
HAL Id: hal-00994104
https://hal.science/hal-00994104v1

Submitted on 26 May 2014

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

A general approach to securely querying XML
Ernesto Damiani, M. Fansi, Alban Gabillon, Stefania Marrara

To cite this version:
Ernesto Damiani, M. Fansi, Alban Gabillon, Stefania Marrara. A general approach to securely query-
ing XML. Computer Standards and Interfaces, 2008, 30 (6), pp.379-389. �10.1016/j.csi.2008.03.006�.
�hal-00994104�

https://hal.science/hal-00994104v1
https://hal.archives-ouvertes.fr

A general approach to securely querying XML

Ernesto Damiani a, Majirus Fansi b, Alban Gabillon b, Stefania Marrara a,⁎

a Università degli Studi di Milano, Dipartimento di Tecnologie dell'Informazione via Bramante 65 26013 Crema (CR), Italy
b Université de Pau et des Pays de l'Adour, IUT des Pays de l'Adour 40 000 Mont-de-Marsan, France

Available online 8 March 2008

Abstract

XML access control requires the enforcement of highly expressive access control policies to support schema-, document and object-specific

protection requirements. Access control models for XML data can be classified in two major categories: node filtering and query rewriting

systems. The first category includes approaches that use access policies to compute secure user views on XML data sets. User queries are then

evaluated on those views. In the second category of approaches, authorization rules are used to transform user queries to be evaluated against the

original XML data set. The pros and cons for these approaches have been widely discussed in the framework of XML access control

standardization activities. The aim of this paper is to describe a model combining the advantages of these approaches and overcoming their

limitations, suitable as the basis of a standard technique for XML access control enforcement. The model specification is given using a Finite State

Automata, ensuring generality w.r.t. specific implementation techniques.

© 2008 Elsevier B.V. All rights reserved.

Keywords: XML; Security enforcement; XPath; XUpdate; DFA

1. Introduction

The eXtensible Markup Language (XML) [2] has become

the format of choice for data interchange. XML-based systems

are now widely deployed in a number of application fields. This

success has triggered a growing interest in XML security, and

several schemes for XML access control have been proposed.

XML access control schemes can be classified in two major

categories: node filtering and query rewriting techniques. The

first category includes a number of approaches (e.g.,

[9,8,19,22]; for a complete survey, see [19]) that use access

policies to compute secure views on XML data sets. User

queries are then evaluated on those views. Although views can

be prepared off-line, in general, view-based enforcement

schemes suffer from high maintenance and storage costs,

especially for a large XML repository.

XML access control via query rewriting ([28,25,27,15,13,4])

has been proposed as a way to remedy these shortcomings.

According to this approach, access control rules are not directly

applied to the XML dataset to be protected; rather, they are used

to translate potentially unsafe user queries into safe ones, to be

evaluated against the original XML dataset. Most current

proposals translate the policy's access control rules (ACR) to

nondeterministic finite automata (NFSA) to rewrite user queries.

However, for policies that include many ACRs, NFSA back-

trackings may cause unacceptable overhead. Another serious

concern is that few of these models provide users with a safe

schema representing the information that they are allowed to

access. Disclosing the original schema may cause unwanted

information leaks. Finally, and perhaps more importantly,

NFSA-based models do not specify the details about how

implementations should deterministically simulate non-deter-

ministic execution and are therefore not entirely suitable for the

specification and standardization of policy enforcement.

On the other hand, a long tradition has been established

of using deterministic automata for standardizing protocols

and systems implementation-related issues. Besides model

checking [26], other important researches and applications

⁎ Corresponding author.

E-mail addresses: damiani@dti.unimi.it (E. Damiani),

janvier-majirus.fansi@etud.univ-pau.fr (M. Fansi), alban.gabillon@univ-pau.fr

(A. Gabillon), marrara@dti.unimi.it (S. Marrara).

have described their standards by means of deterministic au-

tomata. For instance, ASN.1 (Abstract Syntax Notation One) is

a data description language used to define the syntax of com-

munication protocols. It is used widely in both TCP/IP and OSI

standard definitions, and is very similar to BNF (Backus–Naur

Form).

Another important example of using automata in standard

definitions is [34]. This approach deals with the automated

generation of a model from an SDL (Specification and

Description Language) system specification. In this paper, we

describe a Deterministic Finite Automaton (DFA) based query

rewriting approach (Section 2) that overcomes the drawbacks of

the NFA-based enforcement specifications. The main contribu-

tions of this work include:

• A security model based on authorization attributes for XML

(Section 2.1) in which the security designer inserts the

attributes in the XML schema of the document collection via

a GUI. This ensures a policy-dependent view of the XML

schema (or annotated schema).

• A formalization based on deterministic automata which

ensures a high level of generality (i.e., the automaton can be

implemented in different ways) while be detailed enough to

be suitable as a basis for standardizing the enforcement

technique. From this formalization we straightforwardly

derive algorithms for computing the user view of the schema

(Section 2.2) and the rewriting DFA (Section 2.3) from the

annotated schema.

• A way to exploit the standard operators EXCEPT and

UNION of XPath to produce a sound and complete rewriting

procedure (Section 2.4) of the user query. Detailed Examples

(Section 2.7) illustrate the approach.

• A proof that our approach is sound and complete by means

of a formal proof of correctness (Section 2.8). The

complexity analysis (Section 2.9) shows that the entire

procedure is efficient as it is linear with the size (i.e. the

number of element definitions) and the depth of the

repository schema.

