, leading to identification difficulties but also to model complex-
ity and associated numerical difficulties. It is also sometimes difficult to
ensure the continuity of the stresses if the quasi-unilateral effect of micro-
cracks closure and the dissymmetry tension/compression are represented.

In order to solve those difficulties, one proposes to write the damage
models in a specific non standard thermodynamics framework. The dam-
age states are represented by a symmetric second order tensor and the
damage rate is assumed governed by a positive second order tensor having
a clear meanning: the absolute or the positive value of the plastic strain
rate tensor for ductile materials, the positive part of the total strain tensor
in quasi-brittle materials. Such a non standard feature makes the proof
of the the positivity of the intrinsic dissipation necessary. This important
proof is given in the considered framework for any damage law ensuring
(anisotropic) damage increase and for any case, 3D, proportional or non
proportional. This extends then to induced anisotropy the isotropic case
property of a positive damage rate as a sufficient condition for the ther-
modynamics second principle to be fulfilled.

Altogether with the fact that the thermodynamics potential can be con-
tinuously differentiated, the anisotropic damage model for concrete (build
in this framework) allows for robust Finite Element implementation. Both
space (classical nonlocal with internal length, nonlocal with internal time)
and time regularizations (visco- or delay-damage) are used and applied
to quasi-static and dynamic cases. Examples on concrete and reinforced
concrete structures are given.

1 INTRODUCTION

In standard thermodynamics framework (Halphen and Nguyen, 1975) both
the state and the evolution laws derive from potentials, Gibbs free enthalpy
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ρψ⋆ written in terms of stress σσσ in the present work for the first one, a dis-
sipation or pseudo-dissipation potential for the second one. The elasticity
law and the strain energy release rate density YYY , variable associated with
DDD, are respectively gained as the derivative of the state potential with re-
spect to the elastic strain tensor ǫǫǫe and with respect to the damage tensor
DDD. In the standard framework of thermodynamics a pseudo-dissipation po-
tential quadratic function of YYY is most often considered, the damage law
taking the form

ḊDD = λ̇ JJJ : YYY (1)

with λ̇ a positive multiplier and JJJ a positive fourth order tensor, eventually
nonlinear function of the thermodynamics variables, so that the dissipation

D = YYY : ḊDD = λ̇ YYY : JJJ : YYY (2)

due to the degradation mechanisms remains positive for any kind of load-
ing. The choice of damage laws of the form (1) is very restrictive, for
instance concerning the possibility to model induced anisotropy directly
driven by the strains or the stresses. But, as we will illustrate on numerical
examples, to ensure the positivity of the intrinsic dissipation also has good
numerical properties.

2 NON STANDARD ANISOTROPIC FRAMEWORK

2.1 State potential

A general form for the strain energy coupled with anisotropic damage
has been proposed by Ladevèze (Ladevèze, 1983; Lemaitre and Desmorat,
2005), as

ρψ⋆ = a1 tr (HHHσσσHHHσσσ) + a2 σσσ : σσσ + a3 g(DH)(tr σσσ)2 + a4 (tr σσσ)2 (3)

with
HHH = (111 −DDD)−1/2 (4)

a symmetric tensor and

DH =
1

3
tr DDD (5)

g(DH) is a positive increasing function of DH , for example g(DH ) =
1/(1 − ηDH). The ai (a1 ≥ 0, a3 ≥ 0) as well as η > 0 are material
parameters. The first term of Eq. (3) can take different – non equivalent –
forms (Ladevèze, 1983; Ladevèze, 1995; Papa and Taliercio, 1996; Lemaitre
and Desmorat, 2005),

a1 tr
(

HHHσσσDHHHσσσD
)

(6)

where (.)D denotes the deviatoric part, or

a1

[

tr (HHHσσσ+HHHσσσ+) + 〈σσσ〉
−

: 〈σσσ〉
−

]

(7)

or
a1

[

tr
(

HHHσσσD
+HHHσσσ

D
+

)

+
〈

σσσD
〉

−
:
〈

σσσD
〉

−

]

(8)

allowing in the last case for the mechanical representation of the quasi-
unilateral effect of micro-defects closure, with σσσ+ (resp. σσσD

