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Abstract

At the mesoscopic scale concrete can be considered as a mix of coarse aggregates with a mortar
paste matrix. In this paper we investigate numerically the influence of aggregates arrangements
and loading rate on the tensile response of concrete. Each coarse aggregate is assumed to be
circular with six different radiuses following the aggregates size distribution of real gravel. Rate-
independent cohesive elements are used to model failure within the mesostructure. Our results
show that the spatial distribution of heterogeneities does not influence the peak strength, while it
changes the post-peak macroscopic response. This implies that our specimen size is large enough
for strength computation but that larger mesostructures should be considered to obtain fully
reliable toughness predictions. While, the cohesive approach is able to capture the transition from
one macro-crack in quasi-static to multiple micro-cracks in fast dynamics, which increases the
dissipated fracture energy, our results suggest that the full extent of the high-rate strengthening
of concrete observed experimentally for loading rates greater than ε̇ = 1/s cannot be captured
with rate independent constitutive laws.

1 Introduction

Reinforced concrete is one of the main materials used in constructions. Industrial or civil structures
could be subjected to dynamic loads and these loads have to be taken into account in the design pro-
cess. For example, structures that involve public safety have to be designed to resist not only to the
static loading but also to the dynamic loading produced by extreme conditions such as earthquakes,
explosions or accidental collisions. To achieve the design and analyses of these structures, it is im-
portant to investigate the dynamic mechanical response of concrete. Several macroscopic models for
concrete have been developed [1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11] to perform non-linear numerical analysis
of such problems. In these models a rate effect in tension has often been introduced to represent the
experimental data for loading strain rates exceeding 1 /s [12, 13]. Indeed, it is well known that for
loading rates ranging from static (10−4 /s) to intermediate (10−1 — 0 /s), a moderate rate effect in
tensile strength is observed. Beyond a loading strain rate of 1 /s a very steep strength increase occurs.

Figure 1 shows a set of static, Split Hopkinson Bar (SHB) and modified SHB tests. The derived
data on strength and fracture energy of theses tests are summarized in Table 1. These experimental
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Figure 1: Experimental stress-displacement curves for static, SHB and Modified SHB tests (from
[14]).

data show a rate effect on strength, and on the dissipated fracture energy, in the high loading rate
regime. Table 1 also shows that for the higher loading velocity the dynamic increase factor is more
important for the dissipated fracture energy than for the tensile strength. In addition, some authors
have shown experimentally that the deformation capability of concrete under uniaxial tensile loading
increases due to a rate effect [15, 16, 17]. As previously mentioned, it is usual to introduce in numerical
models this dynamic increase factor directly in the macroscopic behaviour as shown in Figure 2. This
has to be done with care as it is not clear how important the dissipation at the structural level is.
Indeed, the increase of the fracture energy with the strain rate may be caused, in the experiments,
by a structural effect (at the concrete sample level) instead of a material one’s [18, 19].
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Figure 2: Uniaxial tension response for different loading rates of a classical visco-damage model (from
[20]).

Multiple cracking and micro-inertia effects in the fracture process zone are thought as the main
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Table 1: Strength, fracture energy and dynamic/static ratio for concrete at different loading rates
(from [14])

Load Rate Tens. Strength Fract. Energy ft(dyn)/ft(stat) Gf(dyn)/Gf(stat)

σ̇ (GPa/s) ft (MPa) Gf (N/m)
Static 10−4 3.3 120 1 1
SHB 39 5.58 120 1.7 1

Mod. SHB 1685 17. 1505 5.2 12.5

factors for the rate dependency of concrete in the high dynamic regime. However, the influence of the
internal microstructure of concrete and the mechanisms that lead to different crack patterns when
varying the loading rate, remain open questions. In order to give some answers to these questions,
concrete has to be considered as a heterogeneous material where the nature of the heterogeneity
depends essentially on the scale of observation. If one takes the scale of sand’s grain, concrete can
be considered as a biphasic material made of aggregates of different sizes randomly distributed in a
mortar matrix. Thus, the failure of a concrete sample in tension is related to processes that take
place at the so-called mesoscale. In order to investigate the role of the meso-structure on the dynamic
tensile response of concrete, one can use a numerical approach. This is achieved in this paper using a
2D finite element mesoscopic description of concrete (aggregates + matrix) with cohesive capability.
This method has proven its efficiency on numerical simulations of fracture of brittle materials [21]
and has been extended to concrete like materials [22].

