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The aim of this study is to develop an analytical method for the prediction of vibro-acoustical behavior of
orthotropic ribbed plates with undescribed edges and more particularly its application to piano soundboard. It
relies on a variational approach and motion field is calculated by modal analysis. In this article, we propose
a general view of the method and give first results on a simplified soundboard. Also, we present an analysis of
ribbed plate’s modes as well as vibratory responses at typical frequencies treated in the literature but also responses
at musical excitations and the influence of geometrical complexities.

1 Introduction

For a long time designed in an empirical manner, musical
instruments are now a current subject of research, complex
to study due to perceptive and subjective aspects of the
sound produced. Indeed, many parameters determine their
vibratory behaviour and thus the sound of the instrument
(timbre): among them the material (type of wood used [1])
and the mechanical characteristics of the structure. In
the case of the piano soundboard, this problem has been
studied many times by Suzuki, Conklin, Giordano [2, 3, 4]
and more recently by Berthaut, Ege & Boutillon and
Chaigne [5, 6, 7, 8]. Its broadband behaviour is complex
and problematics related to piano are leaded by musical
questions. Above all, the research of a good trade-off

between ”loudness (radiated power) and sustain (duration)”
in the last-but-one octave (killer octave) or the question of
the timber not enough rich for the treble notes are major
issues for piano designers and makers. In order to answer
these questions, we develop an analytical vibro-acoustical
model based on a variational formulation taking into account
the influence of superstructures (ribs and bridge). This
model enables to quantify the influence of the smallest
variations of geometry on the vibro-acoustical behaviour of
the structure. Unlike finite element modelling, analytical
approach allow parametric studies.

2 Geometrical considerations

The piano soundboard has an essential role in the
working of the instrument. Indeed, strings’ sections are
too small to radiate by themselves. So their vibrations are
transmitted to the soundboard through the bridges which
radiate efficiently the sound.

Figure 1: Soundboard of an upright piano.

Soundboards are constituted by a plate with complex
geometry, traditionally made of spruce, pseudo-periodically
ribbed on a face by several beams in a direction perpendicular
to fibres of wood, and by one or two bridges on the opposite
face in a direction nearly parallel to fibres (in blue in
figure 1). Spruce is also used in the fabrication of ribs

whereas bridges are made of beech or maple.

In this study, we will focus on an upright piano. The
geometry of the soundboard is simplified: the plate is
rectangular, orthotropy is ”special” (principal axes are
parallel to plate’s edges), the ribs have the same length, there
is only one straight bridge in the direction of fibres and the
boundary conditions are simply supported (see figure 2).

Figure 2: Simplified upright piano soundboard used in the
analytical model. (a) : top view. ; (b) : sectional view of the

soundboard and ribs.

Eccentricity of different superstructures is taken into
account. Moreover, thickness of the plate, width and height
of superstructures along the length are constant.

3 Theoretical formulation

The analytical model developed is based on a variational
approach inspired by Laulagnet & Guyader’s works [9, 10].
We have to calculate kinetic and strain energies of the whole
structure.

3.1 Kinetic hypothesis of different substructures

Because the thickness of the board is very small
compared to the other dimensions, we adopted the Love-
Kirchhoff hypothesis linked to thin plates. Pumping effects
and shearing in the two bending planes are ignored.
Under the hypothesis of linear variation of motions in the
thickness (limited development at the order 1), it comes the
following motion field:



u(x, y, z, t) = −z ∂w
∂x

v(x, y, z, t) = −z ∂w
∂y

w(x, y, z, t) = w(x, y, t)

(1)

where u(x, y, z, t) and v(x, y, z, t) are the movements in
directions ~x and ~y and w(x, y, z, t) is the transversal
displacement.



The different superstructures (ribs and bridge) are driven
by bending and torsion. Conditions at the edges are applied
to the plate and not to superstructures, so the plate controls
the motion of those last. Displacements and rotations are
considered as continuous at the interface so we write for a
ribs in the direction~y at the positionx = xr :



ur f t (y, z, t) = −z w,x(xr , y, t)

vr f t (y, z, t) = −z w,y(xr , y, t)

wr f t (x, y, t) = w(xr , y, t) + x w,x(xr , y, t)

(2)

wherex ∈
[
xr −

b
2; xr +

b
2

]
andz ∈

[
h
2; h

2 + H
]

and whereh
and H are respectively thickness of the plate and height of
the ribs considered.

