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Abstract We present a computational model, which combines interfacedebonding
and frictional contact, in order to investigate the response of concrete specimens
subjected to dynamic tensile and compressive loading. Concrete is modeled using
a meso-mechanical approach in which aggregates and mortar are represented explic-
itly, thus allowing all material parameters to be physically identified. The material
phases are considered to behave elastically up to failure and the initiation, coales-
cence and propagation of cracks are modeled by dynamically inserted cohesive ele-
ments. The impenetrability condition is enforced by a contact algorithm that resorts
to the classical law of Coulomb friction.
We show that the proposed model is able to capture the generalincrease in strength
with increasing rate of loading and the tension/compression asymmetry. Moreover,
we simulate compression with lateral confinement showing that the model reproduces
the increase in peak strength with increasing confinement level. We also quantify the
increase in the ratio between dissipated frictional energyand dissipated fracture en-
ergy as the confining pressure is augmented. Our results demonstrate the fundamental
importance of capturing frictional mechanisms, which appear to dissipate substan-
tially more energy than cracking under compressive loading.
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1 Introduction

Failure of heterogeneous (quasi) brittle materials such asconcrete, is a complex and
nonlinear phenomenon which dissipates energy according toits (meso-structural)
composition, geometry and loading conditions. Fracture ofthese materials involves
the opening of local micro-cracks, which may propagate, coalesce and subsequently
enter into contact influencing the nonlinear failure process. Therefore, a careful treat-
ment of both fracture and frictional mechanisms is needed inorder to correctly re-
produce the material’s behavior.

The concrete constitutive behavior can be formulated either at the macro-scale or
at the meso-scale. At the macro scale, the ingredients that characterize concrete’s
heterogeneity are not represented and one considers it as a homogeneous material.
Therefore, in this case, the constitutive models need to have recourse to (visco)-
plasticity coupled with a continuum damage formulation [32,16,43,2,21,34,20,15,
36,14]. This leads to models with a relatively high number ofparameters, which are
difficult to relate to physical mechanisms that occur duringfailure. On the contrary,
a meso-scale level of observation (as proposed in [50]) allows an explicit represen-
tation of some concrete constituents, which enables reducing the number of model
parameters and to describe the interactions between matrixand inclusions. In the lit-
erature one can find several meso-scale models for concrete.They can be divided in
two main computational classes. A first family is represented by lattice models (for
instance [42,4]), where the continuum is replaced by a system of discrete particles
and the mechanical properties of the lattice beams aim to represent the concrete meso-
structure [26,24,23,13]. The second class resorts to the finite-element approach, in
which concrete is usually represented as a biphasic material, made of a mixture of
aggregates embedded in a matrix phase with an interfacial transition zone (ITZ) be-
tween them [38,47,10,29,9,6,44,22].

The aim of this study is to develop a 2D meso-mechanical finite-element model,
which couples together cohesive zone modeling for crack propagation with a con-
tact algorithm to enforce the impenetrability condition inexplicit dynamics. For this
purpose, we extend the mesoscopic approach that we had already adopted in [44,
22], in order to include compressive cracking capability (with the same formulation
proposed in [45]). The main characteristics of this model are a continuous transi-
tion from decohesion to pure frictional sliding (note that the onset of friction starts
in conjunction with the onset of cracking). The debonding iscontrolled by a novel
initially-rigid traction separation law, which enables usto define two separate values
for the dissipated fracture energy in mode I and II. In this paper we will verify if the
approach is able to reproduce the dissymmetric tensile/compressive behavior, strain
rate strengthening and confinement effects.

