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A parallel and multiscale strategy for the parametric study of
transient dynamic problems with friction
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LMT-Cachan (ENS Cachan/CNRS/Université Paris 6/PRES UniverSud Paris)
61 av. du Président Wilson, F-94230 Cachan, France

SUMMARY

The objective of this work is to develop an efficient strategy for the parametric study of dynamic
problems involving contacts with friction. Our approach is based on the multiscale LATIN method
with domain decomposition. This is a mixed method which deals with the forces and velocities at
the interfaces between the different subdomains simultaneously. We propose to take advantage of
the capability of the multiscale LATIN method, called the multiparametric strategy, to reuse the
solution of a given problem in order to solve similar problems. This strategy has already been applied
successfully to a variety of static problems; here, it is extended to dynamics. First, we present the
multiscale strategy in dynamics. Then, we show how the multiparametric strategy can be extended
to dynamics. We illustrate the capabilities of the method through an academic 3D example and the
simulation of a bolted joint.

key words: parametric study; multiscale computational method; transient dynamics; domain

decomposition; contact; friction; parallel processing

1. INTRODUCTION

Modeling and simulation play an important role in engineering and design and give rise
to multiple problems, particularly in dynamics when dealing with large assemblies with
connections. These connections have a significant impact on the dimensioning process because
they are subject to highly nonlinear local phenomena (contacts with friction), particularly in
rapid transient dynamics problems, whose proper representation requires very fine meshes [1].
In the case of structural assemblies, one’s knowledge of the friction coefficients is especially
limited. Although the incorporation of a system’s parametric uncertainties into a model
represents quite a challenge for structural engineers, without such information the structural
response could not be analyzed accurately.
It is much more difficult to explore this design space taking these parametric uncertainties
into account than to solve the general parametric field problem because one must take into
consideration nonlinear structural behavior (in our case, unilateral contact with friction). In
order to do that, it is necessary to calculate the response of the structure for each set of values
of the design parameters [2]. In this case, the design parameters are the friction coefficients
and the prestresses. Upon completion of these calculations, the response parameters (maximum
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stresses, reaction forces...) are obtained and associated with the values of the input parameters.
Then, the design space can be defined and explored by sampling parameter values within
defined limits. In this context, the choice of an efficient computational method is of vital
importance. The perturbation method is one of the main approaches used to obtain such
structural responses ([2, 3]; [4, 5] for the dynamic case). In recent years, many researchers
have focused on the stochastic finite element method, which is capable of dealing with the
parametric uncertainties mentioned above [6]. Some of these methods have been developed in
dynamics, such as the Neumann method [7] and the spectral method [8]. The POD method
[9] can also be used as it allows to build a basis for several sensitivity analysis [10].

The objective of the work presented here is to develop a strategy which is suitable for problems
involving multiple resolutions, which we will refer to as multiparametric problems. Some
multiparametric strategies have been proposed for optimization problems [11, 12]. These lead
to an efficient implementation of the multiresolution optimization technique. In this paper,
we consider the case of assemblies of elastic structures connected through frictional contacts
and dynamic loading conditions. Contact problems are characterized by constraints such as
nonpenetration conditions, and an a priori unknown active area of contact (the area where
contact indeed occurs). These conditions lead to stiff nonlinear systems of equations. There are
several possible approaches for the resolution of static contact problems [13, 14, 15]. In most
of these approaches, the numerical methods used to enforce the contact constraints are either
Lagrange multiplier methods or penalty methods [16]. Penalty methods [17, 18] are closely
related to the regularization of the contact constraints and are usually formulated in terms of
the displacement variables; therefore, they are primal methods. They enable the treatment of
contact as a material behavior. Penalty methods can be subject to various numerical difficulties,
especially ill-conditioning, when a too large or too small penalty parameter is introduced.
Lagrange multiplier methods are dual methods in which the multipliers, which represent
the contact reaction forces, are introduced in order to enforce the nonpenetration conditions
exactly. Augmented Lagrange multiplier methods [20, 21, 22, 23] lead to mixed formulations
involving both displacement and force unknowns. The numerical resolution schemes underlying
both Lagrange multiplier methods and augmented Lagrange multiplier methods are often
related to the Uzawa algorithm [24, 25, 26].

