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Modeling heterogeneous materials failure: 3D
meso-scale models with embedded
discontinuities

N. Benkemoun, M. Hautefeuille, J.-B. Colliat and A. Ibrahimbegovi¢

LMT-Cachan (ENS-Cachan/CNRS/UPMC/PRES UniverSud Paris)
61 avenue du Président Wilson, 94235 Cachan Cedex, France

Abstract

We present a meso-scale heterogeneous model adapted to quasi-brittle materials
such as concrete and based on spatial truss representation. In order to explicitly
incorporate heterogeneities without using adapted meshes, some bar elements need
to be split into two parts. To that respect both weak and strong discontinuities
are embedded into those elements using the Incompatible Mode Method and a
dedicated local solution procedure based on the operator split is described. Several
macroscopic loading paths are then considered, showing quite complex macroscopic
responses though the mesoscopic failure criterion is voluntary chosen as simple as
possible.

Key words: heterogeneous materials, failure models, embedded discontinuity,
incompatible modes method

1 Introduction

Modeling inelastic behavior of heterogeneous materials is strongly related to
the observation scale. From a macro scale point of view, the usual engineering
approach considers most of these materials as homogeneous, tacitly introduc-
ing the Representative Volume Element concept [1] and leading to the widely
used phenomenological models, such as plasticity and damage. Those mod-
els are based on macroscopic quantities (macroscopic stresses and strains)and
macroscopic laws derived in a thermodynamical framework [2]. Considering
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cement based materials such as concrete, there is an extensive literature (see
[3] for a review) dealing with its mechanical behavior modeling according to
different loading paths, for static or dynamical case as well as several multi-
physics couplings, such as heat or water mass transfers. However, most of the
physical phenomena and the failure mechanisms which can be observed for
such materials are taking place at finer scales. Ideally, we would like to resolve
one of the major issue dealing with concrete, hoping to establish a (numerical)
link between the initial constituants properties and the resulting mechanical
properties at macroscale. Such a bridge would require a very precise and ac-
curate description of the hardened material microstructure, exhibiting several
phases and the ability to use such description as, for example, a finite element
model.

At the so-called meso scale, heterogeneous materials such as concrete might be
modeled with two or three different phases at least; the macroscopic mechani-
cal response of such materials will obviously depends on each phase properties
as well as their spatial distribution and shapes. Being able to compute such
macroscopic global response by taking account for the mesoscopic phases is a
major issue related to the high number of degrees-of-freedom arising, the nu-
merical localization due to softening and the interfaces behavior. In this paper,
the approach we focus on is able to cope with both of those challenges dealing
with 3D problems. This approach relies on spatial truss models, geometri-
cally built using Delaunay triangulation. In order to model heterogeneities
such as inclusions, strain field (weak) discontinuities are introduced inside
the bar elements which are "cut” by an interface (see Fig. 1). Hence each
element might be split in two parts, each having different elastic properties.
Thus the nodes spatial positions are not constrained by the physical interfaces
and, consequently, the meshing process (i.e. the Delaunay triangulation) does
not depend on the inclusions positions and shapes. Considering a two-phases
material where inclusions are melt into a matrix, three sets of elements are
needed: those entirely lying inside the matrix (first set, with the same elas-
tic modulus and no strain discontinuity) or inside the inclusions (second set)
and those which are split by a physical interface and for which the strain dis-
continuity is activated (third set). Such modeling strategy allows to represent
any heterogeneous material in the elastic regime, with any number of phases
and with a very fast and efficient meshing process. Based on this geometrical
representation and in order to model the non-linear softening response shown
by brittle and quasi-brittle materials, displacement (strong) discontinuities are
also introduced inside the bar element. These discontinuities represents micro-
cracks that may occur in any of different phases (inclusions or matrix for a
two-phases material) and also allows to capture the interface failure (debond-
ing) which might appear between any phase. Moreover, the key point pertains
to strong discontinuities capability to model softening behavior without any
mesh dependancy (see [4], [5]), which is a major issue dealing with failure of
quasi-brittle materials.
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Fig. 1. Two-phases material with split elements (a) and 3D random meso-structure
(b) : matrix-blue, green-inclusion and red-interface

Among different possibilities to enhance the kinematics and thus to introduce
both weak and strong discontinuities within the Finite Element model ([5], [6]
(7], 8], [9], [10]) we choose the Incompatible Modes Method ([11], [12]). The
latter provides the main advantage in no requirement for any modification of
the Finite Element code global structure and the total number of unknowns
as well.