The paper is composed as follows. Section 2 describes the chosen finite element
framework for representing compressive cracking at the interfaces. In Section 3 the
meso-scale approach with its material parameters is presented. Results are reported in
Section 4 for uniaxial tension and compression. While results on biaxial compressive
loading are listed in Section 5. Finally, concluding remarks are stated in Section 6.
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2 Numerical Approach

The following section summarizes the formulation of the adopted frictional/cohesive
capability. A complete formulation and validation of the method can be found in [45].
The approach has been conceived for simulations in explicitdynamics (second order
explicit version of the popular Newmarkβ-method [31]). This scheme is applied to
the discretized equation of dynamic equilibrium:

Mẍ +Rint = Rext (1)

whereM represents the mass matrix,ẍ the nodal acceleration vector andRext andRint

are the external and internal force vector respectively. The combination of a lumped
mass matrix with the explicit scheme allows to trivially invert the mass matrix solving
explicitly the scheme. Stability is achieved under the condition that the time step is
below a critical value, which is

∆ tcrit = α min
1≤e≤Ne

(

le
c

)

(2)

where c represents the plain strain compression stress wavespeed andle is the size
of the element. The stable time step has to be chosen equal to the smallest value
over all elements (Ne) multiplied by a security coefficientα (typically around 0.1).
All the simulations presented thereafter have been conducted in a 2D plane strain
configuration using mesh composed of 6-noded quadratic triangles.

2.1 Cohesive approach

A well-known method to model the onset of fracture is to have recourse to cohe-
sive zone modeling, which has been introduced by Dugdale [17] and Barenblatt [1]
in the 1960s. This method describes fracture as a separationprocess by relating the
displacement jump, which occurs at the crack tip, with tractions. The debonding is
assumed to be confined in a small region of material called thecohesive zone, where
atomistic separation occurs. Within the computational framework this region (also
called fracture process zone) is represented by interface elements with null thickness.
While damage is concentrated in these elements, we will assume that the surround-
ing bulk material behaves linear elastically. The decohesion process is controlled by
a constitutive relationship called traction separation law (TSL), which is usually re-
lated to a potential. Depending on the response of the cohesive surface prior softening
behavior it is possible to distinguish between two main classes of TSL. The interface
can exhibit an initial elastic behavior, intrinsic approach (e.g. [51]), or is assumed to
be initially rigid, extrinsic approach (e.g. [7]). This second method implies that cohe-
sive elements have to be inserted dynamically, avoiding theartificial compliance of
the uncracked body generated by having recourse to the intrinsic one. One of the most
popular TSL for the extrinsic approach was proposed by Camacho and Ortiz [7] in
2D (and Pandolfi and Ortiz [33] in 3D). There, the cohesive lawis a linear decreasing
function of the effective opening displacement and is derived from a free potential
energy.
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In this work we have used a TSL, previously reported in [45], which allows us to de-
fine two separate values for energy dissipation in mode I and II (Gc,I andGc,II). The
law has been developed starting from the classical model of Camacho and Ortiz but
relaxing the hypothesis of a well-defined energy potential (as previously done in [5]
but for the intrinsic cohesive model of Xu and Needleman [51]). The tractions are
assumed to be a function of an effective scalar displacement, which has the following
form:

δ =

√

β2

κ 2 ∆2
t +∆2

n (3)

where∆n and∆t represent the normal and the tangential separation over thecohesive
surface with unit outward normaln and unit tangential vectort respectively. The
parameterβ accounts for the coupling between normal and tangential displacement,
whereasκ enables us to define the ratio between the dissipated fracture energy in
mode II (Gc,II) and in mode I (Gc,I)

κ =
Gc,II

Gc,I
(4)

In case of crack opening the traction vector is defined as follows:

T =

(

β2

κ
∆t t +∆nn

)

σc

δ

(

1−
δ
δc

)

for δ = δmax (5)

whereσc represents the local material strength andδc denotes the effective rela-
tive displacement beyond which complete decohesion occurs, while δmax stores the
maximal effective opening displacement attained and enables thus to account for the
irreversibility of the law (similarly to [7]). Unloading orreloading occurs ifδ < δmax,
which results in the following tractions:

T =

(

β2

κ
∆t t +∆nn

)

σc

δmax

(

1−
δmax

δc

)

for δ < δmax (6)