This paper extends the work conducted by Snozzi et al. [22]. In the first section, we propose
a more realistic description of the aggregates heterogeneities in a concrete. We generate different
meshes based on five meso-structure descriptions of a concrete mix. In section 3, we describe the
numerical tensile tests and investigate the mesh objectivity of the observed response. The effect of
the stiffness of the inclusions (an additional complement to [22]) on the macroscopic tensile response
is also discussed. In sections 4 and 5, the main aspects of this work are described. These are the study
of the influence of the meso-structure on the tensile strain-stress curve and on the dynamic increase
factors for the tensile strength and dissipated fracture energy.

2 Meso-scale model

The concrete constitutive behavior can be formulated either at the macro-scale or at the meso-scale.
At the macro scale, the ingredients that characterize concrete’s heterogeneity are not represented
and one considers it as a homogeneous material. Nevertheless, it is a material whose heterogeneities
(aggregates) can have sizes of the order of tens of millimeters, which influences fracture properties
(the crack path is for instance clearly dependent on these heterogeneities). The approach used in
this paper therefore considers concrete as a bi-phasic material: aggregates in a mortar paste, which is
commonly called a meso-scale approach (as proposed in [23]). It allows an explicit representation of
some concrete components, which enables reducing the number of model parameters, and a description
of the interactions between matrix and inclusions. In the literature one can find several meso-scale
models for concrete. They can be divided in two main computational classes. A first family is
represented by lattice models (for instance [24, 25]), where the continuum is replaced by a system of
discrete particles and the mechanical properties of the lattice beams aim to represent the concrete
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meso-structure [26, 27, 28]. The second class resorts to the finite-element approach, in which concrete
is usually represented as a biphasic material, made of a mixture of aggregates embedded in a matrix
phase with an interfacial transition zone (ITZ) between them [29, 30, 31, 32, 33, 22].

From those works it results that the meso-scale level of material observation is suitable to capture
the main characteristics of the overall mechanical behavior of concrete: micro-cracking, fracture
initiation and propagation, coalescence and localization. Moreover the constitutive equations might
be relaxed when comparing with a macro-scale formulation and thus the number of parameters may
be reduced.

In our model, the aggregates, the mortar and the interfacial transition zone (ITZ) will be repre-
sented as separate phases with different material properties. In order to study the specific effect of
the meso-structure on the dynamic tensile response, no random fields have been introduced on the
properties. A finite element approach with cohesive capability is then used to simulate the cracks
opening and propagation.

2.1 Meso-structure modelisation

The macroscopic response of a heterogeneous material at the mesoscopic scale depends not only on
the properties of the different phases but also on their geometric distribution. The aim of this paper
is to see the influence of the heterogeneities on the mechanical response in tension. We have chosen
constant mechanical properties and focus only on the spatial distribution of the heterogeneities.

Real concrete is based on randomly distributed aggregates in a cement paste matrix. Figure 3a
shows particle size distributions for real sand and gravel used in a real concrete. These were obtained
by a sieving method [34]. The aggregates called sand can be included either in the heterogeneities or
in the cement paste depending on the fineness of the aggregates description in the meso-scale model.
In our description, we chose to describe explicitly only the aggregates with a diameter larger than
4 mm and smaller than 25 mm with six classes to capture roughly the aggregates size distribution
(see Figure 3b). The smallest aggregates are then taken into account in the homogeneous matrix of
mortar. The size of the generated specimens is 100×100 mm2. As in [35], knowing the aggregate
size distribution, the number of perfect circular (in 2D) aggregates of each class can be calculated.
To avoid an artificial increase of the volume matrix due to the boundary effect, the heterogeneities
are placed in a larger sample with a final cut of all parts outside of the concrete specimen. Figure
4 shows five images of the meso-structures obtained using this method with the same aggregate size
distribution of Figure 3b.

A 2D finite element mesh is then generated from the meso-structure images using the PPM2OOF
[36] public domain software created at the National Institute of Standards and Technology (NIST).
This software superimposes a mesh on any image. The simplest meshing algorithm tries to divide each
image pixel into two triangular elements. In our approach, we resort to an adaptive meshing algorithm
available in PPM2OOF. In this case, the mesh that is created represents the user’s compromise
between the number of elements and the homogeneity of each element with respect to its underlying
pixel properties and the production of equilateral triangular elements.