+) a special
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positive part (Ladevèze, 1983; Desmorat, 2000; Desmorat and Cantour-
net, 2008) built from the eigenvalues and the eigenvectors of HHHσσσ (resp. of
HHHσσσD) and with 〈.〉

−
the negative part in terms of principal components of

a tensor. Two examples of strain energy densities are a first one based on
a splitting deviatoric / hydrostatic quantities (with E and ν the Young’s
modulus and Poisson’s ratio of the undamaged material and η a shear-
bulk coupling parameter (Lemaitre et al., 2000; Delaplace and Desmorat,
2007)),

ρψ⋆ =
1 + ν

2E
tr
(

HHHσσσDHHHσσσD
)

+
1 − 2ν

6E

(tr σσσ)2

1 − ηDH
(9)

a second one based on the feature of a constant ν/E ratio,

ρψ⋆ =
1

2E
tr (HHHσσσHHHσσσ) +

ν

2E

(

σσσ : σσσ − (tr σσσ)2
)

(10)

2.2 Non standard damage evolution laws

Concerning the evolution laws, many non standard damage laws can be
formulated for induced anisotropy (Mazars et al., 1990; Dragon and Halm,
1996; Lemaitre et al., 2000; Billardon and Pétry, 2005), with second order
tensorial damage rate proportional

• to the positive part of the strain tensor 〈ǫǫǫ〉
+

or to 〈ǫǫǫ〉α
+

with α a
damage exponent,

• to the absolute value of the plastic strain tensor ǫ̇ǫǫp, to the positive
part of ǫ̇ǫǫp, or to any linear combination ζ |ǫ̇ǫǫp| + (1 − ζ) 〈ǫ̇ǫǫp〉

+
,

• to a power 2s of the stress tensor,

• to a linear combination ζ 〈σσσ〉2
+

+(1−ζ) 〈σσσ〉2
−

(eventually at the power
s) where to take ζ = 1 will lead to the modeling of the unilateral
damage effect of no damage growth in compression, and to take 1/2 <
ζ < 1 will lead to the modeling of the quasi-unilateral damage effect
of a damage growth in compression smaller than in tension.

Induced damage anisotropy governed by the positive extensions is adapted
to quasi-brittle materials as concrete. The other expressions will allow to
generalize to induced anisotropy Lemaitre’s damage law

Ḋ =

(

Y

S

)s

ṗ (11)

of a damage rate governed by the accumulated plastic strain rate ṗ and
enhanced by the strain energy

Y =
1

2
ǫǫǫe : EEE : ǫǫǫe (12)

with EEE Hooke’s tensor. As possible generalization, one has

ḊDD =

(

Y

S

)s
[

ζ |ǫ̇ǫǫp| + (1 − ζ) 〈ǫ̇ǫǫp〉
+

]

(13)

ḊDD =

(

ζ 〈σσσ〉2
+

+ (1 − ζ) 〈σσσ〉2
−

2ES

)s

ṗ (14)
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where E denotes the Young’s modulus and S and s the damage parameters.
For more details on ductile damage, refer to (Lemaitre and Desmorat,
2005).

The next question will be wether one automatically can ensure the
positvity of the dissipation with the simple feature of a positive (tensorial)
damage rate ḊDD.

2.3 Link with fourth order damage

The elasticity law corresponding to Gibbs potential (3) is

ǫǫǫe = ρ
∂ψ⋆

∂σσσ
= 2a1HHHσσσHHH + 2a2 σσσ + 2 (a3 g(DH ) + a4) tr σσσ 111 (15)

It can used to exhibit the fourth order effective elasticity tensor as ǫǫǫe =
Ẽ̃ẼE−1 : σσσ and then

Ẽ̃ẼE−1(DDD) = 2a1HHH⊗HHH + 2a2 III + 2 (a3 g(DH ) + a4) 111 ⊗ 111 (16)

with 111 and III respectively the second and fourth order unit tensors and
where (HHH⊗HHH)ijkl = 1

2
(HikHjl +HilHjk) and with

a1 + a2 =
1 + ν

2E
a3 g(0) + a4 = − ν

2E
(17)

Different expressions corresponds to different choices of material param-
eters ai. Micromechanics and homogeneization calculations a of medium
with cracks and cavities can be used as guidelines for such choices. A fourth
order damage tensor DDD can then be built from (III −DDD) : EEE = ẼEE as

DDD = III −EEE−1 : ẼEE (18)

The a priori choice of a state potential is a limitation of the modelling, as
one knows that the second order damage representation is only an approx-
imation (Leckie and Onat, 1981; Krajcinovic, 1996): systematic studies
in non proportional loading cases are needed to fully validate any damage
model built in present non standard framework (this applies to the damage
model for concrete considered next).