• An approach to securely handle the commands of the recent

XUpdate [24] standard. Namely, the authorization designer

annotates the repository schema with some write attributes

(insert, update, delete). The annotated schema is afterward

translated into a Deterministic Finite Automaton (for

updates). Rewriting an XUpdate request into a safe one is

done in two steps:

• Whenever a user sends an XUpdate request over her

view, we first rewrite the expression selecting the

nodes to be updated according to the principles des-

cribed in Section 3. This step is necessary since the user

should not be able to update nodes she is not entitled to

see.

• Then, we rewrite the XUpdate command over the DFA for

updates in order to obtain a safe query (i.e. a query

updating the nodes the user is permitted to update).

Related Work is discussed in Section 4. Finally, Section 5

concludes this paper and discusses future work.

1.1. XML security and current standards

A major milestone in the XML security standardization is

availability of policy enforcement modules for the eXtensible

Access Control Markup Language (XACML). Developed by

the OASIS Consortium, XACML is an XML-based markup

language to encode access control policies. The policy language

is flexible and enables the specification of fine-grained,

machine-readable policies that can be used to control access

to computational resources, including web services and a

variety of digital objects, including XML data streams. A

number of XML repositories such as Fedora [17] introduced

Authorization modules built upon the Sun XACML engine.

Each XACML policy defines:

• a “target” that describes what the policy applies to (by

referring to attributes of users, operations, objects, data-

streams, dates, and more), and

• one or more “rules” to permit or deny access.

Since the beginning of the XACML ([36]) standardization

activity within the OASIS, the XML security community has

focused on two important points regarding objects to be

protected:

• an access control policy has to define clearly the objects

target of the enforcement;

• every object, target of a user's request, has to be compared

with the policy in order to outline which rules have to be

applied;

When the object to be protected consists of XML data, two

different ways of identifying it can be devised:

• use of XPath both to define the target object in the security

policy, and to access the object during a request

• use of schema annotations to define the security require-

ments and of XPath to access the protected data.

The current XPath standard is not the best choice to address

XML objects in a security environment, because it presents

some features (e.g. relative path expressions) whose importance

and necessity when targeting the objects of access control

policies are questionable.1 Here we will consider X Path − −

plus X Pathrel, where X Path − − expressions can be informally

defined as follows:

XPath – – :=ε|l| ⁎ |p1/p2| //p1|p[q] where p1 and p2 are

XPath – – expressions; ε, l, ⁎ denote the empty path, a label

and a wildcard, respectively; / and // stand for child-axis

and descendant-or-self-axis; and finally, q is called a quali-

fier. We rewrite the request in the subset ζ :={ε|l|p1/p2|p[q]}

1 For this reason, our approach hints at breaking the monolithic XPath

standard into a multi-layered modular language, where each layer is a well-

defined sub-language useful for different purposes. This could be achieved by

namespace modularization; however, the details of this decomposition are

however outside the scope of this paper.

of XPath – – using the functions union and except. ζ is

XPath – – without descendant-or-self axis (//) and wildcards

(⁎). Obviously we can define X Pathrel as XPath minus

X Path − −. A standard definition of X Path − − would provide

the XML security community of a common, standard, language

to access XML objects in the definition of XML security

policies and requests management avoiding the problems given

by relative paths. Updating XML data can still be considered a

research issue (e.g. see [3,5,24,32,33]); however at least some

of the building blocks of a data manipulation language for

XML are now firmly in place. XUpdate is an XML-based host

language for instructions tailored for update tasks. In other

words, it expresses updates as well-formed XML documents;

specifically, each update is represented by an xupdate:

modifications element. XUpdate has now over a dozen

implementations; this relative success is due to the fact that it

is easy to understand and simple to implement. XUpdate

operations have a required select attribute. The value of this

attribute is a XPath expression which selects the nodes to

update, referred to as context nodes. Besides updating XML

content, XUpdate operations can create and delete entire XML

fragments. For instance, the XUpdate command bremove

select= ‘//vehicles’N is to remove from a XML document all

fragments whose root is an element named vehicles. XUpdate

syntax allows the following types of elements:

• xupdate:insert-before

• xupdate:insert-after

• xupdate:append

• xupdate:update

• xupdate:remove

• xupdate:rename

• xupdate:variable

• xupdate:value-of

• xupdate:if.

The interested reader can refer to [24] for a complete

description of the XUpdate Language.

2. DFA-based query rewriting

In this section we present our approach for rewriting

potentially unsafe user queries into safe ones. Our technique

is based on Deterministic Finite Automata (DFA). We exploit

the tree nature of the XML schema to derive the DFA, which is

the core of the rewriting procedure. We also outline the proof of

correctness for our procedure.

2.1. Writing the security policy

The security administrator (SA) uses a Graphical User

Interface (GUI) to specify for each user class (role), the part of

information that the users are granted or denied access to.

Indeed, in order to obtain a policy-dependent view of the

schema, the SA annotates the schema using security attributes.

This technique was first used in SMOQE [16].

We define the following security attributes: access, condition

and dirty. Attribute access specifies the rights of the user on the

node. The value of this attribute is either allow or deny.

Attribute condition contains a list of predicates that have to

evaluate to true for access to be granted. Attribute dirty indicates

that some descendants of the current node could be unauthor-

ized. More precisely, a node has a dirty attribute if it has at least

one descendant node with either access=deny or a non empty

condition attribute attached to it. Annotating the original

schema means appending these attributes to element definitions

in the schema. The annotated schema is no longer valid w.r.t. the

standard W3C XML schema recommendation. It is only an

internal representation of the security policy that is never

disclosed to the user.

Throughout the rest of this paper, we will consider a

repository of XML documents valid w.r.t. the schema depicted

in Fig. 1(a) as a working example. In this example, we also

consider user Alice and a policy that allows her access to

element showroom, conditionally grants her access to elements

available and accessory and denies access to sold. Alice is

granted access to all other elements (except the descendants of

Fig. 1. The showroom schema (a) and the corresponding annotated schema (b).

sold of course). The annotated schema is depicted in Fig. 1(b),

where security attributes are written in bold.