3.2 Hamilton function

From different motions’ fields, we express Hamilton
function of each sub-parts. This function is expressed by the
integral of the difference between kinetic and strain energies
on an arbitrary time interval. So, we write successively the
actions of the plate, the bending and torsion of a rib in the
direction~y at the positionx = xr by :

Hplate =
∫ t1

t0
1
2

∫
S
ρhẇ2 −

(
D1w2

,xx + D3w2
,yy

+D2w,xxw,yy + D4w2
,xy

)
dS dt

(3)

Hribs bending=
∫ t1

t0
1
2

∫
S

[
ρr

(
I f ẇ2

,x + bHẇ2
)

−Er I f w2
,yy

]
δ(x− xr ) dS dt

(4)

Hribs torsion=
∫ t1

t0
1
2

∫
S

[
ρr Igw2

,x

−Gr Igw2
,xy

]
δ(x− xr ) dS dt

(5)

where the rib is considered as punctual in its width justifing
the diracδ(x− xr ).

We note that the rotational energy term is conserved in
the bending function. Because of the small heights of ribs
compared to their widths, torsional inertia doesn’t take into
account warping.
For a structure with an undetermined number of ribs in the
direction~y and a bridge in the direction~x, we express the
entire function by :

Htot = Hplate+

N∑

i=1

Hith ribs + Hbridge (6)

3.3 Decomposition on the basis of simply
supported unribbed plate modes

We decompose now those last equations on the basis of
unribbed plate modes. We choose the simply supported basis
because it’s appropriated to an analytical approach currently
used in the area of vibrations [9, 10]. The transversal
displacement of the plate is written as a linear combination
of unribbed plate modes weighted by modal amplitudes
amn(t):

w(x, y, t) =
M∑

m=1

N∑

n=1

amn(t)φmn(x, y) (7)

whereφmn(x, y) = sin
(

mπ
l x
)

sin
(

nπ
L y
)
.

We note that mode shapes of the simply supported
(unribbed) plate are orthogonal. By using of this solution
in the Hamilton function, we calculate analytically the area
integral.
In that case, the function depends on the couple of variables
(amn(t),ȧmn(t)) and not on the transversal displacement
w(x, y, t) nor on its temporal and space derivativesw,x, w,xx,
w,yy, w,xy et ẇ. So, we note :

Htot =

∫ t1

t0

L(amn(t), ȧmn(t)) dt (8)

where L(amn(t), ȧmn(t)) is called the Lagrangian of the
system.

3.4 Lagrange’s equations

In analytical mechanics every vibrating system is
governed by the principle of less action also named
Hamilton’s principle. In practice, we use the differential
form of Euler-Lagrange to determine the evolution of the
system. Let, the following equations :

δHtotale = 0⇔
∂L

∂apq
−

d
dt
∂L

∂ȧpq
= 0 (9)

expressed for each mode of the unribbed plate and where
p = 1→ M andq = 1→ N.

This minimization combined with the orthogonal
properties of the simply supported plate modes permits to
write a single equation for a particular mode ”pq”.
We finally get a homogeneous problem for which the size is
conditioned by the number of unribbed plate’s modes taken
into account needed for the convergence of the solution. Let:

{
[Mplate

p ] + [Mribs
pn + [Mbridge

pn ]
} {

äp

}

+
{
[Kplate

p ] + [Kribs
pn + [Kbridge

pn ]
} {

ap

}
= 0̄

(10)

wherep = (m,n) andq = (r, s).

In the following results we have increased step by step
the number of unribbed plate’s modes taken into account to
stabilize the high-frequencies eigenfrequencies. This brings
up to order p and q of 60 and 40 respectively.
Unlike matrices related to plate which are diagonal, those
related to ribs and bridge are full and symmetric. So,
superstructures introduce an important coupling of unribbed
plate modes as we will see in the following sections.
The equation 10 becomes (harmonic form):

(
¯̄K − ω2 ¯̄M

)
ā = 0̄ (11)

where ¯̄K and ¯̄M are respectively generalized stiffness and
mass matrices of the whole ribbed plate and ¯a the vector of
modal amplitudesapq.

4 Eigenvalue problem

The first study concerns the analysis of eigenmodes of the
ribbed plate. The research of eigenvalues and eigenvectors

of the ¯̄M
−1 ¯̄K matix leads us to a diagonal matrix of angular

frequencies and to a matrix of eigenvectors whose terms are



the modal amplitudes weighting the unribbed plate’s eigen
modes to re-create ribbed plate’s modes (see equation 7).