2.2 Contact enforcement

Since the failure process of concrete can involve, besides cracking, frictional contact
between the cracked rough surfaces, one has to enforce the impenetrability condition.
For this purpose it is possible to simply avoid contact by adding a penalty term in case
of negative normal opening (∆n < 0 in the TSL). However, because our goal is to be
able to deal with numerous asperities entering into contactand large displacements,
we have preferred to couple the TSL with a contact algorithm.Since our numeri-
cal setup is implemented in an explicit dynamic code, we haveselected an explicit
master-slave contact algorithm called decomposition contact response (DCR) devel-
oped by Cirak and West [11]. This method resorts to the conservation of linear and
angular momentum, while the impenetrability condition is enforced directly on the
displacements, e.g. by projecting the impacting slave nodes on the penetrated mas-
ter surface (Fig. 1). The quantity of motion of the contacting nodes after collision is
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Fig. 1: Penetration removed by projecting back penetratingnode on the master sur-
face

governed by the following equations

pt+i −pt−i = λ ∇ xg(xt+i ) (7)
[

pT M−1p
]t+i

t−i
= 0 (8)

wherep = Mẋ represents the momentum vector of slave and master nodes (x position
vector),g is the gap function,λ a scalar parameter andt−i andt+i refer to the stage
before and after projection within the same time step. According to these equations
the post-impact velocities of the contacting nodes need to be corrected as follows:

ẋ+ = ẋ−− ẋ−n (1+ cres)− ẋ−f ric (9)

wherecres represents the coefficient of restitution, which can range between zero
(completely inelastic contact) and one (perfectly elasticcontact) and the superscripts
+ and− denote quantities before and after projection respectively. For the remainder
of the paper we will keepcres equal to zero.̇x f ric accounts for friction, whilėxn

represents the normal quantity of motion exchanged during impact and is defined by

ẋn =

(

(∇ g)T ẋ
(∇ g)T M−1∇ g

)

M−1∇ g (10)

In order to account for friction the relative motion betweenthe contacting triplets
(two master nodes and one slave node) needs to be corrected according to a simple
Coulomb friction law which accounts for stick/slip. To thisend one needs to compute
the slide components of the velocity, which are given by

ẋslide = M−1(∇ h)T
(

(∇ h)ẋ
(∇ h)M−1(∇ h)T

)

− ẋn (11)

whereh is the separation vector between impacting node and target segment.̇xslide

represents therefore the velocity leading to a tangential relative motion between the
bodies and corresponds to the maximal impulse which can be delivered during fric-
tion (i.e. stick case). Whereas, in case of slip, according to Coulomb’s friction law, the
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correction depends on the coefficient of frictionµ and on the amount of exchanged
motion during impacṫxn.

ẋµ = µ
‖ẋT

n M−1ẋn‖

‖ẋT
slideM

−1ẋslide‖
ẋslide (12)

Thus, the delivered frictional impulse will be equal to the smallest value between the
slip (12) and stick (11) velocity:

ẋ f ric = min
(

ẋslide, ẋµ
)

(13)

2.3 Coupling

∆t

τ

 

 

(a)

τ

σ

(b)

Fig. 2: (a) Shear stress-tangential opening displacement relationship for a growing
crack in mode II and (b) strength failure envelope

The TSL and the contact algorithm are coupled together. I.e.if a crack is growing
under compression we consider the onset of fracture to startin conjunction with the
onset of friction. This is illustrated in Figure 2a, where for a growing crack in Mode II
the shear stress has to exceedβσc +µσn in order to activate the cohesive zone. At the
end of the decohesion process (when∆t reachesκδc/β) a fracture energy correspond-
ing to Gc,II multiplied by the length of the cohesive zone will have been dissipated
and the zone will undergo a continuous transition from debonding to pure frictional
sliding. This approach produces a strength failure envelope for concrete drawn in
Figure 2b. Whenever the inter-element stress between two elements reaches a point
on the dotted line a cohesive element has to be inserted. The parameters (σc, δc, µ , κ
andβ) of the interfacial zone need to be identified according to the chosen material
as reported in Section 3.
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3 Meso-scale model of concrete

Concrete is a heterogeneous brittle material made of various components, which are
present in different proportions. This produces a quasi-brittle material, whose me-
chanical behavior is defined by the wide range of the ingredients in the mixture.
Considering concrete at a meso-scale level of observation allows to describe it as a
biphasic material: aggregates embedded in a mortar paste matrix. In our model only
medium and large aggregates are represented explicitly. Whereas, small aggregates
and other components are assumed to be mixed up with the cement paste establish-
ing the matrix phase. Besides those two components, the interfaces between the two
constituents, called interfacial transition zone (ITZ), are represented by dynamically
inserted elements with the presented cohesive-frictionalcapability.