The outline of the paper is as follows: In Section 2 we introduce the mesoscale
model, with the truss element, as well as the numerical implementation de-
tails according to the Incompatible Modes Method. Then, in Part 3, we turn
to the macroscopic scale by describing the numerical responses to different
macroscopic loading paths.

2 Meso-scale model

As stated in the introduction, the meso-scale model presented in this paper
for heterogeneous materials relies on truss elements with enhanced kinematics.
These enhancements concern both the strain field (in order to represent an
elastic modulus jump [13], [14]) and the displacement field (in order to model
cracks through displacements jumps [4], [15], [16], [17]). This Section describes
these two kinds of discontinuities and shows how the Incompatible Modes
Method ([11], [12]) might be used to accomodate both of these jumps.



2.1 Kinematics enhancements

2.1.1 Weak discontinuity: heterogeneous materials

Dealing with heterogeneous materials and not adapted meshes lead to the
possibility for an element to be split into two parts, each with different elastic
properties (see Fig. 1). From a computational point of view, two subdomains
need to be defined inside the element by positioning the interface between
these two parts (its spatial position is parametrized using the adimensional
parameter 6). This idea is the key point for the first kinematics enhancement,
described by the function G;. Fig. 2 shows that G presents a finite strain
jump at the interface (in red) between the two subdomains of a typical truss
element with different elastic properties.
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Fig. 2. Split truss element with weak discontinuity and G function

The strain-displacement function G; may be written as:

G — —&,XE[O,GQ
L=

i - x € (00,4

It is worth to mention that the same enhancement can also be employed for
several other physical properties of heterogeneous materials, such as condtuc-
tive heat transfer where the elements can be split in two parts with different
values of thermal conductivity coefficient.

2.1.2  Strong discontinuity: quasi-brittle materials cracking

Modeling the cracking process for brittle and quasi-brittle materials is a major
issue. Actually, the softening behavior due to cracks opening leads to mesh
dependancy and many authors ([4], [5]) have shown that representing cracks
by using strong discontinuities allows to get rid of such pathology. Moreover it
allows to introduce the fracture energy G, (which represents the energy needed
to fully open a 1m? fracture) among the model parameters set. Fig. 3 shows
the second kinematics enhancement, represented by the function denoted as



G,. This function exhibits a jump at the interface position, between the two
subdomains, and can thus represents the debonding phenomenon.

‘ Phase 1 1 Phase 2 ‘
1

Fig. 3. Split truss element with strong discontinuity and G2 function
The function G5 can be written:

1
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where or is the Dirac function placed at the interface. In the following, G+

will be split into a regular part Gy = —% and a non-regular part Gy = dr.

Finally, the key idea here is to use enhanced elements with strong discontinu-
ities in every element, and not only placed at the interface. This leads to the
capability to represent cracking in every phase of the materials, and not only
debonding.