The remainder of the rewriting procedure, presented in the

remaining subsections, consists of three steps:

Step 1 The annotated XML schema is transformed according to

the policy that applies to each role. According to her

role, the user is provided with the view of the schema (in

short Sv) she is entitled to see. Then, she can write her

query using information available on Sv. Henceforth,

unless stated otherwise, the term view will refer to the

view of the schema and not to the view of a source

document.

Step 2 The annotated schema is translated into an automaton

which represents the structure of Sv. Each state within Sv

contains some security attributes that will further serve

us while rewriting the user request.

Step 3 The user query is rewritten using the finite state

automaton.

2.2. Deriving the user view of the schema (Step 1)

Deriving the user view from the annotated schema is

straightforward. We start at the root of the annotated schema

tree, and at each element definition, we proceed as follows:

• If the attribute access is allow without any condition then we

keep the node as is in the user view.

• If access is allow and there is an attribute condition set then

we redefine the node as optional by adding the attribute

minOccurs=0. In this way if a query fails because the

condition is not satisfied, then the user making it will not be

able to infer that data have been hidden.

• If access is deny then we discard the sub-tree rooted at the

actual node from the user view.

The view for user Alice is depicted in Fig. 2(a).

2.3. Constructing the automaton (Step 2)

Constructing the rewriting automaton from the annotated

schema is also straightforward. The automaton M derived from

the annotated schema consists of an alphabet Σ, a set of states S,

a transition function T:S×Σ→S, a start state s0∈S, and a set of

accepting states A⊂S. The alphabet Σ consists of the values of

the attributes name of each element definition on the annotated

schema.

Creating the states: We start at the root of the annotated

schema. The state corresponding to the root (element schema) is

s0. We create one state for each element definition which has a

dirty parent. Indeed, all other nodes (those not dirty) and their

subtrees are kept unchanged in the secured view. Hence they do

not need to be processed by the automaton. When we encounter

a denied node, we create a state for that element and skip the

entire sub-tree rooted at that node. Each state s ∈S (s≠ s0) has

attributes which represent the security attributes stated at the

Fig. 2. The user schema view (a) and the rewriting FSA (b).

corresponding element definition. We give to the state at-

tributes the name and the value of their corresponding

security attributes. Each state s∈S (s≠ s0) is a final state

(i.e. A=S\{s0}).

Defining transitions: There exists a transition from a state si
to a state sj if the element definition corresponding to si is the

parent of the element definition corresponding to sj. The

transition is labeled by the attribute name of the element

definition corresponding to sj.

The automaton derived from the annotated schema of Fig. 1(b)

is represented in Fig. 2(b).

2.4. Rewriting the request (Step 3)

We assume that the user writes her request using XPath – –.2

Hereby, we alleviate the rewriting process overhead since there

is no need to backtrack in the automaton. We therefore rewrite

the query in two phases. Firstly, we refine the submitted

expression and then we rewrite the refined expression via the

automaton.

Phase 1: refining the expression. This step consists in

refining the request on the basis of the view the user is permitted

to see. We first transform the user query (over the repository) to

an equivalent one (over the view). Secondly, we execute the

latter on user view (Sv) and from the target node we go back up

to the root node, adding the encountered nodes on the path to

form the refined expression. The goal of this procedure is to

eliminate every // and ⁎within the expression. As an example, if

Alice request is //vehicles/available then the equivalent

expression over the view is //element[@name=“vehicles”]/

complex Type/sequence/element[@name=“avail -able”] and

the refined expression is /showroom/vehicles/available. More

examples are given in Section 2.7.

Phase 2: Rewriting the request via the automaton. The

automaton represents the view the user is permitted to see.

Rewriting the user request consists of:

• Processing the first token3 of the refined expression

• Moving to the next state of the automaton until either the last

token is received, a clean state (i.e., a state that has no

attribute dirty) is met or a denied state is encountered.

2.5. Queries without predicates

Let us now consider queries without predicates, postponing

queries with predicates to the next subsection. After reading the

current token, the automaton uses the attributes of the current

state and behaves as follows:

• Access is deny. It rejects the request.

• Access is allow.

In the latter case, there are two possibilities:

(1) If there is no attribute dirty then the user has the right

to consult the entire sub-tree rooted at that node. The

token is kept as such, the value of the attribute condition

(if any) is attached to the token and the remainder of the

source query is appended to the rewritten query. Note

that the attribute dirty is for optimizing the rewriting

procedure. Indeed, if the access is allow and if there is no

attribute dirty then we do not need to analyze the

remaining tokens one by one. We can directly append the

remainder of the source query to the rewritten query.

(2) If there is the attribute dirty then the token is kept as it is

and if there is an attribute condition, its content is

attached to the token. Then, the analyzer asks for the next

token (if any).

If the last token has been fed into the automaton then we use

operator except to eliminate each unauthorized node under the

target nodes. If q denotes the rewritten expression after the last

token has been fed into the automaton then the final rewritten

expression is q′=q except (e1[e2[… [en), where each ej with

1≤ j≤n is computed as follows:

The automaton consults one after another the states

corresponding to the children of the node represented by the

current state. At each state s corresponding to the token l, we

have the following:

If the attribute access=deny then l is appended to q. The

result q/l becomes one of the ej.

If the attribute access=allow and there is an attribute

condition then the negation of the content C of the attribute

condition is appended to l. The result l[not(C)] is appended to

q. q/l[not(C)] becomes one of the ej. If there is also an attribute

dirty then the procedure goes deeper into the automaton

(i.e. examines the children of the current token l) and starts

computing another ej with q now being equal to q/l[C].

