Mugurel Ionut ¸andreica
email: mugurel.andreica@cs.pub.ro

Nicolae T ¸ȃpuş
email: nicolae.tapus@cs.pub.ro

Answering nearest neighbor queries is an important problem in many areas, ranging from geographic systems to similarity searching in object data-bases (e.g. image and video databases). In order to answer such queries efficiently, an index data structure is usually constructed over the searched objects. In this paper we present novel top-down and bottomup sequential algorithms for constructing a multidimensional quad-tree index. In all the algorithms the objects may be indexed in association with both quad-tree nodes which they intersect and those which they do not intersect. The common aspect of all the algorithms is that, in order to answer a query, only a single node of the index will need to be searched.

Sequential Algorithms for Constructing an "Out-of-Place" Multidimensional Quad-Tree Index for Answering Exact and Approximate Fixed-Radius Nearest Neighbor Queries

Introduction

The fixed-radius nearest neighbor problem is defined as follows. Given a set of objects in a D-dimensional space, a query point P and a distance R, find the closest object to the point P located at a distance at most equal to R. Usually, the set of objects is fixed and it requires pre-processing in order to answer multiple queries in an efficient manner. This problem has applications in many areas. The most obvious one is in the domain of geographic information systems (GIS). A user may send his coordinates to a GIS and receive back information about the closest object of interest (e.g. address, business, etc.) located at a distance at most R from him/her. Another application is given by similarity search queries. There are many services storing data objects (e.g. images, video clips) which can be described by the values of their features. The set of features forms the feature space. A query point in this space specifies a value for each feature and asks for the object whose features are most similar to those of the query point, but which is not too "far away" from the point.

In this paper we consider a mixed nearest neighbor problem with two distance thresholds: Rmin and Rmax. We are interested in obtaining exact answers up to distance Rmin and approximate answers up to distance Rmax. The rest of 1 this paper is structured as follows. In Section 2 we define the problem statement clearly. In Section 3 we discuss the choice of the index data structure. In Section 4 we introduce the main assumptions, prerequisites and we define the main notations used in the rest of the paper. In Sections 5 and 6 we present sequential versions of the "out-of-place" indexing, "in-place" searching algorithm (the definitions of "in-place" and "out-of-place" are given in Section 4), both using a top-down (Section 5) and a bottom-up (Section 6) approach. In Section 7 we discuss a few object filtering methods. In Section 8 we discuss distributed query processing based on the multidimensional quad-tree index constructed by the presented algorithms. In Section 9 we present the proof for the constant factor approximation of our algorithm in the case of the approximate requirement. In Section 10 we discuss related work and in Section 11 we conclude and discuss future work.

Problem Statement

The problem addressed in this paper is the following. We consider N objects in a D-dimensional space. The objects can be of any type (e.g. points, segments, polyhedra, unions of simpler objects, etc.), where both N and the total amount of data representing the objects are very large. We also consider a distance function over the D-dimensional space (e.g. one of the L p norms (1 ≤ p ≤ +∞)) and two distance thresholds: Rmin and Rmax. We are interested in efficiently answering the following types of queries: Given a point P in the D-dimensional space, return an object O satisfying the following requirements:

1. if the distance between the point P and the nearest object is at most equal to Rmin, then O must be the closest object among all the objects O located at distance at most Rmin from the point P (the exact requirement).

2. if the distance between the point P and the nearest object exceeds Rmin but is at most equal to Rmax, then O should be an approximate nearest object to P (the approximate requirement).

3. if the distance between P and its nearest object exceeds Rmax, then O can be any object, or even no object (the don't care requirement).

The distance between a point P and an object O is defined in the usual way, as the distance between P and the closest point Q to P , such that Q ∈ O. We will assume that a function which computes the distance between a point P and an object O is given. We assume a normal distance function, without additive or multiplicative weights. We also assume that a distance function computing the distance between two geometric objects exists (if the objects intersect, then the distance is 0; otherwise, the distance between them is equal to the minimum distance between a point of the first object and a point of the second object).

Obviously, satisfying the third requirement is trivial (e.g. just select a default object which is returned whenever we do not fit in the first two cases), so we will focus on the first two requirements next.

Choice of the Index Data Structure

The same reasons considered in [START_REF] Andreica | Sequential and MapReduce-based Algorithms for Constructing an In-Place Multidimensional Quad-Tree Index for Answering Fixed-Radius Nearest Neighbor Queries[END_REF] for choosing the index data structure are valid in this case, too. We decided that a (multidimensional) quad-tree is the most appropriate solution, because:

1. the set of potential regions (covered by the nodes of the tree) is decoupled from the set of objects.

2. the regions can be chosen at different "resolutions", thus adapting to the space distribution of the objects.

Our choice of the data structure affects the indexing algorithm to a large degree. However, other data structures can be used instead of the (multidimensional) region quad-tree, as long as they have similar properties.

We considered two possibilities for using the (multidimensional) quad-tree:

1. every object is indexed only in nodes which it intersects; then, at query time, we will have to search multiple tree nodes in order to find the answer (we call this the "in-place" indexing, "out-of-place" searching method) (this possibility was investigated in [START_REF] Andreica | Sequential and MapReduce-based Algorithms for Constructing an In-Place Multidimensional Quad-Tree Index for Answering Fixed-Radius Nearest Neighbor Queries[END_REF]).

