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Statistical modal Energy distribution Analysis (SmEdA) can be used to model a fluid-structure problem based on modal 

information of the uncoupled-subsystems. Recently, the method has been extended to include the effect of a dissipative 

treatment (i.e. damping or absorbing material). In this paper, SmEdA is tested on a steel plate with/without damping 

treatment coupled to an acoustic cavity: the numerical result of the energy ratio is compared to experimental one. The 

data are analyzed for a mid-to-high frequency domain (up to 10 kHz in 1/3 octave band). Both subsystem loss factors 

are experimentally obtained by a high-resolution modal analysis method based on the ESPRIT algorithm applied to 

impulse responses of the plate and the cavity. Predicting the energy level requires an accurate estimation of subsystem 

damping levels. The uncertainty on measured loss factors leads to an uncertainty in the energy ratio depending on 

min/max damping levels of individual modes in a given frequency band. Once min/max damping levels of subsystems 

are determined, SmEdA is used to compute the upper and lower limits of the subsystem energy ratio. A comparison 

with experimental results shows that the measurement data fits in between the SmEdA bounds. In this paper, two types 

of dissipative treatments are studied: i) a viscoelastic patch on the plate (modeled as an equivalent single layer plate) 

and ii) a porous material inside the cavity (modeled as an equivalent fluid).                                                        1

1  Introduction 

Statistical modal Energy distribution Analysis (SmEdA) 

[1] is an effective method to study many coupled problems 

in a mid-high frequency domain. The method has been 

recently extended to investigate the influence of an additive 

damping material applied to a structural subsystem in a 

plate-cavity coupled problem. The part of the plate treated 

with a viscoelastic damping pad was modeled as an 

equivalent property of the plate subsystem [2].  

In this paper, the focus is on the analogous concept of 

the equivalent property modeling of an additive damping 

applied to a cavity subsystem. When a porous material is 

placed inside an air-filled cavity, it can be integrated into a 

cavity subsystem as an equivalent fluid. Such modeling 

greatly reduces the size of the finite element subsystem to 

be solved thus leads to more efficient SmEdA 

implementation. At the end, the aim of the study is to 

investigate the influence of different dissipative materials 

over subsystem energy flow. Numerically obtained 

subsystem energy levels and their ratio will be discussed 

and compared to experimental results.  

Since the energy exchange between subsystems is 

affected by subsystem damping levels, it is important to 

obtain accurate data. The subsystem damping loss factors 

are experimentally estimated with the high-resolution 

modal analysis method based on the ESPRIT algorithm [3] 

from the impulse response of each subsystem. The loss 

factors are deduced from a number of selected resonant 

modes in 1/3 octave bands. As damping levels of individual 

modes can significantly vary within each frequency band, 

this variation can be used to set limits for a subsystem 

energy ratio. When minimum and maximum damping 

levels within a frequency band are considered in SmEdA 

calculation, they can form upper and lower limits of the 

cavity-plate energy ratio where experimentally obtained 

ratio can comply. This gives a deterministic range of an 

energy ratio for this particular numerical prediction method.  

2  SmEdA method for plate-cavity 

coupled problems 

The SmEdA modal coupling loss factor considers both 

spectral and spatial coupling of discretized subsystem 

resonances at a coupling surface. Boundary conditions of 

each uncoupled subsystem are well defined so that their 

modal information (resonant frequency and modeshape) is 

easily extracted with the FEM. In equation 1, 𝛽𝑝𝑞
12 is the 

modal coupling loss factor between the plate mode p of 

subsystem 1 and the cavity mode q of subsystem 2, and 

𝑊𝑝𝑞
12 is the inter-modal work between plate modeshapes and 

cavity modeshapes. 𝜂𝑝
1  and 𝜂𝑞

2 are the damping loss factors 
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of the plate mode p of subsystem 1 and the cavity mode q 

of subsystem 2 respectively. The influence of these two 

terms on subsystem energy levels are deduced for cases 

depending on different materials applied to each subsystem: 

(a) a bare plate coupled to a cavity, (b) a plate subsystem 

partially treated with a viscoelastic layer, (c) a cavity 

subsystem partially treated with a porous material. All cases 

are shown in figure 1. All three cases are first numerically 

modeled then evaluated through laboratory experiments. 

The case (b) implements the equivalent single layer 

modeling of a damped plate. A porous material in case (c) 

is modeled as an equivalent fluid. The methodology and 

numerical implementation for case (b) are detailed in [2] [4] 

[5] [6]. Here, the equivalent fluid modeling for case (c) will 

be emphasized.  