In this paper, we develop a specific method in order to deal with the problems arising from
the fact that the nonlinearities, as described previously, are localized in the connections. The
friction law we use is Coulomb’s classical law. Our approach is based on a decomposition of
the assembly into substructures and interfaces. The interfaces play the vital role of providing
an easy and accurate way to model local nonlinearities, such as contact and friction. The
problem is solved in each substructure using the finite element method associated with a
time integration scheme. An iterative scheme based on the multiscale LArge Time INcrement
(LATIN) method developed at LMT Cachan [27, 28, 29] is used for the global resolution.
This approach leads to a very significant reduction in computation cost for dynamic problems
[30]. The single-scale LATIN method has already been used in dynamics in [40, 41, 42]. The
multiscale LATIN method is a mixed method which deals with both velocities and forces at the
interfaces simultaneously and solves a condensed macroscopic problem in order to accelerate
the convergence of the numerical scheme. When only static cases are considered, the LATIN
method (without the multiscale approach) can be derived by other means, such as in Lions
[31] or Glowinski and Le Tallec [32].
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More specifically, our objective is to calculate a large number of design configurations, each
corresponding to a set of values of all the parameters involved in the mechanical analysis.
Normally, a full calculation is needed for each set of parameters. Here, as an alternative, we
propose to take advantage of the capabilities of the LATIN method and reuse the solution
of one problem (for one set of parameters) to solve similar problems (for the other sets of
parameters). This approach has already been used for viscoplastic and large-strain problems
in [33, 34, 35] and is now also being used for structural identification problems [36]. It leads
to a significant reduction in the total computation cost of determining the design space. The
objective of the work presented here is the extension of this method, which has already been
largely developed in statics and quasi-statics, to dynamics.

2. THE MULTISCALE LATIN METHOD

This multiscale domain decomposition method consists of three components: the decomposition
of the spatial domain, the separation of the scales and a resolution algorithm. The main features
of these three components are described below. The details of the method itself can be found
in [37].

2.1. Decomposition into substructures and interfaces

An assembly is a set of substructures which communicate with one another through interfaces
(see Figures 1(a) and 1(b)). Each interface represents a connection. The substructures
and interfaces each have their own variables and equations (admissibility, equilibrium and
behavior). The interface associated with two connected substructures ΩE and ΩE′ is designated
by ΓEE′ . Each interface is a mechanical entity with its own variables and behavior, which
depend on the type of connection. Many different types of connections, such as frictional
contact, can be modeled with this approach. The interface variables consist of two force fields
FE , FE′ and two dual velocity fields WE , WE′ (see Figure 1(b)). By convention, FE and
FE′ represent the action of the interface on the substructures, and WE and WE′ are the
velocities of the substructures viewed from the interface. Thus, the interface concept can be
easily extended to the boundary, where the displacements, the velocities or the forces are
prescribed. In our multiscale vision, the interfaces play the important role of separating the
scales: the definitions of the microscopic and macroscopic fields are related to the interface
quantities of the substructured problem and are specified prior to any discretization. Then the
interface unknowns are divided into :

WE = Wm
E + WM

E and FE = Fm
E + FM

E

where WM and Wm denote respectively the macro parts and the micro complements of the
velocity field.

A comparison with the coarse problem introduced into the FETI method for the dynamic
case by Farhat-Shen-Mandel [45] can be found in [30].
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(a) The reference problem (b) Exchange between an interface 
   and the adjacent substructures
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∂2Ω
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ΓEE
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Figure 1. Decomposition of the reference problem into substructures and interfaces

2.2. The substructured problem

2.2.1. The problem within a substructure: Let uE(M, t) be the displacement field at any point

M of substructure ΩE and at any time t of [0, T ], and let U [0,T ] be the associated space. U [0,T ]
0

is the virtual space defined by U [0,T ]
0 = {u | u ∈ U [0,T ], u = 0 on ∂1Ω}. εE(M, t) is the strain

field. The current state of the substructure is characterized by the stress field σE(M, t), whose
associated space is S [0,T ]. The mechanical problem to be solved within each substructure ΩE is:

Find the evolutions of the displacement field uE(M, t) and stress field σE(M, t) such that:

• Kinematic admissibility: ∀t ∈ [O, T ], uE ∈ U [0,T ]

– Initial conditions: ∀M ∈ ΩE

uE(t = 0) = U0
E

duE

dt
(t = 0) = V 0

E (1)

– Boundary conditions: ∀t ∈ [O, T ], ∀M ∈ ΓEE′

duE

dt

∣∣∣
ΓEE′

= WE u
E
∣∣
∂Ω1

= Ud F
E
∣∣

∂Ω2

= Fd (2)

• Equilibrium: ∀t ∈ [0, T ], ∀u̇∗ ∈ U
[0,T ]
0 , σE ∈ S[0,T ]