Figure 5 shows a zoom on four different meshes obtained with the same image of the first meso-
structure (Meso 1) of Figure 4. In mesh A, the average size of the elements is 1 mm (20000 elements),
while in the mesh B the size is 0.5 mm (80000 elements) and in mesh C we have 180000 elements
of approximately 0.3 mm. A fourth, very fine mesh (thereafter called D), has also been generated
with 320000 elements (0.25 mm) in order to study the convergence of the numerical results. One can
observe that the definition of the contour of the aggregates and the real surface of paste is better
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Figure 3: Aggregates size distribution according to EN 993-1 [34]: a/ Real sand and gravel, b/
Numerical (mostly gravel)

when the size of the mesh decreases. To illustrate this point, in the proposed zoom, one can see that
the mortar in between two grains can disappear for the coarse meshes while it is well represented with
the finer one.

Notice that this mesh generation is possible since the cohesive element methodology here does not
require an a priori definition of the possible fracture planes [37, 29, 30, 38, 33, 32].

2.2 The cohesive element method

The cohesive element method allows us to model dynamic crack propagation and damage in a brittle
material like concrete. The fracture process is described by the cohesive approach (introduced by
Dugdale [39] and Barenblat [40] in the 1960s) as a separation process occurring at the crack tip in a
small region of material called cohesive zone. This can be introduced into a standard finite element
environment using interface elements with null thickness and with a fracture-based constitutive law.
We assume that the bulk material outside the cohesive zone remains elastic. In our case the crack
path is not known a priori and all lines in the mesh are considered as a potential crack path. During
the simulation, the stress at the interface between two adjacent continuum elements is computed and
compared to the fracture criterion at the end of every time step. The interfacial stress, σ, is calculated
averaging stresses of the adjacent Gauss points of the two continuum elements. If the inter-element
stress exceeds the critical stress value, the nodes located at the inter-element boundary are doubled,
the two elements are topologically disconnected and a cohesive element is inserted (see Figure 6).
After the nodal disconnection, the interfacial stress starts being controlled by the traction separation
law implemented in the cohesive element (Figure 7).

The coupling of the above mentioned fracture criterion together with an initially rigid cohesive
law allows capturing the initiation of new cracks without an a priori definition of the possible cracks.
Nevertheless, the cracks are constrained to propagate following the inter-element boundaries and the
fineness of the mesh can affect it. The law we use is the linear irreversible softening law proposed by
Camacho and Ortiz [38]. The authors hypothesize the existence of a free potential energy Φ, which
depends on one effective scalar displacement which has the following form:
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Figure 4: Different images of the meso-structures generated with the same aggregates size distribution.

δ =
√

∆2
n + β2∆2

s (1)

where
−→
∆ = (∆n,∆s) is the relative displacement vector and the parameter β accounts for the

coupling between normal and tangential displacements. The value of β has to be estimated (e.g. by
correlating experimental results with numerical simulations [41]) but it has been shown by [22] that
the peak strength is only slightly affected by β for a tensile loading. One will keep its value equal to
one in this study.

The differentiation of the free potential energy with respect to the opening displacement leads to
the cohesive tractions law:

−→
t =

∂Φ

∂
−→
∆

=
t

δ
(∆n

−→n + β2∆s
−→s ) (2)

where t represents an effective cohesive traction. This traction in case of crack opening is given by:

t = fct
(

1−
δ

δc

)

for δ = δmax and δ̇ > 0 (3)

Where fct represents the local material strength and δc represents the effective relative displacement
beyond which complete decohesion occurs. Whereas for crack closure or reopening (δ smaller than
δmax) the functional form is assumed to have the form:

t =
δ

δmax

tmax for δ < δmax (4)

where tmax is the value of the effective traction when δ is equal to δmax, in which is stored the
maximal effective opening displacement attained up to the moment. Moreover δmax also accounts
for the irreversibility of the law allowing successive loading, unloading and reloading. The evolution
of the linear decreasing law is graphically shown in Figure 7. Note that the definition of fct and δc
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implicitly establishes the existence of an effective fracture energy Gc, which corresponds to the area
under the curve of Figure 7:

Gc =
1

2
fctδc (5)

Partially damaged cohesive elements have dissipated an energy W < Gc. As the present work
is focused on tensile uniaxial loading, the fracture energy of the different phases of our concrete is
identified to the experimental one for Mode I, i.e. Gc = GI

c .