2.2 Theorical framework: Incompatible Mode Method

The Hu-Washizu variational formulation ([18], [19]) applied to the enhanced
strain method [11] provides a suitable theorical framework in order to enhance
elements kinematics: the strain field is written as the sum of the displacement
symmetric gradient V*u and the enhanced strains €; and €,

Ezvsu+€1+€2

Using the classical truss element shape functions [20] as well as the two func-
tions G; and G5 introduced previously, the variational formulation can be
written within the framework of a finite element problem and leads to the
following set of non-linear equations,

Al {fi"t(de, e, Q) — fem} =0 global equilibrium equation
hy (de, a1 ,00,) =0 Ve € [1,n¢m] local equilibrium equation (1)
(

ho(de,01¢,02,) =0 Ve € [1,ng,] local equilibrium equation

)



where A denotes the standard assembly operator. The explicit form of element
arrays can be written,

fint — /Q BTo(Bd. + Giai . + Gaas,) dV
h,, = /Q élfa'(Bde + G + Gy )dV

hy, = / éga(Bde + G + G )dV

e

where C:’?;Q) are modified version functions of G; 9) in order to fulfil the patch
test ([12]), and write as follows:

~T

1
Giio = Gua — g |, GoardV

In (1), oy and s, are the interpolation parameters corresponding to both
weak and strong discontinuities. These two parameters are defined indepen-
dently for each element so that they are local quantities only (from a FE point
of view). It is worth noting that only the second of equations (1), which con-
cerns the weak discontinuity enhancement, is a linear equation. Moreover, we
note that the strong discontinuity is introduced only upon reaching a fracture
criterion, so that the third equation in system (1) is not always present.

2.2.1 Fuailure criterion

Dealing with brittle and quasi-brittle materials, the yield function ® used to
activate the strong discontinuity is written as:

¢ =tr— (07 —q)

where tr is the traction vector at the discontinuity and o, the limit stress.
The softening is introduced through the variable ¢ = k(ay) by considering the

exponential form,
k(ag) = oy (1 — exp (—éj))

we introduced the fracture energy Gy as the area under tr as curve (recall
that g is the crack opening). The key point here is that such failure criterion
is triggered only for fracture in tension.

2.2.2 Linearization

Incorporating the yield function equation as suggested by [21] , the non-linear
system (1) can be extended to:



Alem {fé”t(de, e, Qae) — fem} =0 global equilibrium equation
hy (de,a1¢,020.) =0 Ve € [1,ngm,| localequilibrium equation

(
hy (de, a1 ¢,00,) =0 Ve € [1,ngm| local equilibrium equation

)

O(tr,aze) =0 Ve € [1, nepm) local failure criterion

By further replacing the expressions for G, G, and B into (2), we can obtain,

AL (£ (d, 0, 2) — £ = 0
_Ul(dey a1 e, (1/2,3) + 02<d67 1 e, a?,e) =0 Ve € [17 nelm} (3>

001 (dea O51,67 a2,e) + (1 - 0)02(d6a O51,57 05276) - tF = O ve € [17 nelm}
D(tp, aze) =0 Ve € [1, netm]

where o1 and o, are the stresses in each subdomain of the element, and 1
the traction vector at the discontinuity. We recall that the scalar value 6
parametrizes the discontinuity spatial position.

The key point here is to note that the third of equations (3) provides a direct
and explicit form for ¢r in terms of:

tF - 90_1 (dea al,e7 a2,e) + (1 - 9)0-2(dea al,e; a2,e)
Therefore, the final set of equation can be reduced to,
AL [E (de, a, n) — £ = 0

—01 (d€7 1 e, aQ,e) + OQ(dea A e, ale) =0 Ve € [1’ nelm] (4>
@(tr, @276) =0 Ve € [17 nelm]

to be solved for d., oy, and ay .. Here again only the second equation in (4)
is linear. Linearization of (4) at the given values of (d., o1, aa) yields to the
following linear system:

(k) (k+1) , (k)
a b c Ad — AL [£7(de, 01 o, ) — £71]
bT d e Aoy = —h, .
P _
c' —e f(ag) . Aay - ) .



where

a= BTE,BO(° + BTE,B(1 — 0)(° b = BT[—E, + Ej]

e =B - ) flaz) = [ = 525 = K (a)

The complete solution procedure for computing AdFY Aagkﬂ) and Aagkﬂ)

is presented in more details in the next section.