∫

ΩE

(
ρ
d2uE

dt2
+ fd

)
u̇∗dΩ +

∫

ΩE

Tr (σEε(u̇∗)) dΩ =
∑

E′

∫

ΓEE′

FEE′ u̇∗dΓ (3)

• Elastic behavior: ∀t ∈ [0, T ], ∀M ∈ ΩE

σE = KEε(uE) (4)

where KE is the Hooke’s operator.
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2.2.2. The problem at the interfaces: The mechanical problem to be solved at each interface
ΓEE′ is:

Find the evolutions of the force fields FE(M, t), FE′(M, t) and velocity fields WE(M, t),
WE′(M, t) such that:

• ∀t ∈ [O, T ], ∀M ∈ ΓEE′

(FE , FE′) = AΓ
EE′

(WE , WE′) (5)

where the behavior is expressed as an evolution law AΓ
EE′

. This evolution law describes
the behavior (perfect, contact, friction...) of the interface ΓEE′ . More details can be found
in [30].

2.3. Resolution strategy: the LATIN method

The LATIN (LArge Time INcrement) method [27] is a general, mechanics-based computational
strategy for the resolution of time-dependent nonlinear problems which operates over the entire
time-space domain. It has been applied successfully to a variety of problems [29, 39, 40, 41].

In the case of linear elastic substructures considered here, the solution uE(M, t), σE(M, t) can
be calculated from the boundary values WE(M, t), FE(M, t). Thus, a solution s is characterized
by the force and velocity fields on both sides of an interface. The solution of problem sref is
expressed as a set of time-dependent fields within each substructure and at the corresponding
interfaces:

sref =
∑

E

sE sE =
{
FE(M, t), WE(M, t)

}

2.3.1. Separation of the difficulties: The LATIN approach is based on the idea of dealing
with each difficulty separately in order not to have to solve a global problem and a nonlinear
problem at the same time. The equations are divided into global linear equations and local
nonlinear equations, so that sref = Ad ∩ Γ is the intersection of two subspaces:

• Ad, the space of the solutions of the linear equations associated with the substructures
ΩE : kinematic admissibility, equilibrium, elastic behavior and admissibility of the
macroquantities;

• Γ, the space of the solutions of the local equations related to the interfaces ΓEE′ and
expressing their behavior.

2.3.2. A two-step iterative strategy: The LATIN method consists in seeking fields of Γ and
Ad alternatively along two search directions E+ and E−, as shown in Figure 2. Each iteration
involves two stages, called the local stage and the linear stage:

Local stage: Given sn =
{
FE , WE

}
∈ Ad, find ŝn+1/2 =

{
F̂E , ŴE

}
such that:

ŝn+1/2 ∈ Γ (interfaces)
ŝn+1/2 − sn ∈ E+ (search directions)

(6)

Int. J. Numer. Meth. Engng 20; :–
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Linear stage: Given ŝn+1/2 =
{
F̂E , ŴE

}
∈ Γ, find sn+1 =

{
FE , WE

}
such that:

sn+1 ∈ Ad (substructures)
sn+1 − ŝn+1/2 ∈ E− (search directions)

(7)

+

−

^
sn+1/2

sn+1

sn

sref

Γ

Ad

E

E

Figure 2. An iteration of the LATIN method

In the case of linear elastic substructures, which we are considering here, the search directions
are defined as follows:

ŝn+1/2 − sn ∈ E+ ⇐⇒ F̂E − FE = k0(ŴE − WE) (8)

sn+1 − ŝn+1/2 ∈ E− ⇐⇒ FE − F̂E = −k0(WE − ŴE) (9)

where k0 is a scalar parameter of the method. For the dynamic cases being addressed here,
the optimum value of k0 for a one-dimensional problem was given in [41] and is k0 =

√
ρE,

where E is the Young’s modulus and ρ the density. k0 can be viewed as a local impedance of
the material.

The convergence of the algorithm toward sref is controlled using an error indicator η, which
is a measure of the distance between the two solutions sn+1 and ŝn+1/2 (Figure 2).

2.4. The local stage: ŝn+1/2

The local stage consists in building ŝn+1/2 ∈ Γ knowing sn ∈ Ad. Then, (ŝn+1/2 − sn) must
follow the search direction E+ defined in Equation 8. We obtain a differential equations
problem-type in each point of the interface that is function of its behavior introduced in
Equation 5 [30].

2.5. The linear stage: sn+1

The linear stage consists in building sn+1 ∈ Ad knowing ŝn+1/2 ∈ Γ:

• Macroadmissibility: in order to ensure the admissibility conditions of the macro variables
FM

E and WM
E .