But note that the direct use of fourth order damage in phenomeno-
logical constitutive models often leads to a damage anisotropy difficult to
visualize (6 principal damages instead of 3 for the second order framework)
and to too many damage parameters.

3 POSITIVITY OF THE INTRINSIC DISSIPATION

Previous elastic energy densities can be continuously differentiated as

dρψ⋆ = ǫǫǫe : dσσσ + YYY : dDDD (19)

or

dρψ⋆ = [2a1 (HHHσσσHHH) + 2a2 σσσ + 2a3 g(DH) tr σσσ 111 + 2a4 tr σσσ 111] : dσσσ

+ 2a1 (σσσHHHσσσ) : dHHH +
1

3
a3 g

′(DH)(tr σσσ)2 tr dDDD
(20)
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leading to a dissipation due to damage mechanisms expressed as

D = YYY : ḊDD = 2a1 (σσσHHHσσσ) : ḢHH +
1

3
a3 g

′(DH)(tr σσσ)2 tr ḊDD (21)

For the elastic energy densities written with the terms (6) or (8), the
first term 2a1 (σσσHHHσσσ) : ḢHH must be replaced by 2a1

(

σσσDHHHσσσD
)

: ḢHH or

2a1 (σσσ+HHHσσσ+) : ḢHH or 2a1

(

σσσD
+HHHσσσ

D
+

)

: ḢHH. These terms are next syntheti-
cally written

2a1 (sssHHHsss) : ḢHH (22)

With any damage law leading to a positive damage rate tensor, i.e. with
positives eigenvalues (ḊDD)J , the term

tr ḊDD =
3
∑

J=1

(ḊDD)J (23)

is positive so that
1

3
a3 g

′(DH)(tr σσσ)2 tr ḊDD ≥ 0 (24)

It is important to precise that the eigenvalues (ḊDD)J of ḊDD are not the
derivatives ḊJ of the eigenvalues ofDDD (except in the particular case where
DDD and ḊDD have the same principal directions), the positivity of the eigen-
values (ḊDD)J nevertheless implies the increase of the eigenvalues of DDD.

Concerning the term 2a1(sssHHHsss) : ḢHH, note that the expression HHH =
(111 −DDD)−1/2 rewritten in terms of principal components

HJ =
1√

1 −DJ
(25)

gives positive increasing eigenvalues HJ of tensor HHH which is then also
positive and increasing during any damage process. The positivity of the
symmetric matrix (sssHHHsss) is gained by seeking the sign of its eigenvalues,
denoted χ, solution of

(sssHHHsss)~g = χ~g (26)

with ~g the corresponding eigenvectors. The eigenvalues χ are equivalently
solution of

(HHHsss)2~g = χHHH~g (27)

with obviously (HHHsss)2 a positive matrix. These eigenvalues take the form

χ =
~gT (HHHsss)2~g

~gTHHH~g
(28)

and, as ratio of positive terms, are positive.
Last, the tensorial product (sssHHHsss) : ḢHH of two symmetric positive tensors

(sssHHHsss) and ḢHH being positive, one can conclude to the positivity of the in-
trinsic dissipation D for any damaging loading, monotonic or not, uniaxial
or multiaxial, proportional or non proportional... at the simple condition
extended here to anisotropic damage that the damage rate ḊDD must remain
a positive tensor.

Considering conversely the set of states represented by deviatoric ten-
sors σσσ = σσσD, the dissipation reduced to 2a1 (sssHHHsss) : ḢHH ≥ 0 ∀ (sssHHHsss) ≥ 000
leads to ḢHH ≥ 000, therefore to the fact that ḊDD ≥ 000 is a necessary and sufficient
condition for the positivity of the dissipation due to damage D = YYY : ḊDD.