2. every object is indexed both in nodes which it intersects, as well as in other (neighboring) nodes; then, at query time, we will only need to search one node containing the query point (we call this the "out-of-place" indexing, "in-place" searching method) (this possibility is described in this paper).

Main Prerequisites, Assumptions and Terms

The same prerequisites, assumptions and notations from [START_REF] Andreica | Sequential and MapReduce-based Algorithms for Constructing an In-Place Multidimensional Quad-Tree Index for Answering Fixed-Radius Nearest Neighbor Queries[END_REF] are used in this paper, too. For completeness, we include most of them in this section. First, we will describe in more detail what a multidimensional quad-tree is. Each node of the tree has a unique identifier and corresponds to a finite hyper-rectangular region of the D-dimensional space, having a pre-specified aspect ratio. To be more precise, let (c 1 , . . . , c D-1) be a set of constant positive values and let (L 1 , . . . , L D) be the side lengths of a hyper-rectangle corresponding to any tree node. Then we must have L i /L D = c i (for 1 ≤ i ≤ D -1). (c 1 , . . . , c D-1) are constant parameters of the tree. The same holds for another constant K ≥ 2, which describes how the regions corresponding to a node's sons are computed. Let's consider the hyper-rectangular region Cell(Q) corresponding to a node Q (with Q being the node's identifier). The node has K D children and their regions are computed as follows: For each dimension i (1 ≤ i ≤ D), divide the side length of Cell(Q) in dimension i into K equal parts, by drawing K -1 equally-spaced hyper-planes. (K -1) • D hyper-planes drawn this way divide the interior of Cell(Q) into K D equal hyper-rectangles, each of them having the same aspect ratio as Cell(Q) (the usual region quad-tree in 2D uses K = 2 and the region of each node is a square). Each of these hyper-rectangles corresponds to a child of Q. Note that we consider Cell(Q) to contain all the points in its interior.

Each node Q of the tree has an associated level Level(Q) (Level(root) = 1, where root is the root node of the tree) and every node Q except the root has a parent, P arent(Q). In theory, the tree can have an infinite number of nodes. Because of this, we will set a threshold M axLevel and we will consider that the nodes at the level M axLevel have no children.

Given the identifier Q of a node, the following functions must be computed efficiently, preferably based only on Q and the constant parameters of the tree (i.e. (c 1 , . . . , c D-1) and K):

• Level(Q): returns the level of the node.

• P arent(Q): returns the identifier of the node's parent.

• Cell(Q): returns the geometric representation of the hyper-rectangle (cell) corresponding to the node Q.

• Children(Q): returns a set consisting of the identifiers of the node's children (if any); nodes at level M axLevel have no children and the result is not defined for Level(Q) > M axLevel.

• N eighbors(Q): returns a set consisting of the identifiers of the nodes Q such that Level(Q) = Level(Q) and Cell(Q) touches Cell(Q) in at least one point.

Based on these functions, we can define the following extra functions:

• Siblings(Q): returns the set of identifiers of all the nodes Q such that P arent(Q) = P arent(Q)

• ExtN eighbors(Q): returns the set consisting of node Q's neighbors and siblings (together called extended neighbors)

• Descendants(Q, dlevel): returns the identifiers of all the descendants of Q located at the level dlevel

• Ancestor(Q, alevel): returns the ancestor of the node Q located at the level alevel

• Ancestors(Q, alevel): returns the set of ancestor of the node Q located at or below the level alevel

The function Ancestors(Q, alevel) can be extended to Ancestors(S, alevel), where S is a set of nodes. In this case, Ancestors(S, alevel) returns the union of the sets Ancestors(Q, alevel) for Q ∈ S.

Using the Z-order (or Morton curve) [START_REF] Kumar | A Study of Spatial Clustering Techniques[END_REF] in order to assign identifiers to the nodes of a multidimensional quad-tree helps us to easily implement all the functions mentioned above. However, other encoding schemes with similar properties are also possible [START_REF] Kumar | A Study of Spatial Clustering Techniques[END_REF].

Another function which we require is:

• Cover(F, clevel): returns the set of all the node identifiers Q such that Level(Q) = clevel and the geometric figure

F intersects Cell(Q).
The Cover(F, clevel) function can be implemented easily for connected figures F . One possible implementation is the following. First, we find a point P ∈ F and compute the identifier Q such that Level(Q) = clevel and P ∈ Cell(Q) (i.e. we find the node at level clevel containing the point P). This can be easily achieved, by computing the position of this node in the level clevel grid of nodes. Then, we will perform a breadth-first search traversal starting from that node. We will visit all the level clevel nodes starting from Q which are intersected by the figure F (once a node is visited, we add it to a queue; when we extract a node from the queue, we visit all of its non-visited neighbors intersected by the figure F). If F is disconnected, we can still use the same algorithm, as long as we know the coordinates of a point P from each connected component.