• Search direction: the unknowns (WE , FE) must follow the search direction (Equation 9).

Int. J. Numer. Meth. Engng 20; :–
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• Equations associated with the substructures: the unknowns (WE , FE) must verify the
dynamic equilibrium and the elastic behavior (Equations 3 and 4).

These equations lead to the resolution of three independent problems. First one have to
solved a “micro” problem, in each substructure, then a “macro” problem and at the end a
second “micro” problem (see Table I and [30]).

2.6. The algorithm and its parallelization

The LATIN method associated with the mixed domain decomposition method is inherently
parallelizable [38]. In our case, this strategy was programmed in C++ in the framework of the
finite element platform developed by H. Leclerc [43]. Libraries such as MPI (Message Passing
Interface) for the transfer of information among machines were used in order to enable the
use of PC-cluster types of architectures. In order to parallelize the strategy, the first step
consists in allocating the substructures and interfaces among the different processors. This is
done through the METIS libraries [44], which enable the amount of data which must circulate
among the processors to be minimized in order to avoid an excessive decline in speedup.

Initialize
Loop over the substructures (on each processor)

Calculation of rigidity and mass matrices of substructure
Factorization

Calculation and factorization of the macroproblem (on a single processor)
Loop over the interfaces (on each processor)

Loop over time (∀t ∈ [0, T ])
cWE = cWE′ = 0 bFE = bFE′ = 0

Iteration n = 1, 2, ... until convergence
Linear stage - Loop over time (∀t ∈ [0, T ])

Loop over the substructures (on each processor)
First microproblem:

Solve the first micro problem at time step t
Macroproblem (for a single processor):

Determination of the macro part of the solution a time step t
Loop over the substructures (on each processor)

Second microproblem:
Solve the second micro problem at time step t
(operators are the same as those used in the first microproblem)

Local stage - Loop over time (∀t ∈ [0, T ])
Loop over the interfaces (on each processor)

Determination of (cWE, bFE) given (WE , FE)
Convergence test

Table I. Algorithm - The micro/macro LATIN method

Then, the different operators which are specific to the substructures are constructed on
each processor. During the iterative resolution phase, the first and second microproblems are
solved. The macroproblem, which has not been parallelized yet, is solved on a single processor.
Finally, the local stage is completely parallelized because the interfaces are distributed among
the different processors.

Int. J. Numer. Meth. Engng 20; :–
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The LATIN method consists in performing linear stages and local stages alternatively. The
iterations concern the whole time interval, i.e. a solution over the whole time interval is
calculated at each iteration of the method. In the linear stage, an incremental formulation
is used to solve problems within the substructures over the whole time interval. Thus, only
two time steps of a substructure’s fields (displacement, velocity and acceleration) need to be
stored: the current time step being calculated and the previous time step. Conversely, the
interface quantities (F̂ , Ŵ , F, W ) must be stored over the whole time interval. The fields are
saved after the last iteration of the method for post-processing purposes. Algorithm (Table I)
shows the key steps of an iteration of the multiscale method.

3. THE STRATEGY FOR THE PARAMETRIC STUDY
The strategy proposed consists in calculating design configuration where each design
configuration corresponds to a set of values of all the variable parameters (friction coefficients,
prestresses) which are introduced into the mechanical analysis.

At each iteration, the LATIN method leads to an approximate solution to the problem over
the whole time interval. Therefore, the trick is to reuse one approximation (associated to one
set of values of all the design parameters) to find the solution to another design configuration
(another set of the design parameters) similar to the one for which it was calculated in the
first place. Our strategy for the parametric study uses the fact that the LATIN algorithm
can be initialized with any solution (usually an elastic solution) provided that it verifies
the admissibility conditions. Therefore, the key to our technique is to initialize the process
associated with a new design configuration using the results of the calculation carried out on
the preceding set of values of the design parameter (Figure 3). In this scheme, Γi correspond
to one set of parameters and Γi+1 to another one. Si (equal to Sref for Γi) is the solution
of the first set of parameters and correspond to the initialization of the LATIN algorithm for
the new ones. In this manner, a first approximation of the solution to the new design with a
strong mechanical content is immediately available from the start.
Note that as the previous computation is expected to have converged, the solution of the local
stage should be identical to the one provided by the linear stage. One can use any of them to
initialize the algorithm.