5



4 ANISOTROPIC DAMAGE MODEL FOR CONCRETE

An anisotropic damage model has been proposed for concrete in previ-
ous non standard thermodynamics framework (Desmorat, 2004; Desmorat
et al., 2007) introducing a single damage variable, a second order tensor, as
the representation of the damage state due to microcracking. Mainly due
to induced anisotropy, the dissymmetric response of concrete in tension
and in compression is obtained with a low number of material parameters
(figure 1): 2 for elasticity, 1 as damage threshold, 2 for damage evolution.
Mazars strain damage criterion (Mazars, 1984) is used in this initial model,
with the advantage of simplicity for instance at the numerical level.

-50 -40 -30 -20 -10 0
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)

-30

-20

-10
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"
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Figure 1: Response of the model in tension and compression (E = 37 GPa,
ν = 0.2, κ0 = 5 · 10−5, a = 3 · 10−4, A = 5 · 103).

4.1 Induced anisotropic damage model

For concrete, the microcracks due to tension are mainly orthogonal to the
loading direction, when the microcracks due to compression are mainly
parallel to the loading direction. The damage state has then to be repre-
sented by a tensorial variable DDD either a fourth rank tensor or a second
rank tensor. The use of a second order damage tensor is more convenient
for practical applications (as well as for the material parameters identifi-
cation) and this is the choice made here. The damage anisotropy induced
by either tension or compression is simply modeled by the consideration of
damage evolution laws ensuring a damage rate proportional to the positive
part of the strain tensor, i.e. a damage governed by the principal extensions
(Mazars et al., 1990).

The full set of constitutive equations reads:
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• Elasticity,

ǫǫǫ =
1 + ν

E
σ̃σσ − ν

E
tr σ̃σσ 111 or ǫǫǫ = EEE−1 : σ̃σσ (29)

• Effective stress ((.)D standing for the deviatoric part),

σ̃σσ =
[

(111 −DDD)−1/2 σσσD (111 −DDD)−1/2
]D

+
1

3

[ 〈tr σσσ〉+
1 − tr DDD

+ 〈tr σσσ〉−
]

111
(30)

• Damage criterion f = ǫ̂ − κ(tr DDD), so that the condition f < 0 −→
elastic loading or unloading, f = 0, ḟ = 0 −→ damage growth, where
ǫ̂ =

√

〈ǫǫǫ〉+ : 〈ǫǫǫ〉+ is Mazars equivalent strain and where

κ−1(ǫ̂) = aA

[

arctan

(

ǫ̂

a

)

− arctan
(κ0

a

)

]

(31)

introducing κ0 as damage threshold, A and a as damage parameters.

• Induced damage anisotropy governed by the positive extensions,

ḊDD = λ̇〈ǫǫǫ〉2+ (32)

The damage multiplier λ̇ is determined from the consistency condition
f = 0, ḟ = 0.

The use of a damage criterion function f written in terms of strains instead
of stresses allows for a simple implementation in a Finite Element computer
code (Desmorat et al., 2007). Even if Euler backward scheme is used, there
is no need of an iterative process. Note that at the final stage of numerical
implementation the elasticity law needs to be inverted. This can be done
in a closed form as:

σσσ =(111 −DDD)1/2 σ̃σσ (111 −DDD)1/2 − (111 −DDD) : σ̃σσ

3 − tr DDD
(111 −DDD)

+
1

3
[(1 − tr DDD)〈tr σ̃σσ〉+ + 〈tr σ̃σσ〉−] 111

(33)

4.2 Extension to nonlocal

Classical mesh dependency occurs when using previous local damage model
in a Finite Element code. A nonlocal regularization can be used to gain
the mesh independency. One just has to replace local Mazars strain ǫ̂ in
the damage criterion f by nonlocal Mazars strain ǫ̂nl and to consider as
nonlocal criterion,

f = ǫ̂nl − κ (34)

where nonlocal equivalent strain can be defined using an integral form with
W(ξ2) a nonlocal weight function (Pijaudier-Cabot and Bazant, 1987),
usually a gaussian function e−4ξ2

or a bell-shaped function 〈1 − ξ2〉2+,

ǫ̂nl(x) =
1

Vr

∫

Ω

W
(‖x − s‖2

ℓ2c

)