Example Q1 in Section 2.7 illustrates this procedure.

2.6. Queries with predicates

A query with a predicate is a query which contains a boolean

expression. As instance, the expression vehicles[condition]

selects the elements vehicles, children of the current node, that

satisfy the condition (i.e. the condition evaluation returns TRUE).

In order to simplify the query rewriting process, here we

consider only predicates that can be conjunctions or disjunc-

tions of simple expressions p that belong to the set P defined as

follows:

P={p|p=[exp] or p=[exp op val]}, where exp∈{�, l, l1/l2},
op∈{=, ! =, b, ≤, N, ≥} and val is the test value.

Evaluating predicates means to be sure that the user owns the

authorization to see the information stored in the nodes that

appear in the query predicate p.

The query rewriting process is divided into the following steps:

(1) we start saving the predicate expressions appearing in a

query q in a correspondence table={(li, pi)|pi is a

2 In [20] Gottlob, Koch and Picler show that the loss of expressive power of a

fragment like XPath – – w.r.t. XPath is minimal.
3 We call token a step in the path expression, for example showroom

is the first token in /showroom/vehicles/available, while vehicles is the second.

/ stands for a lookahead.

predicate and li is the node on which the predicate is

evaluated, i=[1..n]}.

(2) Then we follows the procedure detailed in the previous

section to rewrite the query q without the removed

predicate expressions. We obtain the rewritten query q′.

(3) Finally we replace the predicate expressions in the

rewritten query q′ obtaining the query q″ and construct

the automaton as detailed in the previous section. In this

case, we stop processing the automaton when a token

with predicate(s) is received. We save the current state

and check whether the user has the right to consult the

nodes that occur within the predicate(s). If she has the

right to, we return to the saved state and continue with the

next token. Otherwise the request is rejected.

As instance, let us consider the query q=//vehicles/available

[model=“Fiat 500”]/accessory[price≤“150”]. Following the

first step of the procedure, we obtain the correspondence table

shown in Fig. 3. After the removal of predicates the query q

is //vehicles/available/accessory, which is rewritten into q′=

/showroom/vehicles/available/accessory.

Then the predicates are inserted again and we obtain q″=

/showroom/vehicles/available[model= “Fiat 500”]/accessory

[price≤ “150”]. Then, on the basis of query q″ we construct

the automaton.

2.7. Rewriting examples

Let us now consider the following two queries posed

by user Alice. Q1://vehicles and Q2://vehicles/⁎ Both que-

ries have to be refined. Q1 is transformed to //element

[@name=“vehicles”] and executed over the view of user

Alice. From the target node to the root, we encounter only

the definition of element showroom. The request is then

refined to Q′1: /showroom/vehicles. Likewise Q2 is transformed

to //element[@name= “vehicles”]/complex Type/sequence/

element. The target nodes are the definitions of elements

available and sold. Traversing the tree up to the root, we

refine Q2 as Q′2: /showroom/vehicles/available union/showroom/

vehicles/sold. Then, we come to the second phase, i.e., rewriting

the refined expression using the automaton. If the refined ex-

pression contains the operator union then we rewrite each com-

ponent of the expression individually and combine the individual

results with union to form the global outcome. Q′1: /showroom/

vehicles is rewritten as follows: At state s0, the automaton re-

ceives showroom and reaches state s1. State s1 indicates via its

attributes that the privilege is allow and some descendants of

showroom are inaccessible (attribute dirty). The output at

this stage is /showroom. Since s1 is dirty, the automaton

reads the next token, that is vehicles, leading to state s2. This

state is allowed but some of its descendants are inaccessible

(attribute dirty). We use the operator except to discard all

unauthorized nodes. The final result is /showroom/vehicles

except (/showroom/vehicles/sold Union /showroom/vehicles/

available[not(C)] Union/showroom/vehicles/available[C]/

accessory [not(C1)]) where C (resp. C1) is the condition ex-

pressed for the element available (resp. accessory) in the an-

notated schema (see Fig. 1(b)).

2.8. Correctness of our query rewriting method

Proof 1. We show that our query rewriting method is correct by

applying the classical the loop invariant [7] technique for proving

correctness.

Let us assume that the system receives a user query

xp∈XPath – –. The first rewriting phase transforms xp to a

refined query q which is a set of expression qi∈ζ joined

together with XPath operator union (i.e. q=q1[q2[… [qn).

Phase 2 rewrites in turn each qi into q′i.

Definition. We say that q′i is correct with regard to qi, if the

result of executing q′i over the repository is exactly the same as

the answer to qi if qi were executed over the XML repository

with access controls correctly enforced.

Let us assume that qi contains ni direct child axis (i.e qi=/l1 /

l2/.../lni). Let us call lj ; j≤ni the current label being processed

by the automaton. Let q′i(j− 1)=/l′1 / l′2 /…/l′j− 1 (note that each l′k
with k≤ j−1 might include a predicate) be the rewritten query

of qi(j − 1)
=/l1 /l2/…/lj− 1.

We define the following loop invariant: q′i(j − 1)
is correct with

regard to qi(j − 1)
.

We show that, this loop invariant holds prior to the first

iteration of the second phase of the rewriting procedure, that

each iteration maintains the invariant and that the invariant also

holds when the procedure terminates.

• Initialization: The loop invariant holds before the first label is

fed into the automaton. In fact, prior to the first iteration the

rewritten query is q′i(0)=ε. This query is obviously correct

with regard to qi(0)=ε.