2.8 Solution procedure: operator split mehod

The solution procedure operates on two levels: the global level, corresponding
to the first equation of (5) and the local level. In the spirit of the operator

split method, Aagkﬂ) and Aagkﬂ) are computed first from the local phase
at fixed value for d, ;. Once this first stage has been completed, the static
condensation is performed of these two variables Aagkﬂ) and Aaékﬂ), leading
to a standard global equilibrium system of linear equations with a modified
stiffness matrix.

2.3.1 Local level of operator-split computation
The algorithm dealing with the local level proceeds as follows:

Recall that the weak discontinuity equation is linear. Thus there is no need to
iterate for Aa’™ which is computed directly (see step 4 in Alg. (1)).

2.8.2 Double static condensation

Once the local phase of computation has converged, both residuals h; and ®
are equal to zero. Thus the system (5) can be rewritten as,

() (k1) | ()
a b ¢ Ad — AL (£ (de, 0y, ) — £

bT d e Aoy = 0

—_cT _
¢ € f(a2) n+1 AO@ n+1 0 n+1

where Aaq and Aay are both known. The second step consists in performing
the static condensation ([22]) for Aagkﬂ) and Aozgf“), leading to a linear



Algorithm 1 Operator split at the element level

. B0 AcgU'D
1: while [abS(W

2:  linear weak discontinuity

) > tol and j < jjaz] dO

3:  residual computation: hl(j) = —0%‘” + Jéj)
, h, @)
4: increment computation: Aagﬁl) = —ﬁ
=1 —+ 2
gee T (1-0)ee

5. update: /™) =l + ATV
6: update intermediate values: &9“), 6§j+1)’ PU+D
7. if (j == 0 and ®U*Y > 0) then (iloc == 1) else (iloc == 0)
8 if (iloc == 0) then
9: break while loop
10: U§j+1) _ 6§j+1),a§j+l) _ 5_§j+1)
11:  end if
12:  if (iloc == 1) then
13: non — linear strong discontinuity
j+1
14: increment computation: Aagjﬂ) = — iI)(j+ : ‘
[ — d=9)% ZZ)EQ] — K (ap)
15: update: &éjﬂ) = ozéj) + Aagjﬂ)
16: update: 09“), a§j+1), pUtD
17:  end if
18: 7+ +

19: end while

system based on the matrix K. Solving this global system of linear equations

provides the displacement increment Adfffll):

k n in €x (k)
K(k)Ad(kJrl) = _Aeihln [fe t(de> a1 e, a2,6) - fe t}

where the condensed stiffness matrix is written as:

K:a—[ 1

flag) —e bT
d.f(az)+e? |:b C]

T

e d —C

It is worth noting that the total number of unknows for the global system
remains constant, and is not influenced by the kinematics enhancements. All
those improvements will only influence the element level. This is one of the
major advantages of the Incompatible Modes Method.



3 Macroscopic model response

In this section, we present the macroscopic responses for several loading paths.
All of these computations have been done using the Feap CTL component
coFeap ([23], [24], [25]). We first provide some details dealing with the mesh
generation and then turn to the macroscopic behaviors in both tensile, com-
pression and shear.

3.1  Geometry description and mesh generation

As presented in the second Part, the approach we present in this paper relies on
spatial truss models at meso-scale. Such truss can be generated by computing
the 3D Delaunay triangulation of a Poisson point process over the spatial
domain of interest and according to a prescribed points density. Each edge of
the obtained tethraedral elements is converted to a bar element whose cross
section is computed by mean of the corresponding Voronoi tesselation. Such
task is carried out by using Qhull ([26]) which is a general dimension code
for computing convex hulls, Delaunay triangulations and Voronoi diagrams.
Finally, spherical inclusions are generated by mean of a Gibbs point process
and according to both prescribed density and radius. These inclusions are
incorporated within the spatial truss by computing their intersections with
each bar element, denoted in the previous part by 6. The key point is that this
last step is completely independent from the truss generation itself, which is a
much more time consuming process. Hence such mesh generation methodology
shall be very efficient for any probabilistic numerical analysis considering a
stochastic geometry description.