3 Numerical simulation of direct tensile test in dynamics

3.1 Initial and boundary conditions

The aim of the present study is to analyze the dynamic tensile response of a concrete specimen (2D
plane strain). The specimen is loaded under displacement control with an imposed strain rate ε̇, all
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the nodes of the finite element mesh which are located on the upper (respectively lower) boundary
are forced to move at a constant velocity V0y = V0 (respectively V0y = −V0) with V0x = 0:

V0 = ε̇
h

2
(6)

where h is the height of the studied specimen. To avoid stress wave propagation and an early
fracture near the boundaries, all the nodes of the finite element mesh are prescribed an initial velocity
in accordance to their vertical position y [42] as illustrated in Figure 8:

Vy(y) =
2V0

h
y (7)

h
vyv0-v0

yv0

v0

x

y

Figure 8: Velocity initial condition

No initial transversal velocity is applied on the specimen (Vx = 0). This means that due to Poisson
effect, the stress state is not fully uniaxial (note that this is also the case in real experiments). Indeed,
it is well known that the rate effect in compression is mostly due to a structural confinement and the
main aim of this tension test is to try to understand if we have the same origin for the experimental
tensile rate effect.

The finite element code used for this study is based on a Newmark explicit time integration scheme.
This scheme is conditionally stable so that the time step has to be smaller than a critical value usually
computed as follows (Courant–Friedrichs–Lewy condition):
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∆tcrit =
Ne

min
e=1

(

le
c

)

(8)

where c is the pressure wave speed in the phase of the material of the element e and le is the size
of this element (in 2D the radius of the larger inner circle). The stable time step has to be chosen
equal to the smallest value of the critical time step – over all the elements – multiplied by a security
coefficient α (equal to 0.1 in our simulation). For example, for the meshes shown on Figure 5, one
obtains for the computational time step ∆t = 1.838 10−9 s and 7.882 10−10 s for the meshes A and
D respectively.

To obtain the stress-strain curves, we define the macroscopic stress as the boundary reaction force
Fy divided by the initial width of the specimen and the macroscopic strain as the displacement Uy of
the boundary divided by the initial height h of the specimen.

3.2 Material parameters and mesh objectivity

As shown in section 2 our numerical model is based on three phases: the mortar paste, the aggregates
and an ITZ. For these phases we have to identify the elastic and rupture parameters of equation 5.
In the present work, we used the parameters given in Table 2.

Table 2: Material properties used for the mesh sensitivity study

Aggregate Mortar paste ITZ
Density – ρ (kg/m3) 2700 2200 –
Young’s modulus – E (GPa) 75 25 –
Poisson’s ratio – ν 0.2 0.2 –
Fracture Energy – Gc (J/m2) 60 50 30
Tensile Strength – fct (MPa) 10 4 2.4 1

Cohesive zone length – lz (mm) 41 72 –

The relationship between the cohesive element law and Gc introduces a length scale – called the
cohesive zone length lz – into the material description. Rice and Palmer [43] calculated this length
for linear elastic fracture mechanics in Mode I plane strain crack loading:

lz =
9

32

πEGc

(1− ν2)f 2
ct

(9)

This length has an important influence around the crack tip in numerical simulations. Typically
one assumes that for mesh independency, the cohesive zone length has to be smaller than the specimen
size and should contain at least three to four finite elements. For the material parameters of Table
2, the smallest and more constraining (or penalizing) cohesive zone length is of the order of 40 mm
for the aggregates (see Table 3). It is important to notice that the definition of lz is not clear for the
ITZ. Indeed, in our representation the ITZ is not meshed (null thickness) with the consequence that
the Young modulus is not known in this region. Nevertheless, based on Equation 9 and the Mode I

1Contrary to [22] this value is estimated from Gc of the ITZ with δc equal to the value obtained for the mortar. With
this assumption one obtains a fct smaller in the ITZ than in the mortar, which is commonly accepted for a classical
concrete
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assumption, all the meshes of Figure 5 should give the same results due to an average element size
lower than 1 mm. In a previous work (Gatuingt et al. [44]) with other parameters for the aggregates,
the cohesive zone length was equal to 4mm and we showed that the mesh A was too coarse in this
case.