In this paper, we consider two cases of study:

• Case 1 : eleven ribs in the direction~y pseudo-
periodically spaced,

• Case 2 : the same ribs in the direction~y and a bridge
in the direction~x (see figure 2).

Dimensions of the board and superstructures are taken
from [6] (cheap upright piano’s soundboard). We note that
ribs’ dimensions become less and less important when we go
towards high keys (from right to left in the figure 2).
For this study the frequency range of interest is [0;5000]
Hz. Let’s consider the number of modes necessary to build a
ribbed plate’s mode. Figure 3 presents the evolution of this
number in function of frequency. For that, we add the highest
apq to approach more than 99% the real response.
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Figure 3: Evolution of the number of unribbed plate’s
modes taking part in the linear combination of ribbed plate’s

modes as a function of frequency.

Works of [5, 6, 7] show through statistical indicators
(modal density) that a ribbed plate, and more particularly
the piano soundboard, is similar to a homogeneous unribbed
structure at frequencies lower of 800/1000Hz. Those modes
appear at the abscissa of figure 3. We note that the number
of homogeneous modes is higher in case 1 (ribbed in one
direction) than case 2 (case 1 with a bridge). Beyond
this frequency, the number of modes taken into account
in the linear combination grows greatly and peaks to 25
for case 1 and 467 for case 2. So, the bridge brings a
very important coupling and modal shapes are particularly
complex. [6, 7] show also that localizations of vibrations
appear when wavelength in the direction parallel to fibers is
around inter-rib spaces. Our calculations show that majority
of localizations takes place in the conditions described bythe
aforementioned authors. Nevertheless, it seems that many
low frequencies modes are a linear combination of unribbed
plate’s modes, presenting moreover some localizations, and
cannot be considered as homogeneous plate’s modes (see
figures 4 and 5).

In case 1 (ribbed in one direction), we see that
differences of ribs’ dimensions (heights and widths) create
an asymmetry. From third mode to 800/1000Hz, the
structure becomes homogeneous with a few localizations as
for example the 6th mode at the frequency of 310 Hz (see
figure 4).

Figure 4: 1st to 6th modes for case 1 (one direction ribbed
plate).

In case 2 (case 1 with a bridge), the soundboard seems to
be separated in two parts. We often find a vibrating area and
a non-vibrating area in each side of the bridge (see figure 5).
In those conditions, only the first mode ”doesn’t see” the
superstructures and corresponds to an unribbed plate’s
mode even if the second is not too far. However, taking
into account the separating effect previously cited, we find
modes like those of an unribbed plate localized on reduced
soundboard delimited by the bridge. The bridge seems to
”spread ” the heights of different ribs along the plate and to
homogenize it in the direction~x for the first modes. We also
find localizations out of conditions described by [6, 7] but
those phenomenon are even less common than in case 1.

Figure 5: 1st to 6th modes for case 2 (ribbed plate with
bridge).

In addition of the possibility of easy and quick parametric
studies, the method that we develop allows to calculate
quickly high-frequency modes. Figure 6 gives one of those
modes which presents interesting vibrating phenomenon:
oblique waves and localized wave’s reflections between ribs.



Figure 6: 288th mode for the case 2 (ribbed plate with
bridge) of frequency of 4190 Hz presenting complex

vibratory phenomenon.

5 Forced response

A second study concerns the response of the system
for a particular excitation. We introduce an external effort
F(xe, ye, t) = Fδ(x − xe)δ(y − ye)ejωet which is harmonic,
punctual (multiplication of diracsδ(x − xe)δ(y − ye)) and
applied to the coordinates (xe, ye). We define the vector of
generalized effort F̄gen and those components are defined by
the following relation :

Fpq = F φpq(xe, ye) (12)

We calculate then the vector of modal amplitudes for a
particular excitation :

ā =
(

¯̄K − ω2
e

¯̄M
)−1

F̄gen (13)

Ege et al. show in [6] that the structural damping
measured on the upright soundboard made of spruce in
playing situation varies between 1% and 3%. We have
chosen to apply a constant coefficient of 2% for all the
frequencies by making complex the stiffness matrix¯̄K.