3.1 Mesh generation and aggregate distribution

The specimen geometry has been obtained using a random generator of irregular
polygons. Inclusions with the smallest diameter ranging from 1.5 mm to 20 mm
have been considered. The distribution has been chosen according to the Fuller and
Thompson density curve [19] with a value for the exponentq equal to 0.7.

A(d) =

(

d
dmax

)q

(14)

Where A(d) represents the percent by weight (cumulated massunder a given diameter
d) anddmax the largest aggregate in the mixture. The obtained cumulated distribution
is depicted in Figure 3a for the generated specimen geometryof Figure 3b.
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Fig. 3: (a) Computed cumulated aggregates size distribution of the concrete meso-
structure (b)
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The specimen is a square with an edge size equal to 100 mm. In order to have a reg-
ular distribution of the phases near the boundaries, the aggregates have been placed
in a larger sample, from which the specimen has been cut out. The resulting ratio
of aggregate area is around 31 %. From this geometry one can obtain meshes with
different element sizes. Since a convergence study on mesh sensitivity has already
been performed in previous work ([44] and [22]), we have set directly the value of
the average element size to 0.5 mm (which gives a mesh with roughly 120000 nodes).

3.2 Material parameters

The meso-mechanical approach requires defining the material properties for every
component. In Table 1 the material properties for the inclusions and matrix paste are
summarized. Those values are generic and suitable for a usual concrete and reflect
the values used (by the authors) in previous work [44].

Table 1: Material properties of the concrete’s components

Material Density –ρ [kg/m3] Young’s modulus – E [GPa] Poisson’s ratio –ν [-]

Aggregate 2700 75 0.2
Cement paste 2200 30 0.2

The values for the three different interfaces are reported in Table 2. These material
properties can be determined experimentally (for instance[39]). For this work we
have chosen values of the cohesive properties (Table 3a) similar to the ones reported
in [22] while the remaining pair (β , κ in Table 3b) had to be identified through a
parametric study as reported in Section 4.

Table 2: Cohesive properties and parameters for the interfaces (selected values forβ
andκ are shown in bold)

Interface Fracture Energy –Gc (J/m2) Tensile Strength –σc [MPa]

Aggregate 60 16
Mortar paste 50 4.7
ITZ 30 2.7

(a)

Interface β κ Friction Coefficient –µ

Aggregate 1 23 1 2 3 4 0.7
Mortar paste 1 23 1 2 3 4 0.7
ITZ 1 2 3 1 2 3 4 0.7

(b)
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4 Uniaxial tensile/compressive loading

In this section we analyze the dynamic tensile and compressive response of the con-
crete model.

4.1 Initial and boundary conditions

The samples are loaded under displacement control with an imposed strain ratėε.
For tension all the nodes of the finite element mesh which are located on the upper
(respectively lower) boundary are forced to move at a constant velocity V0y = V0

(respectivelyV0y = −V0) as illustrated in Fig. 4a):

V0 = ε̇
h
2

(15)

whereh is the height of the studied specimen. To avoid important stress wave propa-
gation and an early fracture near the boundaries [30], all nodes of the finite-element
mesh are prescribed an initial velocity as illustrated in Fig. 4a:

Vy(y) =
2V0

h
y (16)

vyv0-v0

y

x

y

v0

v0

(a)

hpx px

v0

(b)

Fig. 4: Boundary and initial conditions for specimen loadedin (a) tension and (b)
compression

In case of compression (Fig. 4b) nodes located at the upper edge of the finite element
mesh are forced to move at a certain constant velocityV0:

V0 = −ε̇h (17)

Whereas, the lower boundary is supported in y-direction andtherefore the motion of
the nodes belonging to this edge is blocked in the vertical direction. If lateral confine-
ment (px) is applied (Section 5), the sample is first loaded statically with a hydrostatic
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pressure corresponding topx. After this step, the dynamic loading is applied until the
end of the simulation.
To obtain the stress-strain curves presented thereafter, we define the macroscopic
stress (σ) as the boundary reaction forceFy divided by the initial width, and the
macroscopic strain (ε) as the change in height divided by the initial heighth. In case
of compression, the compressive stress and compressive strain are identified with
σc andεc respectively. Moreover, during simulation, a slight material damping has
been adopted in order to compensate the slight increase of internal energy (due to
the enforcement of the impenetrability through projection[?]) and reduce numerical
oscillations.

4.2 Identification of model’s interface parameters throughsimulations

In order to identify the two remaining parameters of the cohesive law, β and κ ,
we have ran some simulations in order to extract them indirectly by comparing the
macroscopic stress-strain behavior with concrete experimental behavior.
Since these two parameters influence mode II cracking, and have therefore little influ-
ence on the peak tensile strength and more generally on the global macroscopic be-
havior of the specimens subjected to uniaxial tension, the fitting has been conducted
by examining the response in unconfined compression for a loading rateε̇ = 1s−1.
The influence ofβ has been investigated first. Its value affects the shear strength of
the interfaces, which changes considerably the compressive peak strength of concrete
as depicted in Fig. 5a. With an increasing value ofβ , one obtains a higher compres-
sive strength. Since with the interface properties of Table3a a tensile strength slightly

β = 1
β = 2
β = 3
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(b)

Fig. 5: (a) Influence of theβ parameter on the compressive stress-strain behavior of
concrete (forκ = 1) and (b) influence ofκ (with β = 3) for ε̇ = 1s−1

lower than 4 MPa is obtained, the authors have decided to set the value ofβ equal to
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three (a lower value compared to the one chosen in [41]). Thisleads to a compressive
strength roughly one order of magnitude higher than the tensile one, which seems a
usual ratio for a conventional concrete.
The stress-strain behavior is also affected byκ , which increases primarily the dissi-
pated fracture energy and therefore modifies mostly the post-peak behavior and shifts
the transition to softening towards higher strain values. This trend is graphically illus-
trated in Fig. 5b. Note that an increasing value ofκ increases also the peak strength,
but not as much as withβ . Therefore, in order to obtain a concrete with softening
starting aroundεc = 0.002, we decided to fix the value ofκ at three. This results in a
concrete with a compressive strength of roughly 46 MPa at a compressive peak strain
around 0.0018. The stress-strain behavior is depicted for tension and compression in
Fig. 6. It is clear that the tension/compression asymmetry is well captured.

 [MPa] 

[%]
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ε

-50

-30

-40

-20

-10

-2.0

0.5

-1.5 -0.5-1.0

Fig. 6: Dissymmmetric tensile/compressive behavior of concrete (̇ε = 1s−1)

4.3 Rate effect

In this subsection we analyze the behavior of concrete subjected to tension and un-
confined compression under different loading rates.