In this particular case of elastic structures in contact, the interfaces play a vital role: they
enable one to initiate the calculation on the new design configuration without having to save all
data on the substructures as well as to search for the solution of the new design configuration
with an initial solution well-suited to the target problem. In the best-case scenario, only a few
iterations are necessary: the solution to the problem is obtained at low cost. If the solutions
to the design configurations are close enough, the latter can still be derived at a significantly
lower cost than by using a full calculation. For the parametric study presented herein, we just
change the parameters between iterations. Thus, the new computation is initialized by the
solution to the previous one. If the parameters change slowly, the two solutions are close and
only a few iterations are needed to reach convergence in the new calculation.

Int. J. Numer. Meth. Engng 20; :–
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Figure 3. Schematic view of the reuse of a previous LATIN solution

Initialize
Loop over the substructures (on each processor)

Calculation of matrices KE , ME , ...
Factorization

Calculation and factorization of the macroproblem (on a single processor
Loop over the interfaces (on each processor)

Loop over time (∀t ∈ [0, T ])
cWE = cWE′ = 0 bFE = bFE′ = 0

Definition of the sets of values of all the design parameters

Loop over the sets of values of all the design parameters (k = 1, 2, ...)
Restoration of the quantities at the interfaces
Iteration until convergence

Linear stage (Table I)
Local stage (Table I)
Convergence test

Save the interface solution for the kth parameter set

Table II. Algorithm of the parametric study using the LATIN method

4. FIRST EXAMPLE: AN ACADEMIC PROBLEM

In order to test the method described previously, let us consider a simple 3D example
consisting in the propagation of a compression wave in a bar composed of three parallelepipeds
(Figure 4). Each parallelepiped is 30 mm-long and 15 mm-wide. The material properties are:
Young’s modulus 150 GPa, mass density 7, 800 kg/m3 and Poisson’s ratio 0.45 for the central
parallelepiped, and Young’s modulus 200 GPa, mass density 7, 800 kg/m3 and Poisson’s
ratio 0.3 for the other two. Contact with friction is assumed to take place between theses
parallelepipeds with friction coefficients f1 for Interface 1 and f2 for Interface 2 (Figure 4).

First, the bar was subjected to a static loading in the form of a prescribed displacement
applied to the upper parallelepiped (U = −0.1mm along the ~z-axis). This loading consisted
of a normal pressure at each contact interface, which corresponds to a static prestress in the

Int. J. Numer. Meth. Engng 20; :–
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structure. Then, a pressure was applied laterally to the central parallelepiped going from zero

F(MPa)

t(ms)

Interface 1

t(ms)

Interface 2

U(mm)

F

U

A

B

x

y

z

-0.1

50

0.2

0.2

0.01 0.2

Figure 4. The numerical example

to a maximum value of 50 MPa over 10 µs. This pressure resulted in slipping of the middle
parallelepiped along the ~x axis by an amount which depends on the value of the two friction
coefficients. For the purpose of this test, each parallelepiped was decomposed into several
substructures. The duration of the test was 0.2 ms and we used 50 time steps of 4 µs each.

The objective of this example was to study the influence of the friction coefficients on the
slippage of the central parallelepiped. Each friction coefficient was given 11 different values
from 0.1 to 0.2 in increments of 0.01. At the end of each simulation, the amounts of slippage at
points A and B were saved (Figure 4). The parameters of the simulation (material properties,
loading intensities, friction coefficients,...) were chosen such that the pressure on the central
parallelepiped would induce slipping during the study and the parallelepipeds would stick
at the end of the study. Figure 5 shows the displacement and velocity of point A (along ~x)
obtained for f1 = 0.1 and f2 = 0.1, with the fields of the upper parallelepiped in solid black
lines and the fields of the middle parallelepiped in dotted black lines. The slippage of point A
is equal to the difference between the two displacement curves.

Each parallelepiped was divided into 16 substructures consisting of 10× 10× 10 8-node linear
elements. The simulation was carried out using 16 processors. This example of a parametric
study required 121 resolutions of a nonlinear problem meshed with 144,000 DOFS over 50
time steps. We studied the slippage of points A and B of the two contact interfaces (Figure 4).
Figure 6 shows the response surfaces of the parametric study, i.e. the evolutions of the slippage
at points A and B as functions of the two friction coefficients. These two surfaces illustrate
the influence of the friction coefficients. For example, the slippage of point A depends on the
friction coefficient f1 alone, and this dependence is highly nonlinear. Moreover, above f = 0.2,

Int. J. Numer. Meth. Engng 20; :–
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Figure 5. Evolution of the displacement and velocity of point A (along ~x), upper parallelepiped in
solid black lines and middle parallelepiped in dotted black lines

the slippage of the interfaces is nearly zero.
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Figure 6. Response surface - slippage of points A and B