Table 3: Cohesive length zone obtained with material properties of Table 2

Aggregate Mortar paste ITZ
Cohesive zone length – lz (mm) 40 72 –

This is confirmed in Figure 9 where the macroscopic tensile responses obtained for the different
mesh refinements and two loading rates are shown. One can see on this figure that the differences
between the four meshes are very slight. Only the mesh A gives something slightly different than
the others for ε̇ = 10/s. For this mesh, the element size (≈ 1 mm) is a little bit too coarse to have
a good representation of the cement paste between two close aggregates (see Figure 5). From the
second mesh size (mesh B) the results are converged for all the loading rates applied on the numerical
specimen. This is confirmed with the Figure 10 where the crack path is plotted for all the meshes.
One can see that in this case the crack path is not strongly mesh dependent. Indeed, it is well known
that for a classical concrete (our study) the crack path in tension is mainly governed by the aggregate
debonding caused by the low value of fct for the ITZ. A numerical and an experimental study of the
impact of the ITZ strength on the global strength are given in [45, 46] respectively.
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Figure 9: Influence of the mesh refinement on the stress-strain curves: a/ ε̇ = 0.1/s b/ ε̇ = 10/s

In the rest of the paper we choose for all the meso-structures studied a mesh refinement similar
to the mesh B. This mesh size is small enough for the definition of lz and to describe the smallest
aggregates and large enough to induce an acceptable CPU time for parametric studies.

3.3 Influence of the specimen size

In order to see the influence of the specimen size on our results, we generate a large sample in
which we cut a smaller one in order to have the same aggregate/paste ratio and the same aggregate
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Figure 10: Influence of the mesh refinement on the crack path for two loading rates.

“Large”

“Small”

Figure 11: Large vs small size of the specimen

arrangement (see Figure 11). The large sample has a surface SL = 0.15×0.15 cm2 while for the small
one SS = 0.1× 0.1 cm2. The consequence is that we increase the width of the sample of 50% and the
surface of 225%.

Figure 12 and Figure 13 show the results obtained for two different loading rates (ε̇=1/s and
ε̇=100/s). We can notice that the crack path obtained is very similar for the two sample sizes. This
result is confirmed with the macroscopic stress-strain responses of the specimens. Nevertheless we
can observe that the peak strength is a little bit smaller for the large sample compared to the small
one. This size effect in quasi-brittle materials such as concrete is a well known phenomenon and there
are a number of experimental and theoretical studies (see for example [47, 48, 49]) which confirm its
existence. Moreover in Figure 13, the post-peak response is clearly different for the two sample sizes.
This result is not surprising because the post-peak response is more governed by the fracture energy.
This is confirmed in Figure 14a where the evolution of the dissipated fracture energy (per unity in the
sample depth) is plotted for different strain rates. As expected, for a larger sample we obtain a higher
dissipated energy. If we assume an horizontal single crack, we can divide this energy by the width
of the specimen and plot a normalized dissipated fracture energy (Figure 14b). In this figure we can
see that the assumption of a single crack is not inaccurate for the lower strain rate (ε̇ = 1/s) where
a “single” crack appears (Figure 12). For higher strain rates (ε̇ = 100/s), due to the multiple cracks
this assumption is no longer true and the normalized dissipated fracture energy strongly depends on
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Figure 12: Influence of the specimen size on the fracture path: a/ ε̇ = 1/s b/ ε̇ = 100/s
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Figure 13: Influence of the specimen size on the stress-strain curves: a/ ε̇ = 1/s b/ ε̇ = 10/s

the specimen size. The larger the sample, the bigger is the Dynamic Increase Factor (DIF). In our
case, we obtain a DIF equal to 8 for the smaller sample and equal to 10 for the larger one. We can
conclude that in high loading rate regimes the numerical (and experimental) results are affected by
this structural effect and it is not easy to properly quantify the true fracture energy values (the size
of the sample is important).

To choose the sample we have to used, we can notice that the size of the numerical "small"
specimen is bigger than the experimental one (cylinder with a diameter of 74 mm [14]) in which case
a smaller DIF value should be obtained. We recall that the numerical DIF is 8 for the small sample
whereas the experimental DIF is 12. As the aim of this work is not to study how we can reproduce the
size effect with our model (even if the global trend seems adequate) we decided to keep the smaller
size of the specimen for the subsequent sections.

4 Role of the meso-structure on the dynamic tensile response

The meso-structures used in this part are those presented in Figure 4 with a mesh refinement similar
to the mesh B in order to have a quasi-independence of the chosen mesh on the numerical results.