4.3.1 Tensile response

It is well-known that experimental results on dynamic tension tests show a rate sensi-
tivity of the tensile strength [46,18]. In quasi-statics, the macroscopic tensile strength
is mainly governed in our case by the Interfacial TransitionZone strength and tough-
ness (ITZ between the aggregates and the mortar paste) and not by the meso-structure
[35,22]. For low strain rates –̇ε < 1 /s – the dynamic resistance increase is mainly
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due to the presence of water in the material [40] and we have a slight Dynamic In-
crease Factor (DIF) – equal to the ratio of static versus dynamic strengths. For higher
strain rates –̇ε > 1 /s – the usual explanation of a more important DIF is the transition
between single cracking in quasi-statics to diffuse cracksin dynamics.
The results of the strain-stress curves obtained for our numerical simulations in ten-
sion for several strain rates are presented in Fig. 7. As expected, the transition from a
unique crack to diffuse cracking has a strong influence on themacroscopic behavior
of concrete. Increasing the strain rate delays (relatively) the coalescence of the mi-
crocracks, which rises the peak strength. We can notice thatin our case the dynamic
increase factor is equal to almost 2 forε̇ = 100 /s which can be too slight compared to
experimentally reported values (∼ 3 [49]). This implies that we may have to take into
account rate dependency at the material level, for example by linking the cohesive
strengthσc to the rate of deformation of the surrounding material and tothe crack
opening rate, in order to achieve better agreement with experimental results. We may
nonetheless conclude that the dynamic increase factor is mostly due to a ”structural
effect”, with probably a small part due to a viscous behaviorof the matrix paste.

ε = 0.1 s-1

ε = 1 s-1

ε = 10 s-1

ε = 100 s-1

[%]

 [
M

P
a]

 σ 

ε
0

8

2

4

6

0 20.5 1.51

Fig. 7: Influence of strain rate on the tensile stress-straincurves

Fig. 8 shows the final crack patterns for a low and a high strainrate. Forε̇ = 0.1 /s
we have a unique macroscopic crack, while forε̇ = 100 /s we obtain diffuse cracks.
In both cases, microcracks, for the most part, succeed to findpaths around the aggre-
gates.
Fig. 9 depicts the evolution of the dissipated fracture energy as a function of the
macroscopic strain of the specimen for different loading rates. One can remark from
this figure that the dissipated fracture energy strongly depends on the loading rate
even with a rate independent local fracture energy. Nevertheless as for the strength,
the DIF for the dissipated fracture energy (WG) in the specimen is slightly lower than
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(a) (b)

Fig. 8: Influence of strain rate on the crack path in uniaxial tension: (a)̇ε = 0.1s−1,
(b) ε̇ = 100s−1. Displacement has been magnified by a factor of 100.

the experimental one [49]. For more detail on the tensile response of our model, one
can refer to [22].
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Fig. 9: Influence of strain rate on the dissipated energy for tensile loading

4.3.2 compressive response

As for tension, experimental results [3] show a clear rate sensitivity under compres-
sive loading. Commonly, the stress increase can be explained with lateral inertial
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confinement (Poisson’s effect) and a more diffuse micro-cracking beside eventual
material rate hardening mechanisms.

Fig. 10 shows the computed stress-strain curve for different loading rates. The results
display a strain rate hardening with a DIF of about two for a strain rate ofε̇ = 100
s−1. In contrast to our computed tensile DIF, this increase factor is consistent with
experimental results [3]. This results highlights the strong effect of lateral inertial
confinement. Indeed, in our simulations, material we do not consider any rate effect
at the material level.
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Fig. 10: Stress-strain response for different strain ratesunder compressive loading

Fig. 11 shows the crack pattern forε̇ = 1 s−1 and 100s−1. Cracks tend to propagate
within the matrix phase bypassing the inclusions except forfew big aggregates that
have been crossed. One can notice that due to the absence of a horizontal constraint
at the upper and lower boundaries of the specimen, the crack pattern does not show
the formation of a characteristic cone, as mostly observed during simple compres-
sion experiments. Moreover, the cracks are aligned parallel to the loading direction,
conversely to a perpendicular orientation in case of tension as shown in Fig. 8.

The evolution of the dissipated fracture energy (WG) and frictional work (Wµ ) in the
specimen is depicted in Figs. 12a and 12b respectively. Bothfigures show that the
raising number of cracks with increasing strain rate causesa higher dissipation of
energy within the damaged specimen. This mechanism leads toa higher compressive
strength and larger area (thus toughness) under the stress-strain curve. In particular,
the post-peak dissipation of energy seems to be affected more by friction than by
dissipation of fracture energy. Therefore, the gain in strength can be traced back to
an inertial effect alone (as suggested for instance in [12]).
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(a) (b)