ǫ̂(s) ds

Vr(x) =

∫

Ω

W
(‖x − s‖2

ℓ2c

)

ds

(35)
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or using a second gradient form (Aifantis, 1987; Peerlings et al., 1996),

ǫ̂nl − γ ∇2ǫ̂nl = ǫ̂ (36)

Both the integral form (through W) and the gradient form (through γ)
introduce a characteristic length ℓc.

Nevertheless, and as pointed out by (Pijaudier-Cabot et al., 2004) from
acoustic emission measurements during the damage process, the internal
length is evolving with damage and is therfore probably better represented
by a positive fourth order tensor www function of DDD instead of the scalar ℓc.
This can be done formally by replacing

W
(‖x − s‖2

ℓ2c

)

by W ((x− s) : www(DDD) : (x − s)) (37)

in previous integral equations. The isotropic scalar internal length theory
is the particular case www = ℓ−2

c III. In the same spirit, the gradient term
γ ∇2ǫ̂nl may be rewritten ∇(ΓΓΓ∇ǫ̂nl) with ΓΓΓ = ΓΓΓ(DDD) an evolving second
order tensor.

An other possibility, naturally taking into account the effect of dam-
age (therefore its anisotropy in terms of internal lengths, for second order
damage as well as for fourth order damage), is to consider an internal time
τc instead of ℓc and to replace the argument of the weight function W by
the ratio τxs/τc, i.e.

W
(‖x − s‖2

ℓ2c

)

replaced by W
(

τxs

τc

)

(38)

The time τxs is the time for the deformation information to go from point s

to point x (calculated by wave propagation, wave speed affected by damage
denoted c̃). When DDD = 0 this formulation is equivalent to Pijaudier-Cabot
and Bazant nonlocal theory: then τxs = ‖x − s‖/c and τc = ℓc/c =Cst is
set (c = c̃(DDD = 0) is the wave speed of the virgin material).

To take into account in finite elements computations an evolving inter-
nal length means to actualize at each time step and for each couple (x, s)
the value of the weight function. This (very) costly choice is not made here.
Even if induced anisotropy is considered next, the introduction of a sin-
gle (constant) internal length will be considered as sufficient for practical
applications.

5 VISCOUS REGULARIZATION FOR IMPACT

A regularization possibility for fast dynamics and impact consists in taking
into account the strain rate effect on the dynamic response of concrete.
For instance, introduce a characteristic time which, altogether with the
consideration of the laws of dynamics, will indirectly defines a characteristic
length. In the present case of elasticity coupled with damage this can simply
be done by introducing a viscosity law ǫv = ǫv(Ḋ) in Mazars criterion.
The damage evolution occurs not anymore at f = 0 but at f = ǫv > 0.
A classical law for isotropic damage is Norton-Perzyna power law, ǫv =
kḊ1/n, with k and n the viscosity parameters. It leads to an unbounded
damage rate often too high at high strain rates.

8



It is possible to bound the damage rate, for instance by the maximum
rate Ḋ∞ = 1/τc material dependent equal to the inverse of the charac-
teristic time τc (Allix and Deü, 1997; Ladevèze et al., 1998). To gain this
property, these authors rewrite the criterion surface as f = g(ǫ̂)−D (with
g = κ−1) and define the viscosity law as

f = Dv > 0 Dv = −1

b
ln

(

Ḋ∞ − Ḋ

Ḋ∞

)

(39)

from which derives the delay-damage law, saturating at high strain rates,

Ḋ = Ḋ∞ [1 − exp (−b(g(ǫ̂) −D))] (40)

The viscosity parameters, material dependent, are then Ḋ∞ and b. This
regularization is defined locally (i.e. at a structure Gauss point) and is
well adapted for dynamics computations. It can be extended to the case of
induced anisotropic damage by setting (Desmorat et al., 2008):

tr ḊDD = Ḋ∞

[

1 − exp
(

−b
(

κ−1(ǫ̂) − tr DDD
))]