As previously mentioned, the numerical model does not contain any random field to represent the
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Figure 14: Influence of the specimen size on the dissipated fracture energy: a/ total energy, b/
normalized energy

scattering often observed on the macroscopic response of concrete. This scattering can be important
in experimental tests for the same initial concrete mix but tested on several specimens. The main
differences are then due to the different aggregate arrangements and to the macro-porosity distribu-
tion. In this section, we study only the influence of spatial distribution of aggregates and not the
role of the macro-porosity. This porosity has probably a great influence on the crack initiation and
ultimately on the crack path but in order to clearly separate the influence of aggregates, it will be
omitted in our simulations.

The results of the strain-stress curves obtained for our five numerical concrete specimens in tension
for several strain rates are presented in Figure 15. One can see on this figure that the microstructure
has a slight influence (less than 4 %) on the peak strength value of our concrete. The macroscopic
tensile strength is mainly governed in our case by the ITZ strength and not by the meso-structure.
This can be best explained by examining the failure process in quasi-static for which we can observe
a gradual transition from diffuse micro-cracking to strain localization and finally to a macroscopic
crack. Figure 16 shows this evolution to a unique macroscopic crack for ε̇ = 0.1 /s. In the upper row
of Figure 16, which was obtained at the peak stress just before strain localization, one can remark
that for the five meso-structures, the micro-cracks are diffuse and that their numbers are almost
independent of the aggregates spatial distribution. This explains the slight influence on the peak
strength value observed at the macroscopic scale. Conversely, on the lower row of Figure 16, which is
extracted from the softening part, we notice that the crack path is strongly dependent on the meso-
structure. This is why one obtains a stronger difference (50 %) on the stress value for ε = 3.10−4 at
the end of the loading for ε̇ = 0.1 /s.

Even if the failure process is not really the same for high strain rates (see next section), one
can observe on Figure 15 that the meso-structure affects only the post-peak macroscopic response of
our numerical concrete. It is interesting to notice that the influence of the meso-structure does not
play the same role for all loading rates. For example the meso-structure 2 has the smallest strain at
complete failure of the specimen for ε̇ = 10 /s but this is not the case for the other loading rates.
Therefore, while heterogeneities play in general an important role, no conclusion can be made on how
their influence can be extrapolated from one loading rate to another.

13



0 0,0001 0,0002 0,0003

Meso 1
Meso 2
Meso 3
Meso 4
Meso 5

0

1

2

3

4

S
tr

e
s
s
 (

M
P

a
)

Strain

a/

0 0,0001 0,0002 0,0003

0

1

2

3

4

S
tr

e
s
s
 (

M
P

a
)

Strain

b/

Meso 1
Meso 2
Meso 3
Meso 4
Meso 5

0 0,0002 0,0004 0,0006 0,0008

Meso 1
Meso 2
Meso 3
Meso 4
Meso 5

0

1

2

3

4

S
tr

e
s
s
 (

M
P

a
)

Strain

c/

0 0,0005 0,001 0,0015 0,002

0

1

2

3

4

S
tr

e
s
s
 (

M
P

a
)

Strain

d/

5

Meso 1
Meso 2
Meso 3
Meso 4
Meso 5

Figure 15: Influence of the meso-structure on the stress-strain curves for different strain rates: a/ ε̇
= 0.1 /s, b/ ε̇ = 1 /s, c/ ε̇ = 10 /s, d/ ε̇ = 100 /s

5 Loading rate effect and dissipation

Experimental results on dynamic tension tests show a high rate sensitivity of tensile strength [50, 13].
Figure 17 presents results obtained in literature. If one considers these experimental results as a
material behavior at the macro scale, this leads to models which are difficult to relate to physical
mechanisms that occur during failure.

Nevertheless one can see from Figure 17 that two distinct modes appear with regards to the
increase of the tensile strength with respect to the strain rate. In the first mode – ε̇ < 1 /s – the
dynamic resistance increase is probably due to the presence of water in the material. The free water
in the micro-pores is assumed to exhibit the so-called Stefan-effect causing a strengthening effect in
concrete with increasing loading rate [51]. This Stefan-effect is the phenomenon that occurs when
a viscous liquid is trapped between two plates that are separated quickly, causing a reaction force
on the plates that is proportional to the velocity of separation. Cadoni et al. [52] give a different
explanation for the influence of the moisture content. Their interpretation is based on the principle
of wave propagation in concrete. When a pore is not filled with water, it will locally reflect the
incoming stress wave. The multiple reflections of all pores together can cause a considerable increase
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Figure 16: Influence of the meso-structure on the crack path for different meso-structures at ε̇ = 0.1
/s: upper row at ε = 7.10−5 for ≈ the peak stress (disp. × 2000), lower row at ε = 3.10−4 (disp. ×