Note that, since the Distance function does not include additive distance weights, we have the equivalence between:

• object O intersects Cell(Q) and • Distance(O, Cell(Q)) = 0
However, in the algorithms presented in the rest of this paper, we will not necessarily assume the previous equivalence and we will consider that the intersection between an object and a node is computed geometrically.

We will also make use of two other functions, which can be implemented easily:

• Diameter(F) which returns the diameter of the figure F , i.e. the largest distance between any pair of points belonging to F .

• Border(Q): returns a geometric representation of the hyper-rectangle Cell(Q), but without the points in its interior (i.e. containing only the border of Cell(Q)).

Using the functions defined above, we can define a new function: Inf late(F, ilevel, radius) which returns a set of identifiers of all the nodes at level ilevel whose nodes are at distance at most radius from the geometric figure F . We will refer to the set of nodes of the identifiers from this set as a "covering". Actually, we will use a more general function, ExtInf late(F, ilevel, radius, f raction) (Algorithm 1 from [START_REF] Andreica | Sequential and MapReduce-based Algorithms for Constructing an In-Place Multidimensional Quad-Tree Index for Answering Fixed-Radius Nearest Neighbor Queries[END_REF]). Then, we can define Inf late(F, ilevel, radius) = ExtInf late(F, ilevel, radius, 0). The f raction parameter can be used in order to also include in the covering a node Q if it is adjacent to a same-level node Q intersecting the figure F and the distance between the figure F and Cell(Q) does not exceed f raction • Diameter(Cell(Q)) (note that since all the nodes at the same level are identical, we have Diameter(Cell(Q)) = Diameter(Cell(Q)). We will use a constant F rac for the value of the f raction parameter.

The final assumption is that each of the N objects O has a unique identifier id(O). This way, we will differentiate between the whole object O (which contains the object's geometry and, possibly, other information) and its identifier.

All the functions defined in this section will be used in the following sections, both at indexing and at query time.

The index consists of a sub-tree T of the complete multidimensional quadtree. During the indexing process, each leaf Q of T will have assigned a list Lobj(Q) of objects which are indexed in association with Q. At the end of the indexing process, we will compute a list Lid(Q) for each leaf Q, where

Lid(Q) = {id(O)|O ∈ Lobj(Q)}.
During our indexing process, we will also use a parameter M inLevel, meaning that we don't want to have leaves at a smaller level than M inLevel. Because of this, we will define the operation SplitAtLevel(Q, slevel), which replaces a leaf Q ∈ T such that Level(Q) < slevel by its descendants at the level slevel (see Algoritm 2 from [START_REF] Andreica | Sequential and MapReduce-based Algorithms for Constructing an In-Place Multidimensional Quad-Tree Index for Answering Fixed-Radius Nearest Neighbor Queries[END_REF]).

We will denote by Children T (Q) the set of identifiers of the nodes of T which are also children of

Q. Children T (Q) is a subset of Children(Q).
We will associate to each object O a non-negative weight W (O). We provide guidelines as to how this weight should be chosen. The weight should be proportional to:

• the size of the object (i.e. the storage space it takes) and/or

• the duration of computing the distance from a query point to the object For each leaf Q of the tree, we will maintain a value W L(Q) representing the aggregate weight of the objects associated to Q. We will use an aggregation function aggf (e.g. aggf = addition). We will use an indexing weight threshold IW T in order to decide when we need to split a leaf. If the aggregate weight of the objects associated to a leaf Q exceeds IW T and Level(Q) < M axLevel, then we will need to split the leaf.

The time complexities of the algorithms presented in this paper depend both on the maximum depth of the (multidimensional) quad-tree (M axLevel) and on the sizes of the indexed objects (or on the number of cells of the covers and inflated covers of the objects).

5 The Top-Down Method

Constructing the Index -Addressing the Exact Search Requirement

We insert the objects O one at a time, in an arbitrary order. We use the algorithm InsertT opDown (Algorithm 3 from [START_REF] Andreica | Sequential and MapReduce-based Algorithms for Constructing an In-Place Multidimensional Quad-Tree Index for Answering Fixed-Radius Nearest Neighbor Queries[END_REF]); the initial call is InsertT opDown(root, O, Rmin, F rac), where root is the root node of the tree. At the end of the insertion process, the list Lobj(Q) of each leaf Q contains all the objects located at a distance at most equal to Rmin from Cell(Q). However, not necessarily all these objects can be nearest object candidates for the points of Cell(Q). Thus, we propose a filtering process, in order to reduce the sizes of the lists Lobj(*).

Let's consider that we have a function F ilter(Q, L) which takes as input a node id of a leaf in T and a list of objects L and returns a list L obtained by removing from L (all or some of) the objects which are not nearest neighbors to any part of Cell(Q). We discuss the implementation of the F ilter function in a separate section.