One typical example of a mesh that can be obtained is shown in Fig. 4. Here
we consider two phases materials only thus leading to three kinds of bar ele-
ments. Obviously, such methodology can be extented to more heterogeneous
materials, with a high number of different phases, although the total number
of elements families would rapidly increase.

3.2 Tension test 3D macroscopic response

As a first case of study, we present here the macroscopic responses obtained
for a concrete-like two phases material along simple tension loading paths,
along the three axes and hydrostatic as well.

10



Fig. 4. Spatial truss for a typical two phases material: matrix blue, inclusions green,
red interface

3.2.1 1D tension test and mesh objectivity

Dealing with 1D tension we consider here a 0.001m?® cube. Tab.1 sums up
both physical and geometrical parameters for each phase. One can note that
inclusions are stiffer than the cementeous matrix and that they remain in the
elastic regime. This computation is made under displacement control according
to the first spatial axis.

cementeous matrix inclusions interfaces
E =10 GPa 70 GPa -
oy = 2 MPa - 2 MPa
Gy =9J/m? - 9J/m?
volume inclusions vol. fraction (%) dof
1073 m3 34 ~ 300000

Table 1
1D tension test geometry and materials parameters

Fig. 5a shows the macroscopic load (sum of all nodal reactions in the X-
direction) versus imposed displacement curve. The macroscopic Young mod-
ulus is equal to 29900 MPa and the macroscopic limit stress which triggers
softening is equal to 1.8 MPa. On Fig. 5b, we show the micro-cracked bar
elements (for whose the strong discontinuity has been activated). It is worth
noting that Fig. 5b shows some kind of a macro-crack that lies in the direction

11



roughly perpendicular to the imposed displacement one. This crack is pictured
from two differents points of view: First in the displacement field along the
X-direction where two blocks appear (sudden change of the color code) as
separated by the macro-crack; secondly by the mean of the broken elements,
where we observe only all the elements split by the activated displacement dis-
continuity which then merged together providing a clear representation of the
macro-crack. Moreover we can note that the macro-crack is tortuous, around
the inclusions that remain elastic. Finally, Fig. 5b shows that only one macro-
crack is sufficient to drive the macroscopic response into the softening regime.

o . ! . L
0 0,005 0,01

Displacement (mm)

Fig. 5. 1D traction a. macroscopic load vs displacement curve, b. contours of dis-
placement field in X-direction and micro-cracks pattern at the end of the computa-
tion

Based on this 1D traction test, the next point we present here deals with the
mesh objectivity that is one of the major issue for softening behaviors. Fig. 6
shows the macroscopic forces versus imposed displacement responses obtained
from three different meshes with increasing number of nodes. We can note
that all the essential macroscopic properties, such as the macroscopic stiffness,
the macroscopic peak resistance and the amount of dissipated energy, remain

practically mesh-invariant as soon as the sufficient mesh refinement is achieved
(around 300000 dof).

20 : . . T

15

Load (kN)

L | L | L
0 0,005 0,01 0,015 0,02
Displacement (mm)

0 L 1

Fig. 6. Macroscopic load vs displacement response showing mesh objectivity of the
computed response
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Finally, this simple 1D tension test has been repeated along the two other axes
in order to assess for the mesh generation process isotropy. Fig. 7a shows the
macroscopic load (sum of all nodal reactions in the X-direction (black), in the
Y-direction (red) and in the Z-direction (green)) versus imposed displacement
curves. We note that, whatever the imposed displacement direction is, the
macroscopic modulus (31000 MPa) and the macroscopic peak stress remain
unchanged. Fig. 7b, here again, pictures all micro-cracks at the end of the
computation, providing a clear representation of the apparent macro-crack for
each loading path. Here again it is worth noting that a single macro-crack
appears, roughly orthogonal to the imposed displacement direction.