(41)

The full set of constitutive equations now reads:

• Elasticity,

ǫǫǫ =
1 + ν

E
σ̃σσ − ν

E
tr σ̃σσ 111 or ǫǫǫ = EEE−1 : σ̃σσ (42)

• Effective stress,

σ̃σσ =
[

(111 −DDD)−1/2 σσσD (111 −DDD)−1/2
]D

+
1

3

[ 〈tr σσσ〉+
1 − tr DDD

+ 〈tr σσσ〉−
]

111
(43)

• Damage criterion (local) f = κ−1(ǫ̂) − tr DDD, using the viscous regu-
larization (39),

f ≤ 0 −→ elastic loading or unloading

f > 0 with f = −1

b
ln

(

Ḋ∞ − tr ḊDD

Ḋ∞

)

−→ damage growth

(44)

with Ḋ∞ and b the delay-damage parameters.

• Induced damage anisotropy governed by the positive extensions,

ḊDD = λ̇〈ǫǫǫ〉2+ (45)

The damage multiplier λ̇ is determined from the damage criterion
expression for f > 0 (Eq. 44).

The delay-damage law (40) is recovered from previous equations.
Again, the numerical implementation in a Finite Elements computer

code is quite simple as – once again – it does not need an iterative process
(Desmorat et al., 2008).
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6 STRUCTURAL EXAMPLES

The local and nonlocal integral anisotropic damage model has been im-
plemented in CEA CAST3M Finite Element code. The anisotropic delay-
damage model has been implemented in the explicit code LS-Dyna. The
numerical scheme for the time integration is for both cases Euler’s back-
ward scheme but solved explicitly (Desmorat et al., 2007; Desmorat et al.,
2008). Finite Element examples on 3D structures are given next to illus-
trate the model capabilities.

6.1 Plain concrete mixed-mode fracture

The double edge notched specimen tested by Nooru-Mohamed (Nooru-
Mohamed, 1992) is analysed using the implementation of the model devel-
oped in the previous section. The specimen is a symmetric 200 mm× 200
mm mortar square with two horizontal notches, 30 mm long and 5 mm
thick.

The rotation of the external boundary of the plate is restricted around
the vertical axis. The concrete specimen is first loaded by an increasing
shear (lateral) force F (t) applied on the lateral surface. During the appli-
cation of the shear force, the vertical displacement of the upper surface is
totally free. In a second time, a vertical displacement U(t) is applied up to
failure at constant F = FMax, the higher FMax the more curved the crack
path.

The case study is here carried out for a lateral load FMax = 10 kN.
The FE discretization of the specimen is made by the use of four node
tetrahedron elements with one integration point. In order to perform the
computations in 3D at reasonable cost, a FE mesh with a 5 mm width is
used when the real width of the specimen is 50 mm. The model parameters
used for the simulation are: E = 42000 MPa, ν = 0.2, κ0 = 5 10−5,
A = 5 103, a = 2.93 10−4. The nonlocal length used in the integral weight
function is ℓc = 2 mm, small value indeed justified by the fact that the
material is a mortar with very small constituents (Bazant and Pijaudier-
Cabot, 1989; Ragueneau et al., 2003). Three meshes are used: a coarse
mesh with a total of 4936 elements, a medium mesh with 11294 elements,
and a fine mesh with 14766 elements. The characteristic length corresponds
then close to the notch to 2 elements of the coarse mesh, to 8 elements of
the medium mesh, to 14 elements of the fine mesh.

Figure 2 shows the anisotropic damage patterns computed for the dif-
ferent meshes (at the figure top is the cracking pattern experimentally
observed (Nooru-Mohamed, 1992)). The left column corresponds to the
D22 damage field, the right one to the D11 damage field, both in nonlocal
computations. They exhibit the now classical convergence and mesh inde-
pendence of the results obtained with a nonlocal model, here in case of
anisotropic damage. The application of the shear load up to FMax yields
localized damage at the notch tip. The structural failure is then due to the
application of the vertical displacement U(t) with mainly mode I cracks
represented here in the Continuum Damage Mechanics framework by large
D22 values. The damage patterns computed corresponds to the crack pat-
terns observed with the rotation of two main cracks represented. The cracks
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are not perfectly symmetric with respect to the center of the specimen due
to the application of the experimental boundary conditions.
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Rear Face