During the filtering phase we will use a second threshold F W T for the aggregate weight of the objects associated to any leaf Q and a second value for the maximum allowed level of a leaf: F M axLevel (with F M axLevel ≥ M axLevel). Unlike the insertion procedure, this part of the indexing process does not need to be implemented sequentially. Thus, we will describe the algorithm using the Replicated Workers paradigm. We will use a pool of tasks T askP ool; a task is specified by the identifier Q of a leaf on which we need to perform the filtering process. Initially, we insert all the leaf identifiers into T askP ool. We will also maintain a counter N umW aiting, describing the number of workers waiting for extracting a task from T askP ool. Let N umW orkers be the total number of workers. Algorithm 1 describes the steps taken by each worker. The read/write accesses to T askP ool and N umW aiting are synchronized by a condition variable Cond.

if Q = F IN ISH T ASK then return end if Lobj(Q) = F ilter(Q, Lobj(Q)) W L(Q) = 0 for O ∈ Lobj(Q) do W L(Q) ← aggf (W L(Q), W (O)) end for if (W L(Q) > F W T) and (Level(Q) < F M axLevel) then Cond.lock() for Q ∈ Children(Q) do Lobj(Q) = Lobj(Q) T askP

Constructing the Index -Addressing the Approximate Search Requirement

The set of leaf nodes of T obtained so far corresponds to dense nodes, i.e. parts of the space which intersect some object or are close to an object. However, they do not cover the whole space (in particular, there are zones whose distance to the closest object is at most Rmax which may not be covered by any dense node). In order to address the approximate search requirement, we will fill in the gaps by adding a set of non-dense nodes as leaves of T . First, we will construct the set N DN of non-dense nodes, by usng Algorithm 2. We need to run the algorithm (ComputeN onDenseN odesT opDown(root)), considering that, initially, N DN = {} and is a global variable.

Algorithm 2 ComputeN onDenseN odesT opDown(Q) if Q is a leaf in T then return else for Q ∈ (Children(Q) \ Children T (Q)) do N DN ← N DN ∪ {Q} end for for Q ∈ Children T (Q) do ComputeN onDenseN odesT opDown(Q) end for end if
The set N DN contains non-dense nodes which, together with the dense nodes, disjointly cover the whole space (the non-dense nodes "filled the gaps" left by the dense nodes). All that is left to do is associate some objects to the non-dense nodes. Unfortunately, we were unable to achieve a constant factor approximation in a top-down manner. Because of this, we will provide a bottom-up algorithm. Initially, Lobj(QN DN) = {} and Lid(QN DN) = {} for every non-dense node QN DN . The algorithm 3 is called once for every node Q corresponding to a dense node (i.e. for every leaf Q of T ; note that the nondense nodes were not added as leaves in T , yet). The second input parameter of the algorithm must be Rmax. The algorithm is based on the following property: each non-dense node is the neighbor of an ancestor of a dense node. Note that we compute the lists Lid directly for the non-dense nodes. Also note that the total number of object ids in the lists Lid(*) of the non-dense nodes is bounded by O(|Leaves T | • F M axLevel). In Algorithm 3 we had to go all the way up to level 1, because non-dense nodes can be located at any level lev ≤ F M axLevel (not just at levels lev for which M inLevel ≤ lev ≤ F M axLevel). In order to use only nodes between the levels M inLevel and F M axLevel, at the end of the indexing process, we will call the function SplitAtLevel(Q, M inLevel) for each non-dense node Q with Level(Q) < M inLevel (see Algoritm 2 from [START_REF] Andreica | Sequential and MapReduce-based Algorithms for Constructing an In-Place Multidimensional Quad-Tree Index for Answering Fixed-Radius Nearest Neighbor Queries[END_REF]).

In Section 9 we present a full proof regarding why the simple algorithm described above provides a constant factor approximation when the query point is located in one of the non-dense nodes.

Here we will continue by improving the algorithms presented so far for nondense nodes. The problem with the algorithm above is that although we have an upper bound on the total number of object ids in the lists Lid(*) of the nondense nodes, there is no upper bound on the cardinality of every individual list. The improvement described next will provide a somewhat better theoretical upper bound, but a much better practical upper bound. Let's consider the nodes Q and AN in Algorithm 3. Let QAN (Q, AN) be the lowest ancestor of Q which has some extended neighbor EN such that AN is an ancestor of EN . A less formal explanation is that QAN (Q, AN) is the lowest ancestor of Q which is an extended neighbor of some part of AN . The reason for computing this is that given a fixed node AN , all the objects O from dense nodes Q with the same value of QAN (Q, AN) are "close" to each other and any such object can be selected as a representative (discarding the others). Moreover, if we have two nodes Q 1 and Q 2 such that QAN (Q 1 , AN) is an ancestor of QAN (Q 2 , AN), then Q 1 can be ignored, as any object whose id belongs to Lid(Q 2) is at most a constant number of times further away from any point of AN than any object with an id from Lid(Q 1). The Algorithm 4 presents the first step of this optimization, in which for every non-dense node AN we compute a list Ltuple(AN) of tuples (node, ancestor node, id(O)). In the algorithm we will maintain a set U sedQAN (QN D) for every non-dense node QN D (initially, each of these sets is empty). We need to run the algorithm for every dense node Q.

The second part of this optimization is presented in Algorithm 5. We need to run the algorithm for each non-dense node AN ∈ N DN .

The proof that this optimization still preserves the constant factor approximation is given in Section 9. Note that in the algorithms above, a non-dense node "received" objects only from dense nodes located at the same level or larger levels (i.e. lower in the tree). If required, we may also add objects from dense nodes at smaller levels (although this is not strictly needed for achieving a constant factor approximation). Algorithm 6 shows how this can be implemented (it must be called for each non-dense node Q).