100)

in stress. When a stress wave meets a pore that is filled with liquid, the reflected stress is not big
enough to locally provoke the damage of the material. Therefore the wet concrete will exhibit a more
pronounced rate effect than the dry concrete. This interpretation only gives an explanation of the
difference between wet and dry concrete and does not explain the increase in strength between static
and dynamic loading. At a larger scale (the constitutive level), Ozbolt et al. [53] believe that the rate
dependency consists of two parts: a rate dependency related to the formation of the micro-cracks,
and a rate dependency due to the creep of concrete between the micro-cracks. Then, the influence of
inertia forces on the rate effect is not part of the constitutive law, however, this effect is automatically
accounted for in dynamic analysis in which the constitutive law interacts with inertia forces.

Weerheijm and Van Doormaal, 2007
Schuler et al., 2006
Erzar and Forquin, 2010

Strain Rate (/s)

Te
n

si
le

 S
tr

e
n

g
th

 (
M

P
a

)

Figure 17: Experimental rate effect in tension (from [13])

In this work we will attempt to show if micro-inertia effects in the fracture process zone are
sufficient to explain the rate dependency of concrete and the high fracture energy dissipation in a
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high rate regime. That is why the model used for the cohesive traction law of Figure 7 is not rate
dependent. Moreover the concrete moisture content is usually assumed not to be dominant in the
high strain rate regime. Thus, we will not consider it in this study.
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Figure 18: Numerical rate effect in tension for three meso-structures: a/ Meso 1, b/ Meso 3, c/ Meso 5

Figure 18 shows the numerical rate effect in tension obtained for three meso-structures with our
assumptions. One can see on this figure that the computed increase with strain rate is slight concerning
the tensile strength. We obtain here a dynamic increase factor – equal to the ratio of the static versus
the dynamic strengths – of 1.3 for ε̇ = 100 /s while it is equal to approximately 3 in the experiments.
This result shows that the assumption of no rate effect in the cohesive traction law is not realistic.
The micro-inertia effects in the fracture process zone are not sufficient to explain the rate dependency
of concrete in tension even at the highest loading rate velocities. One has to take into account a rate
dependency at the material level, for example by linking the cohesive strength fct to the strain rate.

Figure 19 depicts the evolution of the dissipated fracture energy as function of the macroscopic
strain of the specimen for different loading rates and heterogeneities. One can see on this figure that,
as already observed in Figure 18, the dissipated fracture energy strongly depends on the loading rate
even with a rate independent local fracture energy (see Equation 5 and Figure 7). Here we obtain
a ratio Gf(dyn)/Gf(stat) equal to approximately 8 – depending on the meso-structure – for ε̇=100 /s.
In the experimental data (see Table 1), with a Young’s modulus of the concrete approximately equal
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Figure 19: Influence of the meso-structure on the dissipated fracture energy for different strain rates:
a/ Meso 1, b/ Meso 5

to 40 GPa we obtain a ratio of 12 for ε̇=40 /s (compared to quasi-statics). We note that even if
the dynamic increase factor for the tensile strength is not large enough, it is less the case for the
dissipated fracture energy. Moreover, and as expected, the dissipated fracture energy depends on
the meso-structure (Figure 19a vs Figure 19b) due to the differences observed in Figure 15 on the
post-peak curves.

a/

b/

Figure 20: Influence of the loading rate on the final cracking for the meso-structure Meso 1 (disp. ×

100): a/ ε̇ = 0.1 /s, b/ ε̇ = 100 /s

According to the structural effect hypothesis, the explanation of higher dissipated fracture energy
for high loading rates resides in a more diffuse micro-cracking. In the higher loading rate regime,
the initiation of the micro-cracks are similar to that observed for a slow regime (see Figure 16 upper
row) around the peak stress of the macroscopic strain-stress curve, but multiple cracks appear in the
softening regime. This effect can be seen on Figure 20 where the final aspect of the concrete specimen
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based on the meso-structure Meso 1 are compared for low and high loading rates. This behavior
only explains that the differences between low and high loading rates are not important for the peak
stress but only for the total dissipated fracture energy, which is in contradiction with experimental
observations. Moreover in Figure 20b/ we can notice that, contrary to experimental observations,
we do not have aggregates failure at high rates. The origin of this phenomenon is not clear (several
assumptions could be removed to better understand this, including, spherical shape of the aggregates,
rate independency of the ITZ, choice of the material parameters).