cementeous matrix inclusions interfaces
E =10 GPa 70 GPa -
o =2 MPa - 2 MPa
Gy =9J/m? - 9J/m?
volume inclusions vol. fraction (%) dof
1073 m3 34 ~ 600000

Table 2
1D tension test along X, Y and Z direction: geometry and materials parameters

20— -1

Load (kN)
T
1

10+ —

L | L
0 0,005 0,01
Displacement (mm)

Fig. 7. 1D traction along three different axes a. macroscopic load vs displacement
curve, b. micro-cracks patterns at the end of the computations

3.2.2  hydrostatic tension test

With the 1D tension test macroscopic response in hand, we turn here to the
hydrostatic case. To this end we perform a tension test which consists in pulling
simultaneously along X, Y and Z axis. The chosen material and geometry
properties remain unchanged comparing to the 1D case (see Tab. 1). Fig. 8a
plots the macroscopic load versus the imposed displacement response along
the X direction obtained for the simple tension test and the hydrostatic case.
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It is worth noting that the hydrostatic behavior is both more brittle and also
stiffer. The macroscopic modulus along the X-direction is actually equal to
a third of the macroscopic bulk modulus K and so can be related to the
macroscopic Young’s modulus (F = 31000 M Pa computed according to the
uniaxial case) and the macroscopic Poisson ratio v,

E
3K = —— =57TMPa
(1—2v)

leading to a v = 0.228 macroscopic Poisson ratio estimate. Fig. 8b shows
micro-cracks patterns at the end of the computation. One can observe several
macro-cracks contrary to a simple tensile test where only one macro-crack is
observed.

30 : T ‘ T

— X-direction: simple tensile test
25 — X-direction: triaxial tensile test

20 —

Load (kN)
T
|

10— —

L L L
0 0,005 0,01
Displacement (mm)

Fig. 8. Hydrostatic tension test a. macroscopic load displacement curves (1D simple
tension test/hydrostatic tension test) b. micro-cracks patterns at the end of the
computations

3.8 Compression test

In this part, we show the macroscopic response of the proposed model under
compression loading path. Although the mesoscopic failure criterion leads to
micro-cracking in tension only (see section 2.2.1 for the chosen mesoscopic
failure criterion), Fig. 9a shows a macroscopic non-linear response in terms of
macroscopic force versus macroscopic imposed displacement, leading to soft-
ening. Such response is mainly due to the spatial truss mesh and the macro-
scopic apparent Poisson effect that this geometrical representation provides.
Moreover it is worth noting (see Fig. 9b) that several macro-cracks can be ob-
served, roughly parallel to the direction of the imposed displacement. In order
to compare the macroscopic responses corresponding to tension and compres-
sion, Fig. 10 plots both macroscopic load versus displacement curves. Clearly

14



a significant difference can be observed which is one of the major character-
istics related to quasi-brittle materials like concrete. More precisely both the
peak stresses (1.8 MPa in tension and 7.2 MPa in compression) as well as
the amount of dissipated energies are greater in compression than in tension.
Namely, the compression test leads to many more micro-cracks.

20+ -

Load (kN)
:
1

~ . | . | . | . | .
8—%,05 -0,04 -0,03 -0,02 -0,01 0
Displacement (mm)

Fig. 9. Compression test a. macroscopic load vs displacement curve, b. micro-cracks

patterns at the end of the computation
20 T T T T T T

: | | | | | |
8-%,05 -0,04 -0,03 -0,02 -0,01 0 0,01
Displacement (mm)

Fig. 10. Tension-Compression comparison: macroscopic load vs displacement curve
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3.4 Shear test

The last loading path we consider here deals with macroscopic shear. The set
of parameters are the same as for the previous loading paths. Fig. 11 shows
the micro-cracked bar elements (for whose the strong discontinuity has been
activated) both from an outside point of view and an inner view as well. Tt is
worth noting that Fig. 11 shows some kind of a single macro-crack that lies in
the diagonal direction of the cube. This crack is also pictured from a different
point of view: in the scaled displacement field along the X-direction where two
blocks appear (sudden change of the color code) as separated by the diagonal
macro-crack. Here again, although the mesoscopic failure criterion relies on
tension failure mode only, the spatial truss representation as well as the explicit
account for heterogeneities both lead to macroscopic failure in shear. Finally it
is clear that a very small set of parameters at the mesoscopic level are enough
to retrieve much more complex failure modes at the macroscale one.