For each value of f1 starting with f1 = 0.1, we applied the parametric strategy to perform
the 11 simulations associated with each value of f2 starting with f2 = 0.1, i.e. we applied
the multiparametric strategy 11 times for each value of f1. In order to optimize also the
first calculation of each multiparametric strategy (f2 = 0.1), we saved the solution of the
previous simulation to initialize the next multiparametric strategy (for the next value of f1).
For this example, the convergence criterion of the iterative algorithm was set to 2.10−4. Figure
7 shows the evolution of the LATIN error indicator during the first multiparametric strategy
(f1 = 0.1). The number of iterations and the CPU time associated with each simulation
(for each value of f2) are shown in Table III. The error indicator increased every time the

Int. J. Numer. Meth. Engng 20; :–
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friction coefficient changed, but to a lesser extent than in the first initialization thanks to
the multiparametric strategy. Thus, one can observe that the number of iterations required
to achieve convergence decreased throughout the parametric study. With the multiparametric
strategy, both the number of iterations and the computation cost decreased because the results
of the successive computations were very similar (as shown by Figure 6).

0 100 200 300 400 500

10 0

10-1

10-2

10-3

10-4

Error indicator

Iterations

f2 = 0.12

f2 = 0.17 .. 0.2

f2 = 0.1 f2 = 0.15

f2 = 0.16

f2 = 0.11

f2 = 0.14

f2 = 0.13

Figure 7. Evolution of the error indicator for f1 = 0.1

f2 0.1 0.11 0.12 0.13 0.14 0.15 0.16 0.17 0.18 .. 0.20
Iterations 194 76 62 56 48 43 37 27 < 10

Time (min) 26.4 10.3 8.4 7.6 6.5 5.8 5 3.7 < 1.5

Table III. Numerical costs of the first multiparametric strategy (f1 = 0.1)

In Table III, the number of iterations decreases continuously. The gain is very important for
the last values of f2 (0.18...0.2). That mean that the improvement does not only depend on the
method, but so on the nature of the solutions. Indeed the solutions for f2 equal to 0.18.. 0.2,
only involve stick statuses over the interface, which is easier to solve than mixed solutions with
stick and slip statuses. This particular point of the strategy is highlight by testing a parametric
study starting for f2 from 0.2 to 0.1 by a decreasing way. Figure 8 shows the evolution of the
LATIN error indicator during this new multiparametric strategy (f1 = 0.1). The total number
of iterations in this case is 753 (to compare with the 570 iteration of the first parametric study).
In terms of CPU time, for this second study total time is 102.4 min (to compare with 71 min).
We can also compare the gain: 2.9 for the second parametric study and 4.1 for the first one. This
result shows that it is possible to improve the parametric strategy by seeking the best point
for reinitializing the LATIN algorithm. Indeed, at a given time in the parametric study, one
can have access to several already calculated solutions. Thus, in performing a new calculation,
one can reasonably assume that among the previously calculated solutions one is likely to
maximize the cost reduction for this new calculation. In this example the ith calculation is
reinitialized from the results of calculation i − 1, but one can easily imagine that it could be
better if the ith calculation is reinitialized from the results of the closest calculation, in the
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sense of a distance in the parametric space [46].
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Figure 8. Evolution of the error indicator for f1 = 0.1

f2 0.2 0.19 0.18 0.17 0.16 0.15 0.14 0.13 0.12 0.11 0.10
Iterations 199 45 40 41 43 45 49 56 63 76 96

Time (min) 27 6.1 5.4 5.5 5.8 6.1 6.6 7.6 8.5 10.3 13

Table IV. Numerical costs for f2 from 0.2 to 0.1 (f1 = 0.1)

Table IV shows a comparison of the computation costs of the different strategies. The first
CPU time (Direct LATIN, sequential) corresponds to 121 times the CPU time of the first
calculation (194 iterations) carried out using a single processor, the second CPU time (Direct
LATIN, parallel) corresponds to 121 times the CPU time of the first calculation carried out
using 16 processors, and the third CPU time corresponds to the multiparametric strategy
carried out using 16 processors. For this example, the gain in CPU time obtained thanks to
parallelism using 16 processors was 11 (588/53.4). The gain in CPU time obtained thanks
to the multiparametric strategy was 4.4 (comparison between the direct LATIN parallel and
the Multiparametric LATIN parallel: 53.4/12.1). Parallelism and the multiparametric strategy
together enabled us to carry out the multiparametric study in a reasonable time compared to
the direct approach, with a global gain of about 48.