• Maintenance: We show that each iteration maintains the loop

invariant. Let us assume that the loop invariant is true before

the label lj is received. i.e q′i(j − 1)
=/l′1/l′2/…/l′j− 1 is the rewritten

path of the sub-expression /l1/l2/…/lj− 1 and q′i(j − 1)
is correct

with regard to qi(j − 1)
. Let us assume that the current state of

the automaton is sj− 1. According to the first phase of the

rewriting procedure, there exists a transition from sj− 1 on lj.

Let sj be the state reached by that transition.

Since q′i(j − 1)
is correct regarding qi(j − 1)

, q′i(j − 1)
returns the

same set of nodes R as qi(j − 1)
would do if it were executedFig. 3. Example of correspondence table.

over the XML repository with access controls correctly

enforced.

When the automaton receives lj, it proceeds to the state sj
and consults sj's attributes. If the attribute access is allow then

the token is kept as it is. Content C of the attribute condition (if

any) is then appended to it.

qi(j) would return all the child nodes lj of the nodes belonging

to R for which the user has an authorization. Now, the nodes lj
for which the user does not have an authorization are filtered

out by the predicate C. Therefore, q′i(j) returns the same set of

nodes as qi(j) would do. Hence, q′i(j)= /l′1/l′2/…/l′j− 1/lj[C] is correct

regarding qi(j)= /l1/l2/…/lj. If there is no attribute condition, it

simply means that the user has an authorization for all the

child nodes lj of the nodes belonging to R. In that case we also

have q′i(j)= /l′1/l′2/…/l′j− 1/lj which is correct with regard to qi(j)=

/l1/l2/…/lj.

• Termination: The loop terminates in the following cases:

(1) The loop meets a state where access=allow and there is

no attribute dirty. Let sj be that state (j≤ni). The

(possibly empty) remaining path (i.e /lj + 1/…/lni) is

appended to the already rewritten expression (i.e

2q ViðniÞ
¼ =l V1=l V2=:::=l Vj�1=l Vj =ljþ1:::=lni). As shown in the

maintenance step, q′i(j − 1)
is correct with regard to qi(j − 1)

.

The absence of the attribute dirty means that the

user is allowed to access to the entire sub-trees

rooted at nodes l′j addressed by q′i(j). Thus q ViðniÞ
¼

q Vi j�1ð Þ
=l Vj=ljþ1:::=lni ¼ q Vi returns the same answer as

qiðniÞ ¼ qi j�1ð Þ
=lj=ljþ1:::=lni ¼ qi would do if executed

over the XML repository with access controls correct-

ly enforced. Hence q ViðniÞ
¼ q Vi is correct with regard to

qiðniÞ ¼ qi.

(2) The loop meets a state where access=deny. let sj be that

state (j≤ni). The entire rewritten expression is replaced

by the empty (ε) path.

The fact that access is deny means that the user is

forbidden to access any descendant node of the nodes

addressed by q′i(j − 1)
. Therefore qiðniÞ ¼ =l1=l2=:::=lj=lni

would return the empty set if executed over a repository

with access controls correctly enforced. Hence q Vi ¼
q ViðniÞ

¼ e is correct with regard to qiðniÞ ¼ qi.

(3) The last token is fed into the automaton:

If access=allow and there is the attribute dirty then it

means that some sub-trees of the target nodes cannot be

accessed to and, of course, qiðniÞ executed over the XML

repository with access controls correctly enforced would

not return these sub-trees. Now, for such a case, the re-

writing procedure we have defined in Section 2.4 includes

a supplementary step which is for filtering out these sub-

trees by means of the operator except. Therefore we have

q ViðniÞ
¼ q Vi which is correct with regard to qiðniÞ ¼ qi.

Else, termination meets either case (1) or (2).

By applying this proof for each qi, we show that q′ is correct

with regard to q=q1[q2[… [qn.

2.9. Complexity analysis

The complexity of our approach is determined by that of

steps 1, 2 and 3 of the rewriting procedure. Let us assume that

the repository schema contains n definitions of element

nodes. Deriving the user view of the schema (Section 2.2)

takes at most O(n) time. Constructing the automaton (Section

2.3) also requires at most O(n) time as well. If m is the depth

of the schema, then refining the expression (Section 2.4) takes

O(m) time. Since we rewrite the refined expressions by

simply traversing the deterministic automaton, this phase

takes O(n) time. Hence, the overall time complexity of this

proposal is O(n+m).

3. Updating XML

Talking about XML security, not only the read privilege needs

to be taken into consideration, but also the write privilege plays an

important role. In this setting we refer to the XUpdate working

draft, and we presented our first results in this direction in [11].

In our model, we consider the following write privileges:

DELETE, INSERT, and UPDATE. The semantics of these

privileges can be stated as follows:

• if user s holds the INSERT privilege on node n then user s

has the right to add a new sub-tree to node n.

• if user s holds the UPDATE privilege on node n then user s

has the right to update node n (i.e., change the values of its

immediate children of type text).

• if user s holds the DELETE privilege on node n then user

s has the right to delete the sub-tree of which node n is the

root.

Below, for each XUpdate operation we list the write privilege

that user s should hold.

Creating node operations. There are three XUpdate instruc-

tions for creating XML fragments: insert-before, insert-after and

append.

Insert-before inserts a given fragment as the preceding

sibling of every context node, and insert-after inserts it as the

following sibling of every context node. The operation append

allows a node to be created and appended as a child of every

context node.

• insert-before/insert-after: user s needs the INSERT privilege

on the parent node of every context node.

• Operation append: user s needs the INSERT privilege on

every context node.

Update operations. There are two XUpdate instructions for

updating XML nodes: update and rename. Operation update can

be used to update the content of existing nodes. Operation

rename allows an attribute or element node to be renamed after

its creation.