On the contrary, the material view point sustains that the increase of toughness could be an effect
of internal material “hardening”. One can argue that this mechanism should be related to the chosen
modeling scale. i.e. when considering a large modeling scale (macroscale), the toughness parameter
of the cohesive approach could be a function of the loading rate, as the mesh size cannot be small
enough to capture all micro-cracking mechanisms. Whereas, decreasing the scale should entail a
rate independent toughness parameter. This part is not really clear on Figure 21, which shows the
evolution of the total fracture energy dissipated for mesh B and mesh D of the meso-structure called
Meso 1. Indeed, for the mesh D the average size of the elements is 0.25 mm and one observes a small
increase in the dissipated fracture energy in comparison with the mesh B (0.5 mm) with no real effect
on the peak strength. Moreover with the mesh D, the finite element size is close to the average size
of the entrained air bubbles (micro-pores) [54], the larger heterogeneities at this scale. So it could be
pertinent to keep this scale and to incorporate a material rate effect in the cohesive traction law to
represent the Stefan effect [51] at the paste level.
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Figure 21: Influence of the mesh refinement on the dissipated fracture energy for ε̇ = 100 /s

Snozzi et a. [22] have shown that choosing a rate dependent cohesive traction law – where the
cohesive strength is a material constant value, while the critical opening displacement is a function
of the crack opening rate – does not involve a difference in the peak strength values and dissipated
fracture energy in comparison with a rate-independent law. They attribute this to a size effect due
to the physical dimension of the RVE. Indeed, for the concrete phases parameters and for the loading
rates considered in this paper, we observe that the numerical results are more controlled by the
strength parameters (strength controlled regime) than by the toughness.

To improve our simulations and the representativeness of our numerical concrete, the challenge
will be to find a rate dependent cohesive traction law (at least for the fct value) that will not increase
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too much the total dissipated fracture energy and the material ductility . One can for example use
a function closed to the one proposed by Bažant and Li [55]. But an open question remains. Should
one use a rate dependent function for only the ITZ, mortar, or aggregates or for all the parts of
the meso-structure? This point will be difficult to answer without some specific experiments on the
different constituents of a real concrete.

6 Conclusion

In this paper we proposed a meso-scopic model for the analysis of dynamic tensile failure of concrete.
This model is based on a 2D finite element description with cohesive capability of a mix of aggregates
larger than 4 mm in a mortar paste matrix. The distribution of the coarse aggregates is assumed
to follow a realistic aggregates size distribution. Five meso-structures are generated with this distri-
bution. The influence of the heterogeneous meso-structure of concrete and the loading rate on the
tensile response and the dissipated fracture energy are studied. With our specimen size we observe
a small impact of the aggregates arrangement on the tensile strength. This is because for our model
parameters, the size of our specimen is large enough for a strength analysis and thus we can consider
that a “material” response (independent of aggregates arrangement) is properly captured. This is of
course based on the strong assumption of a perfect mix with no macro-porosity. Nevertheless when
the post-peak response and the dissipated fracture energy are considered, we show that the meso-
structure has an influence (as well as the sample size) and then the “homogeneous” regime has not
been obtained. It is important to notice that the definition of homogeneity depends not only on the
material description but also on the phenomenon observed.

The second main interest of the paper is the study of the dynamic loading rate effects on the
tensile strength and on the dissipated fracture energy with our approach. The cohesive law used is
independent of the local or global strain rate to investigate if the experimentally observed dynamic
increase factor is due to a material effect or a structural (inertial) effect. With regards to tensile
strength, the numerical results exhibit a small rate effect that is not coherent with the experiments.
Interestingly, for the dissipated energy the numerical results are close to the experimental ones. This
implies that the tensile strength increase is probably mostly due to a material effect (moisture, visco-
elasticity, . . . ) while the dissipated fracture energy observed in the post-peak part is more due to the
increase of the number of micro-cracks with the loading rate. With adding a small rate dependency
in the cohesive law could permit to have a realistic virtual material to test the influence of other
experimental configurations.
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