Mobility at the bridge is a classical measure in musical
acoustic [4, 2, 3, 8] and [7] has shown that it is essentially
dominated by the bridge in the mid- and high-frequency
domain. It’s defined by the ratio between the vibration
velocity and the applied effort at the same application point.
For a harmonic excitation, this mobility is calculated by :

Y(xe, ye, ωe) =
| jω w(xe, ye, ωe|)

F
(14)

In order to validate the pertinence of the model, we
compare our results with those of N. Giordano [4] and more
particularly with an excitation on the bridge and another
far from the bridge between two ribs. Because Giordano
measured impedance (|Z| = 1/|Y|), our results will be
presented in this form too. The geometry of the simulated
plate is adapted to approach the best as possible the
soundboard used during experiences by [4]. Unfortunately,
we don’t have all the information about this board: only
are known dimensions of the soundboard, number and
distance between ribs (measured on drawing of [4]). So, it’s
impossible to compare strictly our results to experimental
data. In spite of those differences and unknowns, our results
confirm those of Giordano as shows figure 7. Calculated
impedances are in the same order of magnitude as those from
literature and follow the tendencies of evolution measured.
At the bridge, the mean value of impedance is comparable

for the both plots. Far from the bridge, impedance calculated
analytically is around three times smaller than those at
the bridge; that corroborates the results of Giordano [4].
As indicated in [6, 7], we also find a sudden decrease of
impedance when wavelengths in the perpendicular direction
of the ribs are comparable to the inter-rib spaces.

Figure 7: Comparison of impedances between the
measurements of N. Giordano [4] and our analytical model.
Top : at the bridge. ; Bottom : far from the bridge between

two ribs.

6 Geometrical complexities of the
soundboard

We want now to introduce geometrical complexities to
evaluate their influences on the vibratory response of the
piano soundboard. We are interested more particularly in
the influence of cut-off corners: diagnoal rigid beams (see
figure 1). In the model, we choose to add two lines of
traction-springs in order to create a blocking along the two
diagonals. A spring brings an extra strain energy and so an
extra action. In that case, springs add a term to the Hamilton
function. Let :

Htot = Hplate+

N∑

i=1

Hith ribs + Hbridge+ Hsprings (15)

Following the same approach that before, we calculate an
extra rigidity matrix due to springs (which introduce new
couplings).
We choose to put 6 springs per wavelength in order to block
correctly the motion of the plate along each beam. For a
frequency of 5000 Hz, it corresponds to a spring every 1 cm.

The influence of those geometrical complexities is
presented in this paper in the case of a typical musical
excitation. For simplicity reasons, the model chosen for
this excitation corresponds to apluckedstring rather than



struck. This model is taken from [11] and has been presented
recently more in details in [13]. Let the following force at
the bridge transmitted to the soundboard:

F̃(ω) = −T
∑

n

2hLc

nπxm(Lc − xm)
cos(knLc)sin(knxm)

1
2
δ(ω−ωn)

(16)
whereT, h, Lc, xm andkn are respectively the tension of the
string, its initial amplitude, the length of vibrating string, the
position where it’s plucked and the wavenumber of the nth

harmonics of the strings.
Finally the velocity field of the soundboard is obtained

by the same method as in the previous parts. We choose
to present here the results in terms of quadratic velocity:
vnote(x, y) =

√∑
n | jωn w(x, y, ωn)|2. The figure 8 shows the

differences between a soundboard with and without cut-off

corners for an excitation at the key A4 (f0 = 440 Hz).
We consider 10 harmonics in the force at the bridge (see
equation 16). Note that the crosses on the following figures
represent the application point of this force. We see that the
vibration field is completely different in both cases. Indeed,
because of their high rigidity, the diagonal beams keep the
vibrations in the central area.

Figure 8: Vibratory response of the soundboard for an
excitation of the key A4 (f0 = 440 Hz).

Top : without cut-off corners. ; Bottom : with cut-off
corners.

7 Conclusion

In this article, we have presented the basis of a new
analytical modelling method for the vibrations of orthotropic
ribbed plates with undescribed edges. Actually, we have
limited here our study to the case of a rectangular plate
with special orthotropy and small geometrical complexities.
Results are encouraging and in good agreement with
published results especially impedances at the bridge and
far from the bridge but also eigenmodes and vibratory
responses at typical frequencies. In order to validate the
presented analytical numerical method, experimental and
finite element modelling comparisons will be done.

Acknowledgments

This work was performed within the framework of the
Labex CeLyA of Universit́e de Lyon, operated by the French
National Research Agency (ANR-10-LABX-0060/ANR-11-
IDEX-0007).

References
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