As an observation, we could have computed the list of objects Lobj(Q) for every non-dense node Q (and then, based, on Lobj(Q), we would be able to compute Lid(Q)). This would have allowed us to filter useless objects from the list in the end (before computing Lid(Q)) and keep only some of the objects from the list. However, it is more time-efficient to compute Lid(*) directly (and, thus, we will not perform any extra filtering, as in the case of the dense nodes).

Answering a Query

For the query part we use the algorithm 7. We will call T opDownQuery(root, P) in order to obtain the list of candidate object ids. The closest object to the query point P whose identifier belongs to the set of candidate object ids is returned. ComputeObjectsF orN onDenseN odes F romLargerDenseN odes(Q, Rmax) SA = Ancestors({Q}, 1)

for A ∈ SA do for AN ∈ (ExtN eighbors(A) ∩ Leaves T) do if Distance(Cell(Q), Cell(AN)) ≤ Rmax then Let O be the closest object to Cell(Q) from Lobj(AN) Lid(Q) ← Lid(Q) ∪ {id(O)} end if end for end for Algorithm 7 T opDownQuery(Q, P) if Q is a leaf then return Lid(Q) else result = {} for Q ∈ Children T (Q) do if P is located inside Cell(Q) then result ← result ∪ T opDownQuery(Q , P) end if end for return result end if
6 The Bottom-Up Method

Constructing the Index -Addressing the Exact Search Requirement

Let's consider a fraction F rac. For each object O we first compute the set SC = ExtInf late(O, M axLevel, Rmin, F rac). Then, for each node Q ∈ Ancestors(SC, M inLevel) which is also a leaf in T , we call AddObjectT oLeaf (Q, O, Rmin, F rac) (Algorithm 4 from [START_REF] Andreica | Sequential and MapReduce-based Algorithms for Constructing an In-Place Multidimensional Quad-Tree Index for Answering Fixed-Radius Nearest Neighbor Queries[END_REF]). At the end, we use Algorithm 1 in order to filter the objects associated to every tree leaf and, possibly, split the leaves up to the level F M axLevel (where F M axLevel ≥ M axLevel).

Constructing the Index -Addressing the Approximate Search Requirement

The top-down method described previously actually makes use of many bottomup functions, which will not be described here anymore. The only function which still needs to be defined in a bottom-up manner is the computation of the set of non-dense nodes. We will assume that the set N DN of non-dense nodes is initially empty. Then, we call ComputeN onDenseN odesBottomU p for every dense node Q (see Algorithm 8). After this step, we need to remove from N DN all the nodes whose parent also belongs to N DN . The simplest way of achieving this is to construct the

Answering a Query

We will compute the set SC = Ancestors(Cover(P, F M axLevel), M inLevel), consisting of the node Q containing the point P such that Level(Q) = F M axLevel, plus all of its ancestors up to the level M inLevel. Only at most one of the nodes from this set is a leaf in T : let this node be QL. Then, we consider all the objects O for which id(O) ∈ Lid(QL) as candidate answers for the query. The closest candidate object to the query point P is returned.

Object Filtering Methods

The function F ilter(Q, Lobjects) returns a subset of objects O from Lobjects, such that those objects are nearest neighbors to at least one point of Cell(Q). We propose two types of filtering:

• a coarse-grained filtering, based on subdividing (the borders of) Cell(Q) and computing distances from the objects to the subdivisions.

• a fine-grained filtering, based on computing a (restricted) Voronoi diagram of the objects.

Filtering based on Distances to Nodes' Cells and their Borders

We can subdivide Cell(Q) by using a D-dimensional grid (e.g. by dividing its side in dimension i in s i equal parts by drawing s i -1 equally spaced hyperplanes perpendicular on the dimension i). Then, for each part P of the s 1 •. . .•s D grid, we compute the following values:

• Dmin(P) = min{Distance(O, P)|O ∈ Lobjects}

• Dmax(P) = Dmin(P) + Diameter(P)

Since each part P is a hyper-rectangle, the same function which computes the diameter of a node can be used for computing the diameter of P . The result list will contain only those objects O ∈ Lobjects for which Distance(O, P) ≤ Dmax(P) for at least one subdivided part P .

If the distance function returns 0 if an object intersects Cell(Q), then we can reduce the dimensionality by 1. Cell(Q) has 2•D "faces", each corresponding to an extreme (lowest or highest) coordinate in each dimension. We will subdivide each "face" F using a (D -1)-dimensional grid. We can choose the numbers s 1 , . . . , s D-1 . Then, we renumber the dimensions dim(1), . . . , dim(D -1) in such a way that the dimension i where the length of F is 0 is excluded. Then, we subdivide the side of F in dimension dim(i) into s i equal parts, by drawing s i -1 equally spaced hyper-planes perpendicular on the dimension dim(i). Thus, each face F is subdivided into s 1 • . . . • s D-1 parts. Then, for each part P (of some face F), we compute the same values as before (however, the parts are now restricted to the faces of the node only, and are not located in the node's interior).