• update: if context nodes are elements, then user s needs the

UPDATE privilege on the content (text node) of every

context node. If context nodes are attributes, then user s

needs the UPDATE privilege on every context node.

• rename: user s needs the UPDATE privilege on every context

node.

Renaming an attribute or updating its value requires the

UPDATE privilege on the context node. This choice is consistent

with the XPath data model, where an attribute node encapsulates

both the attribute and its value. On the contrary, renaming an

element requires the UPDATE privilege on the context node and

updating its content requires the UPDATE privilege on the

content node itself (i.e., the text child of the context node).

Delete operations. There is one XUpdate instruction for

deleting XML fragments: remove. Operation remove deletes all

sub-trees having a context node as the root. For this operation,

user s needs the DELETE privilege on every context node.

3.1. Securing update operations

Simply considering the write privileges held by a subject is

not sufficient to make XML updates secure. The reason for this

can be best understood by considering an analogy with SQL.

Let us consider user_A who is the owner of an Employee

database table and who has granted to user_B the UPDATE

privilege on it. As a result, user_B is not permitted to see

user_A's Employee table

SQLNSELECT ⁎ FROM user_A.employee;

ERROR ORA-01031: insufficient privilege

but user_B is permitted to update it:

SQLNUPDATE user_A.employee SET salary=salary+100

WHERE salaryN3000; 2 rows updated.

The example above shows that although user_B was not

permitted to see user_A's employee table, she was able to learn,

through an update command, that there were two employees

with a salary greater than 3000. This is due to the fact that the

WHERE clause did perform a read operation on Employee

despite the fact that user B did not hold the SELECT privilege

on that table. In XUpdate operations the select attribute plays

the same role as the WHERE clause in a SQL UPDATE/

DELETE command. Therefore, in order to avoid the inference

problem caused by write operations performing read action, we

rewrite the XPath expression selecting context nodes according

to the principles described in Section 2. Securely controlling an

XUpdate operation is then done in two steps.

(1) The XPath expression selecting the context nodes is

rewritten according to the read privileges held by the user

submitting the XUpdate operation. This step is described

in Section 2. It corresponds to the work presented in [12]

and uses the DFA for queries. However, when rewriting

the XPath expression, we use the answer-as-nodes

technique which stipulates that the XPath expression

should return the target nodes rather than the entire sub-

trees rooted at them. Consequently, we spare the op-

eration except that eliminates forbidden nodes within the

sub-tree rooted at the target node.

(2) The XUpdate operation should succeed for the context

nodes on which user s holds the proper write privilege and

fail for the others. In order to implement this principle, we

rewrite a second time the XPath expression selecting the

context nodes, so that only the nodes on which user s holds

the proper write privilege are selected.

For rewriting the XPath expression according to the write

privileges held by the user, we use the following technique: the

policy author inserts for each user class (role), the authorization

attributes in the XML Schema of the document collection

creating the annotated schema. These attributes include insert,

update and delete. The value of these attributes is either empty

or equal to a list of predicates stating under which conditions the

operation should be performed. A sample annotated schema

is shown in Fig. 4(b). The annotated schema is afterwards

translated into a deterministic finite automaton for updates (see

Fig. 4(a)). The automaton traverses its states according to the

tokens4 of the rewritten expression produced by step 1, until the

last token gets through. Then, the automaton transits to the state

corresponding to the target node of the expression. At this

position, the finite state machine behaves as follows:5

Case 1. The operation is insert-before or insert-after. The au-

tomaton backtracks to the previous state, which is the state cor-

responding to the parent of the context node. Indeed, the user

needs the INSERT privilege on the parent node of every context

node. If the attribute insert is present at that state then its (possibly

empty) value is appended to the XPath expression and returned. If

the attribute insert is not present then the expression is rejected.

Case 2. The operation is rename or update. If the attribute

update is present then its (possibly empty) value is appended to

the XPath expression and returned. If the attribute update is not

present then the expression is rejected.

Case 3. The operation is remove. If the attribute delete is

present then its (possibly empty) value is appended to the XPath

expression and returned. If the attribute delete is not present

then the expression is rejected.

Case 4. The operation is append. If the attribute insert is

present then its (possibly empty) value is appended to the XPath

expression and returned. If the attribute insert is not present then

the expression is rejected.

Let us now consider a remove operation on a node n. When

the user removes node nthen she actually deletes the sub-tree

rooted on node n. Some of the nodes which belong to that sub-

tree may not be visible (i.e. the user may not be permitted to see

4 We call token a step in the path expression, for example showroom

is the first token in /showroom/vehicles/available, while vehicles is the second.

/ stands for a lookahead.
5 Here, for the sake of simplicity, we consider only commands and privileges

addressing element nodes.

them). Shall we reject the operation if some nodes of the deleted

sub-tree do not belong to the user's view? On one hand, this

would preserve the integrity of data the user is not permitted to

see. On the other hand, it would reveal to the user the existence

of data she is not entitled to see. In fact there is no definite

answer to this question. This is typically a case of conflict

between confidentiality and integrity. Here, we prefer to

emphasize the confidentiality, and the command is accepted.

4. Related work

In the last few years, several XML access control models

have been proposed. After the initial proposal appeared in [9],

refinements were described in [10,22,19,31,8,18]) which use

access policies to compute secure views on XML data sets.

These models addressed issues like granularity of access,

access-control inheritance, overriding, and conflict resolution.

All these proposals require provision for view materialization.

Although views can be prepared offline, in general, view-based

enforcement schemes suffer from high maintenance and storage

costs, especially for a large XML repository.