Experimental cracking path
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Figure 2: Damage maps for Nooru-Mohamed test at U = 3.5 10−3 mm– (a) left
column: D22 fields, (b) right column: D11 fields

6.2 Reinforced concrete structure

The objectives of this section are to evaluate the robustness and the ability
of the anisotropic damage model to deal with a reinforced concrete element
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subject to flexion. The structure is a reinforced square cross section beam,
subject to three point bend loading. Figure 3 shows geometric features for
concrete and steel. During loading, multiple loading paths are encountered
in different parts of the beam: tension on the lower part, compression on
the upper part, shear near the edge and along the reinforcing bars. The
corresponding different features of the constitutive equations are activated
at the same time and the occurrence during loading of several competitive
cracks usually makes difficult the global convergence scheme. For these
reasons, this case-study was part of the international MECA benchmark,
launched by E.D.F. to compare and discriminate different 3D constitutive
models for concrete (Delaplace and Ghavamian, 2003).

5 000 mm
200 mm

5
0

0
 m

m

2φ32

2φ8

Figure 3: Reinforced concrete beam

For concrete, the material parameters used in the following computa-
tions are those of previous section. For steel, elasto-plasticity with linear
hardening is considered and the material parameters are imposed by the
benchmark: Young’s modulus E = 200000 MPa, Poisson ratio ν = 0.3,
yield stress of 480 MPa, plastic modulus of 20000 MPa. For the computa-
tion, a 3D specimen has been meshed with 2 elements in the thickness for a
total of 600 eight node parallelepipedic elements. Accounting for the differ-
ent symmetries of the problem, only one reinforcing steel bar is modelled.
The mean dimension of the finite element size is 50 mm.

The monotonic loading is applied up to failure. Two computations with
two different characteristic lengths are performed in order to appreciate
the effect of the nonlocal length (Gaussian weight function, ℓc = 150 mm
and ℓc = 250 mm). The choice ℓc = 150 mm is the more physical as
it corresponds here to a characteristic length equal to 3 or 4 times the
maximum aggregate size (Bazant and Pijaudier-Cabot, 1989).

As one can see in the D11-damage maps given in Figure 4, due to the
reinforcing steel bar implying a flexural rupture the effect of the charac-
teristic length is important on the cracking pattern as it can be seen from
damage maps. The choice ℓc = 150 mm is the more appropriate here, as
expected. The computation represents quite well the multiple cracks prop-
agation for the characteristic length ℓc = 150 mm.

0.0

1.0

0.6

0.4

0.2

0.8

2

13

Figure 4: Mesh and D11 damage field obtained at the begining of steels yielding
(left : ℓc = 150 mm, right: ℓc = 250 mm - left and right correspond to two different
computations)
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Figure 5: Principle of the dynamic tension test

6.3 3D dynamics tension test

In order to get tensile results at very high strain rates, tensile tests by
scabbing were developed (Klepaczko and Brara, 2001; Schuler et al., 2006).
Figure 5 shows the principle of the test. The setup consists of a striker
(launched at the velocity V), an input bar and the tested specimen. The
input bar of (Klepaczko and Brara, 2001) experiment has a diameter of
40 mm for a one meter length, while the concrete sample has the same
diameter for a length of 120 mm. After the impact of the striker, an incident
wave propagates in the input bar. One part of the wave is transmitted into
the specimen and another one is reflected at the bar/specimen interface.
The transmitted compression wave is reflected at the free end and becomes
a tensile wave. This leads to fracture in the spall plane.

Three Finite Element meshes have been used. A coarse mesh is made
of 24000 underintegrated 8-nodes brick elements, a medium mesh of 48000
elements and a fine mesh of 96000 elements. At time t = 0 the mesh
boundaries are free and the experimental pressure wave is applied on the
right face of the specimen. The simulation of the test must make it possible
to find the rupture of the sample experimentally observed, i.e. a single main
rupture crack at the distance X = 65.8 mm of the impacted face.