The result list will contain only those objects O ∈ Lobjects for which:

• Distance(O, P) ≤ Dmax(P) for at least one subdivided part P or

• Distance(O, Cell(Q)) = 0 (e.g. if O intersects Cell(Q))
We denote this filtering function F ilterBasedOnDistancesT oSubdivisions(Q, Lobjects).

Filtering based on Voronoi Diagrams

In order to maintain strictly only those objects O ∈ Lobjects which can be nearest neighbors to some parts of Cell(Q), we could compute the Voronoi diagram of the objects (using the distance function Distance) restricted to the interior and the borders of Cell(Q). Then, only those objects O whose Voronoi cell intersects Cell(Q) (or, equivalently, their Voronoi cells are non-empty when the diagram is restricted to Cell(Q) only) would be added to the result list.

However, computing the Voronoi diagram of (not necessarily simple) geometric objects in multiple dimensions is a complex task (both time consuming and cumbersome to implement). If the distance function returns 0 for any object intersecting Cell(Q), then we can reduce the dimensionality by 1. We will compute a Voronoi diagram restricted to each face F of Cell(Q). Then, an object O is added to the result list if:

• it intersects Cell(Q) or

• its Voronoi cell restricted to at least some face F of Cell(Q) is non-empty.

In the common case of D = 2, the "faces" of each node are actually line segments. If the objects are points or line segments (or can be decomposed into a finite number of points and line segments) then the Voronoi diagram restricted to a segment of the border of a node consists of the lower envelope of the distance function from the objects to the segment. Algorithms for computing lower envelopes in the case we mentioned were discussed in [START_REF] Andreica | Line-Constrained Geometric Server Placement[END_REF][START_REF] Agrawal | Davenport-Schinzel Sequences and Their Geometric Applications[END_REF].

We will denote the function performing Voronoi diagram-based filtering as F ilter-U singV oronoiDiagram(Q, Lobjects). An efficient way of combining the two types of filtering is to define a general filter function F ilter(Q, Lobjects) = F ilterU singV oronoiDiagram(Q, F ilterBasedOnDistancesT oSubdivisions(Q, Lobjects)).

Distributed Query Processing

The possibility of processing queries in a distributed manner was discussed in [START_REF] Andreica | Sequential and MapReduce-based Algorithms for Constructing an In-Place Multidimensional Quad-Tree Index for Answering Fixed-Radius Nearest Neighbor Queries[END_REF]. For completeness, we include here the most important ideas. When multiple machines are available for answering a query, we can distribute the index over these machines. From the point of view of a leaf node Q, we may choose to store its list Lid(Q) on a single machine, or have it distributed over the whole range of available machines. When a query is performed, we first compute the set of nodes SC (from the bottom-up solution) which may have the answer to the query. Then, this set is sent to each machine, which, in turn, returns a set of candidate object ids for the query (if it stores part of Lid(Q) for some Q ∈ SC) or doesn't return anything. After computing the union of the sets of object ids, each object is retrieved independently and we compute the distance from the query point to it (we may consider the candidate objects sequentially or in parallel, using multiple threads and/or multiple machines).

Proof of Constant Factor Approximation for the Approximate Search Requirement

First, it should be obvious that, whenever the query point is at most a distance Rmin away from the closest object, it will fall inside a dense node (because all the space up to distance Rmin and possibly more is covered by dense nodes). Moreover, the list of object identifiers associated to a dense node will always contain the identifier of the closest object O to any point P inside the node, if Distance(P, O) ≤ Rmin. That is to say, whenever a query point P lies inside a dense node of a node Q, the identifier of the closest object O will definitely be found within Lid(Q), as long as the distance from the closest object to P does not exceed Rmin (that's because Q ∈ Ancestors(ExtInf late(O, M axLevel, Rmin, F rac), M inLevel). Thus, the exact search requirement is fulfilled by our algorithms. We will prove next that, when we fall within the approximate search requirement case, the returned object is at most a constant number of times further away from the query point than the real nearest neighbor. Our proof will need to handle two major cases:

1. Case 1: The query point P lies within a dense node, but its closest object is at a distance larger than Rmin 2. Case 2: The query point P lies within a non-dense node.

In each case, the proof will consist of computing a lower bound Dmin of the minimum possible distance of an object to P and an upper bound Dmax of the maximum possible distance of the returned object to P and showing that Dmax Dmin is upper bounded by a constant value. The proof will also use Dmin(zone) as a lower bound of the minimum possible distance from any part of an object intersecting the zone zone to the point P . F rac . Thus, the upper bound in this case is 1+ 1 F rac .

The query point lies within a non-dense node

First, it should be obvious that the non-dense nodes cover all the space not occupied by the dense nodes, at least up to distance Rmax from the objects. Thus, if the query point lies neither in a dense node, nor in a non-dense node, then its distance from the closest object certainly exceeds Rmax.

We will start by proving that our initial, unoptimized algorithm for assigning object identifiers to non-dense nodes provides a constant factor approximation. Then, we will show how the optimized algorithm maintains the constant factor approximation.