A different approach has been explored in [28], which

performs a static analysis that classifies a XML query to be

either always-granted or always-denied before submitting it to

an XML engine. For partially authorized XML queries, the

solution in [28] relies on expensive run-time security checks to

filter out the data nodes that users do not have authorizations to

access. In [15,23], the problem of unsafe query is solved by

rewriting the input query based on the notion of security view. A

security view is a restricted view of the document's DTD that

exposes the schema structure the user is authorized to use when

writing a XPath query. However, in [15,23] there is no control

of the query portion under the query target nodes, and forbidden

nodes which are descendants of the target ones are disclosed to

the requester. Our approach uses the XPath operator EXCEPT

to filter out those conflicting portions from the input query.

QFilter [25] is an NFA-based query rewriting technique for

XML. Authors in [25] constructs one NFA for each ACR and

for each role. Thus this approach can be very inefficient for

rewriting queries with “//” axis because of the many back-

trackings in the Automaton. This claim is confirmed by the

complexity analysis done in [25] which shows that queries with

“//” and “⁎” dramatically aggravates the access control

overhead. Also when the input query has predicates in it, they

are simply appended to the rewritten query and then can cause

information leaks. Moreover, [4] shows that QFilter is not

correct by deriving from [25] examples of incorrectly rewritten

queries. On the contrary, our proposal uses a DFA-based

technique which decreases the complexity of the rewriting

procedure and always checks whether the user has the right to

consult the nodes that occur within the predicates. We proved its

correctness in Section 2.8.

Authors in [27] argue that restricting access to relationships

is as important as restricting access to nodes. To this aim, [27]

introduced a Security Specification Language for XML (SSX).

The SSX enforcement algorithm produces a security view

schema for each user. XPath queries against security schemata

are then rewritten according to the annotations attached to the

Fig. 4. Automaton for updates (a) and write privilege annotated schema (b).

annotated schema. The main drawback of this solution resides

in the SSX language itself, which is based on schema

manipulation primitives like copy or delete that appear to be

unfit to large-scale access control policy specification. Experi-

ments conducted in [27] show that on average, the approach has

a performance which is quite similar to that of materialized

views.

The approach proposed in [4] includes a two-phase filtering

scheme: the first phase selects access control rules that are related

to the user query. The second phase modifies an unsafe query into

a safe one. This approach is interesting, but relies on underlying

relational DBMS. Also the user is provided with the entire DTD

and then can infer sensitive information. Our proposal overcomes

these shortcomings by carefully computing the user view of the

schema. Our DFA-based system is designed for any XML

database. We propose the same technique for securely handling

XUpdate commands, as described in Section 3.

As far as the DFA-based approach to enforcement specifica-

tion is concerned, we remark that it has been applied to a

number of related fields, including the problem of improving

XML processing efficiency. Improvements to XML processing

efficiency can be largely divided into three classes: schema-

derived parsing, differential parsing, and stack integration. In

particular, schema-derived parsing refers to the technique of

pre-compiling an available schema in some manner so that

documents conforming to the schema are parsed efficiently. The

product of the compilation can be either executable code [6] or

data structures for a generic parser [14] defined via automata. Of

these, the latter is usually preferred in dynamic environments

where new schemas may be required to be recognized. The

paper [14] presents a new XML parsing method based on

deterministic finite state automata (DFA). A DFA generator is

described that automatically translates XML schemas to DFAs

for efficient parsing of XML documents and SOAP/XML

messages. Another important standard that uses automata in its

definition is RAVI [30], a set of specifications proposed as a

standard for the interchange of audio/visual interactive applica-

tions (AVIs). RAVI consists of an interchange format and a set

of functional operators (formulation). Protocols for a RAVI

system are defined to allow communication between distributed

subsystems. Finally, we note that current standards for access

control languages that can be used for protecting XML

information ([36,29,35]) lack a standard technique for enforcing

policies via secure query rewriting. For instance, XACML

allows to write policies in XML stating access authorization to

any type of resources, including XML data. However, XACML

does not mandate any specific enforcement algorithm, but relies

on different specifications of enforcement according to the

protected resource type. Our DFA-based approach is general

enough to provide a standard semantics for the enforcement

of most XACML policies when applied to protect XML

information.

5. Conclusion

We described a Deterministic Finite Automata (DFA) based

approach to rewrite unsafe queries into safe ones, thus avoiding

the many backtrackings inherent to NFAs. We highlighted how

our approach improves w.r.t. previous works in the area. Also,

we prove the correctness of the approach, and show that our

technique is linear with the size and the depth of the repository

schema. Although our rewriting procedure is theoretically

efficient and suggests good performances, experiments remain

work to be done. Moreover, our proposal leaves space for

further work. Other approaches [21,1] enforce client-based

access control to XML. Indeed, in [21] and [1], the document is

encrypted at the server side and decrypted at the client side. The

input of their system is then XML data and the output is also

XML data, while in our approach both the input and output is an

XML query. We are investigating the possibility to diminish the

workload at the server side by transferring the rewriting

procedure at the client side. Finally our DFA-based approach

is general enough to specify the enforcement of most XACML

policies when applied to protect XML data. We plan to develop

this topic in a future paper.

Acknowledgments

This work was supported in part by the Italian Basic

Research Fund (FIRB) within the TEKNE project and by

funding from the French ministry for research under “ACI

Sécurité Informatique 2003–2006. Projet CASC”. Majirus

Fansi holds a Ph.D scholarship granted by the “Conseil Général

des Landes”.

References

[1] L. Bouganim, F.D. Ngoc, P. Pucheral, Client-based access control

management for XML documents, Proc. of the 30th VLDB Conference,

2004.

[2] T. Bray, J. Paoli, C.M. Sperberg-McQueen, eXtensible Markup Language

(XML) 1.0, W3C Recommendation 2nd ed., 2000.