Calculation Cost (hrs) Cost (days) Gain vs. Direct
Direct LATIN (sequential, estimated) 588 24.5 LATIN sequential
Direct LATIN (parallel, estimated) 53.4 2.2 11
Multiparametric LATIN (parallel) 12.1 0.5 48

Table V. Cost comparison of the different calculations

We compare the results with those obtained with the industrial explicit dynamic code LS-
DYNA [47]. To obtain the same quality in terms of contact and sliding at the interface, we
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had to use a finer mesh in LS-DYNA. For each parallelepiped we use 40x40x80 elements
(the number of elements in each direction is doubled in comparison with the mesh used with
our own software: 20x20x40 elements). Indeed, if we use the same mesh with LS-DYNA, the
behavior of the interface is not verified exactly: the parallelepipeds are not in contact as they
should be, they interpenetrate at the end of the calculation. We compare the results in terms
of velocity of point A (figure 9). It is obvious that the solutions are similar and that a finer
mesh is necessary for LS-DYNA to obtain the solution.

Time (ms)

0.1 0.2

 0.04

-0.02

0

0.02

LATIN method LS-DYNA3D

Ux (mm)

0.1 0.2

 0.04

-0.02

0

0.02

Ux (mm)

Figure 9. Evolution of the displacement of point A (along ~x), upper parallelepiped in solid black lines
and middle parallelepiped in dotted black lines

The total computation time with LS-DYNA3D on one computation and one processor
(f1 = 0.1 and f2 = 0.1) is about 7h and the memory used about 850 MBytes. In comparison,
the computation time with our own software is about 4h and 50 minutes and the memory
used is about 1800 MBytes. Therefore, the computational times associated with a solution
quality are comparable. Our research software is not optimized in terms of memory occupation.
Nevertheless, one limitation of the proposed approach is a limited number of time steps. We
compare the memory used for several time discretization : 50, 100, and 200 time steps. For this
3 values, the memory used is respectively : 1800, 2400 and 3600 MBytes. Contrary to a classical
incremental scheme for which the volume of computations roughly doubles when doubling the
time steps, here, not only this number of operations doubles, but also the storage of the iterates
on which the computations are performed. Moreover, when we double the number of time step,
the total time of the analysis nearly double also.

5. APPLICATION TO A BOLTED JOINT USED IN THE AEROSPACE INDUSTRY

Let us now consider the example of a bolted joint. Damping in such joints is sensitive to
friction, pretension in the bolts, etc... These parameters are naturally scattered, and a full test
campaign to evaluate their actual influence would involve a very large number of specimens.
Such studies in quasi-statics have been reported in [48].

This example concerns the propagation of a compression wave in the bolted joint. This 3D
assembly is a joint between two sandwich composite structures consisting of two metal parts
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and three bolts (Figure 10). For the purpose of this example, the core and the composite
material of the sandwich were assumed to be homogeneous, elastic and isotropic media. The
interfaces between the sandwich composites and the metal parts were assumed to be perfect.
Frictional contact was taken into account both at the interfaces between the bolts and the
metal parts and at the interface between the two metal parts. First, we applied a static loading
and prestresses in the bolts. A static calculation was performed in order to define the initial
conditions of the dynamic analysis. For the dynamic calculation, the loading consisted of the
prescribed velocity shown in Figure 10.

V(m/s)
   1

0.06   t(ms)

Prescribed velocity

   Decomposition of the assembly

Contact interface

Honeycomb Aluminum

Laminated compositeSteel

x

y

z

Point A

Figure 10. The model of the joint

The calculations were performed using a 450,000-DOF mesh for the whole assembly. In order
to use our approach, we divided the different parts into several substructures. Figure 10 shows
a portion of this decomposition. We chose to use substructures with similar numbers of DOFs
in order to achieve a well-balanced load among the different processors and a good speedup of
the parallel algorithm. We used 194 substructures with about 2,500 DOFs each. An implicit
scheme with 39 time steps of 6 µs each was used for the time integration for a total duration
of 240 µs.