Fig. 11: Influence of strain rate on the crack path in compression: (a) ε̇ = 1 s−1, (b) ε̇
= 100s−1. Displacement has been magnified by a factor of 5 (a) and 3 (b).
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Fig. 12: (a) Dissipated fracture energy and (b) dissipated frictional work for different
loading rates

5 Influence of lateral confinement

We now investigate the behavior of concrete subjected to a small lateral confinement
under a strain ratėε = 1s−1. The concrete specimens have been subjected to three
level of transversal confinement pressures (px): 0, 3 and 6 MPa.
Figure 13 shows that the confining stress increases substantially the compressive
strength as well as the longitudinal compressive peak strain. Moreover, one can no-
tice that confining concrete results in a decrease of the slope of the post-peak branch
indicating therewith a moderate rise in the ductility of concrete. From those results
one can compute the gain in concrete strength of the confined specimens. Usually,
in concrete research, the Mohr-Coulomb failure criterion can be assumed to describe
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Fig. 13: Influence of confining pressure on the stress-strainbehavior (̇ε = 1s−1)

the sliding failure in a confined concrete. This can be expressed as follows

σc = fc + k ∗ px (18)

where fc represents the unconfined compressive strength of concreteandk is a con-
stant, which is usually set to four [37,28,8] for triaxial tests. In our case, we obtain
a k somewhat lower with a value of roughly three. A better modeling could perhaps
be obtained by increasing the value of the friction coefficient and the pair (β , κ ).
The comparison between the dissipated energies is illustrated in Figure 14. From
Figure 14a one can remark that an increase in the lateral confinement will delay the
opening of cracks and thereafter the start of the dissipation of fracture energy. This
phenomenon has already been observed with a mesoscale modeling of ceramics [48,
27]. However, the rise in the horizontal pressure ultimately increases the amount of
dissipated fracture energy. This is because cracks are moreprone to open following
a mode II fashion, which is bounded with a larger value of stored fracture energy
than mode I, and also because there is a more diffuse crack network. Fig. 15 shows
this crack network. It also illustrates that applying a confinement pressure forces the
cracks to propagate at a faulting angle of roughly 30◦, whereas their paths were more
vertical for unconstrained compression (Fig. 11a). The increase in the faulting angle
orientation, from axial splitting for unconfined concrete to shear faulting for spec-
imens subjected to lateral confinement, appears to be in agreement with analytical
models (see for instance [25] for rock mechanics).
Since we are using an explicit representation of cracks, it is possible to monitor their
time evolution and to extract relevant information. We havechosen to follow the for-
mation of the longest crack cluster (which is a group of fullybroken interfaces which
are interconnected to each other),Lc,max, as well as the total number of crack clusters
NBc (as was done for ceramics in [48,27]). The first variable has been normalized
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Fig. 14: (a) Dissipated fracture energy forpx = 0, 3 and 6 MPa and (b) frictional work
for px = 0, 3 and 6 MPa (foṙε = 1s−1)
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Fig. 15: Deformed specimens for confinement pressures of (a)3 Mpa and (b) 6 MPa.
Displacement has been magnified by a factor of 5.

with the edge size of the specimen. As already observed, an increase in the level of
confinement produces a delay in the formation of the first cluster. This is noticeable
from both graphs of Fig. 16. Moreover, from the first graph (Fig. 16a) one can see that
the application of a horizontal pressure causes the longestcrack to be shorter and on
the same range ash (unfolded length). On the other hand, the samples show a larger
amount of clusters as depicted in Fig. 16b, which implies that confinement delays the
onset of microcracks coalescence. This can be confirmed by looking at the deformed
mesh configuration. One can see from Fig. 15 that the application of the confinement
pressure seems to cause a finer net of smaller cracks, which exhibit a smaller open-
ing. Finally, by looking at Fig. 16a, it appears that the softening phase can start, for
the three cases considered here, when the longest cluster reaches a length of approxi-
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Fig. 16: (a) Maximal cluster length normalized over specimen sizeh for px = 0, 3
and 6 MPa and (b) number of cracks forpx = 0, 3 and 6 MPa. The length at which
softening starts, represented by circles on graph (a), doesnot depend on the amount
of confinement.