[3] E. Bruno, J.L. Matre, E. Murisasco, Extending XQuery with transforma-

tion operators, Proc. of the 2003 ACM Symposium on Document

Engineering (DocEng 2003), 2003.

[4] C.W. Byun, S. Park, An efficient yet secure XML access control

enforcement by safe and correct query modification, Proc. of the 17th

International Conference on Database and Expert Systems Applications

(DEXA), 2006.

[5] D. Chamberlin, D. Florescu, J. Robie, XQuery update facility, W3C

working draft, May 2006.

[6] K. Chiu, W. Lu, A compiler-based approach to schema-specific XML

parsing, Proceedings of the First International Workshop on High

Performance XML Processing, 2004.

[7] T.H. Cormen, C.E. Leiserson, R.L. Rivest, C. Stein, Introduction to

Algorithms, the MIT Press, 2003.

[8] F. Cuppens, N. Cuppens-Boulahia, T. Sans: Protection of relationships in

XML documents with the XML-BB model. In Proc. of ICISS2005.

[9] E. Damiani, S. De Capitani di Vimercati, S. Paraboschi, P. Samarati:

Securing XML documents. In Proc. of the 2000 International Conference

on Extending Database Technology (EDBT2000).

[10] E. Damiani, S. De Capitani di Vimercati, S. Paraboschi, P. Samarati, A

fine-grained access control system for XML documents, ACM Trans. Inf.

Syst. Secur., vol. 5(2), ACM Press, New York, 2002, pp. 169–202.

[11] E. Damiani, M.J. Fansi, A. Gabillon, S. Marrara, Securely updating XML,

Proceedings of KES 2007, Vietri sul Mare (SA), Italy, September 2007.

[12] E. Damiani, M. Fansi, A. Gabillon, S. Marrara, A general approach to

securely querying XML, Proc. of the 5th International Workshop on

Security in Information Systems (WOSIS 2007), June 2007.

[13] S. De Capitani di Vimercati, S. Marrara, P. Samarati: An access control for

querying XML data. In Proc. of SWS05 workshop.

[14] R. van Engelen: Constructing finite state automata for high performance

web services. Submitted to the International conference on Web Services

2007.

[15] W. Fan, C. Chan, M. Garofalakis: Secure XML querying with security

views. In Proc. of SIGMOD 2004 Conference, 2004.

[16] W. Fan, F. Geerts, X. Jia, A. Kementsietsidis, SMOQE: a system for

providing secure access toXML, Proc. of the 32nd VLDBConference, 2006.

[17] The Fedora Project. http://fedoraproject.org/.

[18] B. Finance, S. Medjdoub, P. Pucheral, The case for access control on XML

relationships, Proc. of CIKM, 2005.

[19] A. Gabillon: A formal access control model for XMl databases. In Proc. of

the 2005 VLDB Workshop on Secure Data Management (SDM), 2005.

[20] G. Gottlob, C. Koch, R. Pichler, The complexity of XPath query

evaluation, Proc. of the 22nd ACM SIGACT SIGMOD SIGART

Symposium on Principles of Database Systems (PODS-02), ACM Press,

San Diego, 2003, pp. 179–190.

[21] N. Kodali, D. Wijesekera: Regulating access to SMIL formatted pay-per-

view movies. In Proc. of the 2002 ACMworkshop on XML security, 2002.

[22] M. Kudo, S. Hada, XML document security based on provisional

authorization, Proc. of ACM CCS, 2000.

[23] G. Kuper, F. Massaci, N. Rassadko, Generalized XML security views,

Proc. of the 10th SACMAT, 2005.

[24] A. Laux, L. Martin, XML update language (XUpdate)xml:db working

draft, http://xmldb-org.sourceforge.net/xupdate, 2000.

[25] B. Luo, D. Lee, W. Lee, P. Liu, QFilter: fine-grained run-time XML access

control via NFA-based query rewriting, Proc. of CIKM, 2004.

[26] P. Mazzoni: Model checking tutorial. Technical Report, Politecnico di Milano,

Italy. http://www.elet.polimi.it/upload/ghezzi/_PRIVATE/DodCheckMazzoni.

pdf.

[27] S. Mohan, A. Sengupta, Y. Wu, J. Klinginsmith, Access Control for XML -

a dynamic query rewriting approach. In Proc. of VLDB 2005 Conference,

2005.

[28] M. Murata, A. Tozawa, M. Kudo, XML access control using static

analysis, Proc. of CCS, 2003.

[29] http://www.nist.gov/.

[30] F. Oguet, C. Schwartz, F. Kretz, M. Quere, RAVI, a proposed standard for

the interchange of audio/visualinteractive applications, Selected Areas in

Communications, IEEE Journal, vol. 8(Issue 3), Apr 1990, pp. 428–436.

[31] A. Stoica, C. Farkas, Secure XML views, Proc. of the 16th IFIP WG11.3

Working Conference on Database and Application Security, 2002.

[32] G.M. Sur, J. Hammer, J. Simeon, Updatex-an XQuery-based language for

processing updates in XML, Proc. of the 2004 International Workshop on

Programming Language Technologies for XML (PLAN-XML), 2004.

[33] I. Tatarinov, Z.G. Yves, A.Y. Halevy, D.S. Weld, Updating XML, Proc. of

ACM SIGMOD, 2001.

[34] B. Vlaovic, A. Vreea, Z. Brezoc, T. Kapusa, Automated generation of

Promela model from SDL specification, Comput. Stand. Interfaces 29 (4)

(May 2007) 449–461.

[35] TheWeb Services Policy Framework. http://www.ibm.com/developerworks/

library/specification/ws-polfram/.

[36] XACML web site. http://xml.coverpages.org/xacml.html.