The unoptimized version of the algorithm

The key to the proof is the following. Let's consider a query point P contained inside a non-dense node N DC. Then, we will show that, for every dense node DC, L(N DC) contains the identifier of an object which is at most a constant number of times further away from P than any part of the intersection between an object and Cell(DC). Like in the previous subcase, some (random) object identifier id(O) ∈ Lid(DC) also belongs to Lid(N DC). We have the same lower and upper distance bounds as in the previous subcase.

Subcase 1.3: Let ADC be the ancestor of DC located at the same level as N DC.

Note that ADC and N DC are not extended neighbors (otherwise, we would get subcase 1.2). In this case, no object identifier from Lid(DC) will be "thrown" into Lid(N DC). However, this is not necessary. We have Dmin(Cell(DC)) = Distance(Cell(DC), Cell(N DC)). However, Dmin(Cell(DC)) ≥ max{Rmin, F rac • Diameter(DC), min{L i |1 ≤ i ≤ D}} (where L i is the length in dimension i of Cell(N DC)). In this case, there is some extended neighbor DC of N DC which is an ancestor of a dense node (otherwise not N DC, but one of a distributed algorithm for constructing octrees (3D quad-trees) was presented. In [START_REF] Panda | PLANET: Massively Parallel Learning of Tree Ensembles with MapReduce[END_REF], a MapReduce-based framework which can be used for constructing classification and regression trees in parallel has been proposed. Other attempts for processing spatial data using the MapReduce model for constructing an R-tree index have been made in [START_REF] Cary | Experiences on Processing Spatial Data with MapReduce[END_REF]. A generic MapReduce framework for tree data structures has been proposed in [START_REF] Sarje | A MapReduce Style Framework for Computations on Trees[END_REF].

The work presented in this paper is a natural continuation of the work we presented in [START_REF] Andreica | Sequential and MapReduce-based Algorithms for Constructing an In-Place Multidimensional Quad-Tree Index for Answering Fixed-Radius Nearest Neighbor Queries[END_REF].

Conclusions and Future Work

In this paper we presented novel methods for constructing an index over a set of (arbitrary) geometric objects, which can speed up the exact and approximate computation of answers for fixed-radius nearest neighbors queries. We presented novel, sequential, top-down and bottom-up, algorithms for "out-ofplace" indexing and "in-place" searching. The model presented in this paper complements our previous work from [START_REF] Andreica | Sequential and MapReduce-based Algorithms for Constructing an In-Place Multidimensional Quad-Tree Index for Answering Fixed-Radius Nearest Neighbor Queries[END_REF], where "in-place" indexing and "outof-place" searching algorithms were discussed. Unlike in [START_REF] Andreica | Sequential and MapReduce-based Algorithms for Constructing an In-Place Multidimensional Quad-Tree Index for Answering Fixed-Radius Nearest Neighbor Queries[END_REF], we did not provide a parallel or distributed "out-of-place" indexing method (e.g. based on the MapReduce computation model [START_REF] Dean | MapReduce: Simplified Data Processing on Large Clusters[END_REF]) in this paper. Note, also, that there may also be other intermediate levels between "in-place" indexing plus "out-of-place" searching and "out-of-place" indexing plus "in-place" searching, which might be interesting to explore in order to better understand the trade-offs which they may provide.

Algorithm 1

 1 ReplicatedW orkersF ilter(N umW orkers, T askP ool, N umW aiting, Cond) Cond.lock() while (N umW aiting < N umW orkers -1) or (T askP ool.size() > 0) do N umW aiting ← N umW aiting + 1 while T askP ool.size() = 0 do Cond.wait() end while Q ← T askP ool.ExtractT ask() N umW aiting ← N umW aiting -1 Cond.unlock()

Algorithm 3

 3 ComputeObjsN onDenseN odesBottomU p(Q, Rmax) SA = Ancestors({Q}, 1) for A ∈ SA do for AN ∈ (ExtN eighbors(A) ∩ N DN) do if Distance(Cell(Q), Cell(AN)) ≤ Rmax then Let O be any object from Lobj(Q) {Or, alternatively, let id(O) be any object id from Lid(O)} Lid(AN) ← Lid(AN) ∪ {id(O)} end if end for end for

Algorithm 8

 8 ComputeN onDenseN odesBottomU p(Q) SA = Ancestors({Q}, 1) for A ∈ SA do for AN ∈ (ExtN eighbors(A) \ Leaves T) do N DN ← N DN ∪ {AN } end for end for set N DN P arents = {Q |Q = P arent(Q) and Q ∈ N DN } and then to set N DN = N DN \ N DN P arents.