The objective of this example was to study the influence of the friction coefficients and of the
prestress in the bolt on the slippage between the two metal parts. The friction coefficient was
given 11 different values from 0.2 to 0.4 in increments of 0.02, and the prestress in the middle
bolt was also given 11 different values from 0.02 mm and 0.04 mm in increments of 0.002 mm.
The prestress in the bolt was represented as a relative displacement between the body and
the head of the bolt. At the end of each simulation, we saved the amount of slippage of point
A along ~x (Figure 10). Figure 11 shows the displacement Ux and the velocity V x of point A
along ~x obtained for a friction coefficient equal to 0.2 and a prestress equal to 0.02 mm, with
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the fields of the right-hand side in solid black lines and the fields of the left-hand side in dotted
black lines. The slippage of point A is equal to the difference between the two displacement
curves.

Time (ms)

Vx (mm/s)

-800

0

800

0,12 0,24

Time (ms)

Ux (mm)

0,12 0,240

0,05

0,1

Figure 11. Evolution of the displacement and velocity of point A along ~x, right-hand side in solid
black lines and left-hand side in dotted black lines

This example of a parametric study involved 121 resolutions of a nonlinear problem with a
450, 000-DOF mesh and 39 time steps. The simulation was carried out using 16 processors.
Figure 12 shows the response surfaces of the parametric study: the evolution of the slippage
of point A as a function of the friction coefficient and of the prestress at the beginning and
at the end of the study. These two surfaces illustrate the influence of the parameters on the
response of the structure. For example, the dependence of the slippage on these parameters at
the beginning of the study is highly nonlinear, with the slippage being equal to zero for part
of the variation range of the parameters.

For each value of the prestress starting with 0.02 mm, we applied the multiparametric strategy
to calculate the 11 simulations associated with each value of the friction coefficient starting
with 0.2, i.e. we applied the multiparametric strategy 11 times for each value of the prestress.
In order to optimize also the first calculation of each multiparametric strategy (f = 0.1),
we saved the solution of that first simulation to initialize the next multiparametric strategy
(for the next value of the prestress). Figure 13 shows the number of iterations carried out for
each parameter set. While the first calculation required more than 700 iterations, each of the
subsequent calculations took less than 100 iterations thanks to the multiparametric strategy.

Table V shows a comparison of the computation costs of the different strategies. The first
CPU time (Direct LATIN, sequential) corresponds to 121 times the CPU time of the first
calculation (700 iterations) carried out using a single processor, the second CPU time (Direct
LATIN, parallel) corresponds to 121 times the CPU time of the first calculation carried out
using 16 processors and the third CPU time corresponds to the multiparametric strategy
carried out using 16 processors. For this example, the gain in CPU time obtained thanks to
parallelism using 16 processors was 9.5 (1354/141.1). The gain in CPU time obtained thanks
to the multiparametric strategy was 5.8 (comparison between direct LATIN parallel and
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Figure 12. Response surface - slippage of point A at the beginning and at the end of the study
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Figure 13. Number of iterations required for convergence in each calculation

multiparametric LATIN parallel: 141.1/24.4). Parallelism and the multiparametric strategy
together enabled us to carry out the multiparametric study in a reasonable time compared to
the direct approach, with a global gain of about 55.

6. CONCLUSION

We presented the extension of the multiparametric strategy based on the LATIN method to
dynamic problems involving complex 3D structural assemblies. The LATIN method is based
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Calculation Cost (hrs) Cost (days) Gain vs. Direct
Direct LATIN (sequential, estimated) 1354 56.4 LATIN sequential
Direct LATIN (parallel, estimated) 141.1 5.9 9.5
Multiparametric LATIN (parallel) 24.4 1 55

Table VI. Cost comparison of the different calculations

on three components: a mixed decomposition of the structure (which provides significant
modularity to the description of the problem), a multiscale description and an iterative
resolution scheme. Using scale separation, a macroproblem is defined at the interface by
condensing the microproblem, which accelerates the convergence of the iterative algorithm.
This method is particularly well-suited to problems involving frictional contact. The strategy
is also fully parallelized. Its implementation into a cluster architecture leads to good behavior
of the parallel algorithm and enables one to treat complex real-life structural assemblies with
very large numbers of degrees of freedom.

The multiparametric strategy proposed here is based on the LATIN method and, more
specifically, on its capability to reuse the solution of a given problem in order to solve similar
problems. Our first numerical example showed the very good behavior of the algorithm in the
case of multiple resolutions in the analysis of dynamic problems with contact and friction.
The second example concerned a real 3D joint. For this assembly, parametric studies were
carried out on the values of the connection parameters (friction coefficient, prestress). The two
examples presented show that the algorithm can be very efficient numerically. The parametric
studies were carried out about 50 times faster than with the direct approach. Thanks to the
multiparametric strategy and parallelism of the LATIN method, it is possible to carry out
such parametric studies in reasonable time.
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