mately 0.2−0.25h (circles on the strain-Lc,max curve indicate the strain immediately
after peak strength has been reached) and thus does not depend on the level of applied
lateral pressure.
One can notice that the simulated behavior shows a quite brittle compressive soften-
ing despite the applied horizontal pressure (in particularat the early stage of soften-
ing). One reason could be traced back to the chosen coupling between friction and
debonding, which produces an increase in the peak strength but leads to an initial
larger negative slope during the softening phase. Other possibilities could reside in
an insufficient dissipation of frictional energy and in the choice of the parametersβ
andκ .

6 Discussion and Conclusions

In this paper we have presented a 2D dynamical meso-mechanical model of concrete
with cohesive/frictional capability for transient dynamics. The meso-scale approach
enables us to represent aggregates and mortar explicitly, thus allowing all material pa-
rameters to be physically identified. Both continuum phasesare considered to behave
elastically while initiation, coalescence and propagation of cracks are modeled by
dynamically inserted interface elements with the proposedcohesive frictional capa-
bility. The debonding process is controlled by a novel extrinsic traction separation law
which accounts for path dependent behavior and therefore enables us to define two
separate values for energy dissipation in mode I and II. The impenetrability condition
is enforced directly by projecting the impacting nodes on the penetrated surface.
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We have used this model to simulate dynamic concrete’s behavior in traction and
compression. From the obtained results we can draw the following conclusions.
Simulations in tension as well as in compression show that the model gives an in-
crease in peak strength and strain at failure with increasing rate of loading although
the interfacial constitutive law is rate independent. Thisrise in strength resides in
a more diffuse micro-cracking and is thereby bounded with a higher dissipation of
fracture energy as well as energy dissipated through friction in case of compressive
cracking. A comparison between our simulation results and experimental literature
indicates that inertial forces alone in case of compressiveloading are sufficient to
explain the increase in strength with increasing loading rate. On the contrary, if the
specimen is subjected to tensile loading, a small strain-rate dependence at the mate-
rial level (material hardening) should be added in order to achieve a better agreement
with experimental results.
Specimens subjected to lateral confinement in compression exhibit an increase in
peak strength with increasing confining pressure. The rise in strength is consistent
with experimental reported values (although somewhat lower). It has been observed
that an increase in the lateral pressure produces delays in the formation of the first
crack cluster and in microcracks coalescence. Dissipationof energy through fracture
and friction is also an increasing function of the applied confinement. The model also
shows the importance of capturing frictional mechanisms, which appear to dissipate
more energy than crack-opening under compressive loading.
It is however important to emphasize that our model needs further improvement to
capture better experiments. In particular, the ductility of the specimen is little affected
by the confining pressure and the post-peak behavior remainsfairly brittle. This could
perhaps be traced back to a yet insufficient increase in the amount of dissipated fric-
tional energy or in part to the chosen coupling between friction and the cohesion.
Also the influence of internal ordering of the meso-structure has not been investi-
gated in this paper. In the future, we plan to use our model as abasis to investigate
shearing resistance (including asperities interlocking)of structural components.
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12. Cotsovos, D.M., Pavlović, M.N.: Numerical investigation of concrete subjected to compressive im-
pact loading. Part 1: A fundamental explanation for the apparent strength gain at high loading rates.
Computers and Structures86, 145–163 (2008)

13. Cusatis, G.: Strain-rate effects on concrete behavior.International Journal of Impact Engineering
38(4), 162–170 (2011)

14. Desmorat, R., Chambart, M., Gatuingt, F., Guilbaud, D.:Delay-active damage versus non-local en-
hancement for anisotropic damage dynamics computations with alternated loading. Engineering Frac-
ture Mechanics77(12), 2294–2315 (2010)

15. Desmorat, R., Gatuingt, F., Ragueneau, F.: NonstandardThermodynamics Framework for Robust
Computations with Induced Anisotropic Damage. International Journal of Damage Mechanics19(1),
53–73 (2010)
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