Fig. 11. Shear test: all broken elements at the end of the computation: a. surfacic
view, b. inside view

@&

Fig. 12. Shear test: contours of displacement field in X-direction scaled by a factor
100
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4 Conclusion

The usual and widespread approach when dealing with the numerical mod-
eling of heterogeneous materials such as concrete is to implicitly work out a
Representative Volume Element (RVE) thus leading to a homogeneous rep-
resentation. Phenomenological models such as plasticity or damage theories
are then wellknown to be both robust and easy to implement within most
of FE codes and they provide a straightforward way to achieve structural
analysis. However, most of the failure mechanisms that one aims to repre-
sent by using such phenomenological models are taking their very origins at a
much more finer scale than the one corresponding to the RVE. For example,
macro-cracks that appear before any reinforced concrete structures collaps-
ing are preceded by a high number of micro-cracks spread in large parts of
the whole structure, a few of them coalescing into macroscopic cracks. Like-
wise, cement-based materials macroscopic properties are known to be much
influenced by their micro-cracking initial state; the latter being mainly due to
strains incompatibilities between different constituants (e.g. cement paste and
aggregates) during the initial drying process. Thus taking account for those
heterogeneities in an explicit way (and consequently not consider an homoge-
neous representative volume) is a major point aiming to build predicitive and
reliable numerical models.

The meso-scale model presented in this paper aims to account for hetero-
geneities and is adapted to model quasi-brittle materials (such as concrete)
macroscopic behavior. It relies on a spatial truss mesh which is not constraint
by the physical interfaces. Thus a set of bar elements might belong to two
different phases and, to some extend, must be split into two parts. This issue
is addressed by introducing a weak (within strain field) discontinuity inside
those split elements which provides an effective and elegant way to account
heterogeneities without any need for remeshing. Moreover, each element also
incorporates a strong (within displacement field) discontinuity leading to the
capability to represent micro-cracks opening. Such discontinuity is activated
according to a dedicated failure criterion which is here chosen in order to
model failure in tension only. Another key issue addressed by adding strong
discontinuities is the ability to capture softening with no mesh dependency
which a major issue dealing with modeling quasi-brittle materials failure. By
using the Incompatible Mode Method, the implementation of both disconti-
nuities in any FE code remain at the element level and the total number of
unknowns is kept constant.

Considering different macroscopic loading paths, we finally show how the pro-
posed model is able to provide quite complex macroscopic responses. For 1D
tension the whole failure process leading to softening begins with a few diffuse
micro-cracks rapidly merging to a single macro-crack splitting the specimen
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into two parts. For compression, the stress field heterogeneity, due to the
presence of inclusions as well as the spatial disorder mesh, leads to important
diffuse micro-cracking and a large amount of dissipated energy comparing to
tension. Moreover several macro-cracks can be observed thus leading to a peak
macroscopic stress also more important. These two points are major features
of quasi-brittle materials such as concrete.

Thus we can conclude that explicitly accounting for the heterogeneities pro-
vides great improvements for the quasi-brittle mechanical features modeling
from a macroscopic point of view. Obviously many issues still need to be
tackled, chief among them is to account for the probabilistic aspects directly
induced by the meso-scale geometry representation. This topic is of great in-
terest because fo being related to key issues such as RVE size computing or
size-effect modeling. Moreover, in the view of getting closer from the struc-
ture point of view, great effort are currently paied in order to embed such
meso-scale model within an integrated multi-scales framework.
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