9. 1

 1 The query point lies within a dense node max{ Rmin, F rac • Diameter(Cell(Q))} = Diameter(Cell(Q)) + Dmin. Thus, we have Dmax Dmin = 1+ Diameter(Cell(Q)) Dmin . Since Dmin ≥ F rac•Diameter(Cell(Q)), we have Diameter(Cell(Q)) Dmin ≤ 1

Case 1 :

 1 Level(N DC) ≥ Level(DC) (i.e. Cell(N DC) is larger than Cell(DC)) Subcase 1.1: Level(N DC) = Level(DC) (this means that N DC is an extended neighbor of DC) Some (random) object identifier id(O) ∈ Lid(DC) also belongs to Lid(N DC). Since no parts of N DC were indexed as dense nodes (otherwise N DC would not have been indexed as a non-dense node), then Dmin(Cell(DC)) = max{Rmin, F rac•Diameter(Cell(DC)), Distance(Cell(DC), Cell(N DC))}. Let's consider the identifier id(O) which was "thrown" from Lid(DC) to Lid(N DC). If O intersects Cell(DC), then Distance(O, Cell(N DC)) ≤ Distance(Cell(DC), Cell(N DC))+Diameter(Cell(DC)); otherwise the upper bound is equal to Distance(Cell(DC), Cell(N DC))+ Diameter(Cell(DC))+max{Rmin, F rac•Diameter(Cell(DC))}. In this case, the ratio between the upper bound and the lower bound is again O1F rac. Subcase 1.2: Let ADC be the lowest ancestor of DC which is an extended neighbor of N DC (thus, we have Level(ADC) = Level(N DC)).

Acknowledgements

The work presented in this paper was partially funded by the Romanian National Council for Scientific Research (CNCS)-UEFISCDI under research grant PD 240/2010 (AATOMMS -contract no. 33/28.07.2010), from the PN II -RU program, and by the Sectoral Operational Programme Human Resources Development 2007-2013 of the Romanian Ministry of Labour, Family and Social Protection through the financial agreement POSDRU/89/1.5/S/62557.

. Note that Diameter(Cell(N DC)) is a function only of the sizes of Cell(N DC) in every dimension and Dmin(Cell(DC)) is larger than the minimunm value of such a size. Since all the nodes have the same aspect ratio, it is easy to prove that all the nodes have the same ratio between their diameter and their smallest size in a dimension (which we will denote by a constant DS). Thus, we obtain again a constant upper bound.

Case 2: Level(N DC) > Level(DC) (i.e. Cell(N DC) is smaller than Cell(DC))

In this case, no identifier from Lid(DC) is added to Lid(N DC). However, none is actually required (as shown below).

We have Dmin(Cell(DC)) = max{Rmin, F rac • Diameter(DC), Distance(Cell(DC), Cell(N DC))}. There exists an extended neighbor DC of N DC which is an ancestor of a dense node and, thus, an object identifier id(O) ∈ Lid(DC) which also belongs to Lid(N DC). In this case, we have Dmax = K • D • Diameter(N DC) + max{Rmin, F rac • Diameter(N DC)}. Thus, the ratio between the upper and lower bounds is bounded by 1 + K•D F rac .

The optimized version of the algorithm

When considering the optimized version of computing the lists Lid(*) of the nondense nodes, we need to recompute the upper distance bounds in each of the subcases defined above (the new bounds will be higher than in the unoptimized case, but they will still provide a constant factor approximation). Subcase 1.1:

We still have a constant factor approximation. Subcase 1.2: We obtain the same lower and upper bounds as in subcase 1.1. Subcase 1.3: We have the same lower and upper bounds as in the same subcase of the unoptimized version.

Case 2: We have the same lower and upper bounds as in the same subcase of the unoptimized version.

Related Work

The fixed-radius nearest neighbor problem has been addressed before in several research papers (e.g. [START_REF] Bentley | The Complexity of Finding Fixed-Radius Near Neighbors[END_REF][START_REF] Aref | Efficient Processing of Proximity Queries for Large Databases[END_REF][START_REF] Castelli | Multidimensional Indexing Structures for Content-based Retrieval[END_REF][START_REF] Kirkpatrick | Optimal Search in Planar Subdivisions[END_REF]) and many data structures for solving this problem or related problems have been proposed: R-trees [START_REF] Guttman | R-Trees -A Dynamic Index Structure for Spatial Searching[END_REF][START_REF] Sharifzadeh | VoR-tree: R-trees with Voronoi diagrams for efficient processing of spatial nearest neighbor queries[END_REF], kd-trees [START_REF] Bentley | Multidimensional Binary Search Trees Used for Associative Searching[END_REF], quad-trees [START_REF] Hunter | Operations on Images using Quad Trees[END_REF], fixed-size node subdivisions [START_REF] Lai | A node Subdivision Strategy for R-Nearest Neighbors Computation[END_REF][START_REF] Akman | Geometric Computing and Uniform Grid Technique[END_REF] and many others [START_REF] Chavez | A Compact Space Decomposition for Effective Metric Indexing[END_REF]. Most of the proposed solutions assume that the index can be constructed in main memory or, at least, can be stored on the disk of a single machine. Thus, the proposed algorithms are sequential in nature (see, for instance, [START_REF] Dinis | A Sweep Line Algorithm for Nearest Neighbot Queries[END_REF]).

More recently, parallel and distributed algorithms for constructing indices over geometrical data have been proposed. In [START_REF] Liu | Clustering Billions of Images with Large Scale Nearest Neighbor Search[END_REF], some parts of the construction of a hierarchical index are parallelized using the MapReduce computation model, but other parts were still implemented in a sequential manner. In [START_REF] Sundar | Bottom-Up Construction and 2:1 Balance Refinement of Linear Octrees in Parallel[END_REF],