Figure 6 shows the damage field D11 associated with the axial axe
~e1. When the material is subjected to compression the imposed strain is
not sufficient to damage the material. To the opposite, when the state of
tension becomes sufficiently large after the compressive wave reflection on
the free surface, one obtains a damage D11 close to 1 in a cross section.
This cross section, which represents the location in which cracking will be
initiated, is located at a distance X ranging between 64 and 69 mm from
the impacted face. This measure is in good agreement with experimental
one.

In order to illustrate the mesh independency (due to the viscous reg-
ularization of the delay-damage model), the results are presented on the
coarse, medium and fine meshes. The damage maps obtained for the three
meshes are shown in Figure 6. One can notice that the width of the localized
damage band is the same for the three meshes and equal to approximately
5× ℓc, therefore of the order of magnitude of a characteristic length intro-
duced from the knowledge of the wave celerity cL, ℓc = cL × τc = cL/D∞.
Note that the times steps are different in the three simulations due to the
Courant’s condition based on the mesh size.

6.4 Impact on a reinforced concrete slab

In order to evaluate the ability of the anisotropic damage model to describe
the concrete behavior in a case rather complex but representative of an
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Figure 6: Damage in the concrete sample (D11 field, 1 ≡ horizontal)
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Figure 7: Finite Element mesh

industrial application, a test in which a projectile impacts a concrete slab
has been carried out. The projectile is a cylinder representative of a Cessna
engine (masse=200 kg, velocity=83,3 m/s, cross section=1 m2) with an
elastic behavior.

Figure 7 shows the finite element mesh used for the simulations on a 4
meters width and 0.5 meters thick slab. The slab is meshed with 24000 3D
underintegrated elements and the reinforcements are represented by 2300
truss-bars. The impacted area has a refined mesh whereas the other part
of the slab has a coarse one.

Figure 8 shows the damages D11, D22 and D33 into the slab. One can
notice that due to the symmetry condition, the damage D11 and D22 have
a similar pattern. The damage D33 represents the cracks in the slab thick-
ness and is representative of the scabbing phenomenon. In our simulation,
damages D11 and D22 are quite large exhibiting a shear rupture of the con-
crete slab with the apparition of a punch cone as experimentally observed
in cases of thin slabs (more precisely of small ratio slab thickness / slab
stiffness). In the same time, the damage D33 remains small and does not
exhibit scabbing.

7 CONCLUSION

A non standard thermodynamics framework for induced anisotropic dam-
age guaranties the positivity of the intrinsic dissipation. A proof is given
and the scalar feature Ḋ ≥ 0 of a positive damage rate for isotropic mod-
eling is extended to anisotropy as the simple feature ḊDD ≥ 0 of a positive
damage rate tensor. The convexity of the state potential with respect to
the damage variable is not necessary.

An anisotropic damage model is described in the previous non stan-
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dard framework, with a quite low numbers of material parameters (5 in-
cluding the elasticity parameters for the initial plus an internal length or
an internal time for the nonlocal model or plus 2 viscosity parameters for
the delay-damage model). The good mathematical properties of the model
(differentiability of the state potential, positivity of the dissipation due to
anisotropic damage even for complex non proportional loading) prove to be
efficient for numerical computations of 3D structures, in both quasi-static
and dynamic cases.
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Desmorat, R. and Cantournet, S. (2008). Modeling micro-defects closure effect
with isotropic/anisotropic damage. Int. J. Damage Mechanics, 17:65–96.

Desmorat, R., Gatuingt, F., Chambart, M., Combescure, D., and Guilbaud, D.
(2008). Anisotropic 3d delay-damage model to simulate concrete structures.
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mésofissuration : comportement unilatéral et anisotropie induite. C. R. Acad.
Sci., Série IIb, 322:275–282.

Halphen, B. and Nguyen, Q. (1975). Sur les matériaux standards généralisés. J.
de Mécanique, 14:39–63.

Klepaczko, J. and Brara, A. (2001). An experimental method for dynamic tensile
testing of concrete by spalling. Int. Journal of Impact Engineering, 25:387–
409.

Krajcinovic, D. (1996). Damage mechanics. Elsevier.

17
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