 

 

 

 

 

 

 

 

 

 

 

 

Dimensions of a steel plate and a cavity are 

0.5×0.6×0.001 (m) and 0.5×0.6×0.7 (m) respectively.  

The cavity has five surfaces of the 16 cm thick sold 

concrete, and its top opening can be covered by a concrete 

slab of the same thickness. One of the cavity walls has a 

small hole where microphone cables can be run through. A 

plate is coupled to a cavity by four metal hinges placed over 

the plate boundaries and screwed to the top ledges of the 

cavity. 

The dissipative materials are shown in figure 2. The 

damping pad is a viscoelastic material of a 3 mm thickness. 

It takes approximately 15 % of the plate surface area. One 

Figure 1. Plate-cavity coupled problems for SmEdA 

analysis: (a) Bare plate coupled to cavity. (b) Damped plate 

coupled to cavity. (c) Bare plate coupled to damped cavity 



and two pads are applied to the plate in case (b). The porous 

layer is mineral fibres of a 3 cm thickness. Its volume is 

about 2 % of the cavity. 

 

 

 

 

 

 

 

 

 

 

 

 

1  

3 Equivalent fluid modeling of a 

partially treated cavity 

 
3.1 Porous material modeling 
 

A porous medium is a material containing pores that are 

typically filled with liquid or gas. The skeleton portion of 

the material is called a solid frame in which the sound wave 

can transmit. If the frame is assumed to be not locally 

reacting e.g. rigid when a porous material is excited by 

airborne plane waves, it can be modeled as an equivalent 

fluid characterized by the fluid bulk properties 

(characteristic impedance, propagation constant, dynamic 

density and dynamic compressibility) [7] [10]. Such 

method only corresponds to a treatment on the cavity walls 

as seen in case (c) of figure 1 e.g. not on or in front of the 

vibrating plate surface. Equivalent parameters can be 

deduced from material properties directly measured with an 

acoustical experiment, which will be given in section 3.2 

and 3.3.   

The sound propagation inside a porous material is 

governed by the motion equation and the constitutive law of 

the medium and is similar to the Helmholtz equation. In 

equation 2, keq is a wave number of the equivalent fluid, 

 

                         −𝐾𝑒𝑞∇2𝑝 + 𝜔2 𝜌𝑒𝑞

𝐾𝑒𝑞
= 0    (2) 

 

ρeq is an equivalent density and Keq is an equivalent 

compressibility. Then the celerity and the characteristic 

impedance of the equivalent fluid are complex and 

frequency dependent:  

 

                              𝑘𝑒𝑞 = 𝜔√𝜌𝑒𝑞/𝐾𝑒𝑞    (3)  

                                𝑍𝑐 = √𝐾𝑒𝑞 ∙ 𝜌𝑒𝑞      (4) 

                               𝑐𝑒𝑞 = √𝐾𝑒𝑞/𝜌𝑒𝑞     (5) 

 

In fact, there are several different equivalent fluid 

models depending on the expressions of parameters. They 

normally differ by a number of micro scale parameters such 

as flow resistivity, porosity, tortuosity, characteristic length, 

etc. that create bulk properties. Empirical models can give 

equivalent density and fluid wavenumber and are the 

simplest since they depend on a single parameter, a flow 

resistivity (σ). Equation 6 and 7 are the Delany-Bazley 

model and are represented in terms of power law relation:  

 

𝑍𝑐 = 𝜌𝑐[1 + 0.0571𝑋−0.754 − 𝑗0.087𝑋−0.732] (6) 

𝑘𝑒𝑞 =
𝜔

𝑐
[1 + 0.0978𝑋−0.7 + 𝑗0.189𝑋−0.595)] (7) 

 

where X = ρf/σ is the adimensional number that quantifies 

the relative importance of inertial effects [8]. Note that the 

flow resistivity of the porous material needed for the 

analytical calculation was given by the manufacture. 

 

 

3.2 Two-cavity-method  
 

Bulk properties describe the interaction between 

material and sound wave and are independent of a material 

thickness and a size. The characteristic impedance and the 

propagation constant can be derived from a set of 

distinctive surface impedance measurements (impedance 

tube measurement) of a porous material. This can be 

achieved by changing an air depth behind the porous 

material. This method is called the “two-cavity-method” 

proposed by Yaniv [9] and Utsuno [10]. 

As seen in figure 3, a sample layer of the porous 

material is placed inside the impedance tube for 

measurements of the "two-cavity-method". Arbitrary 

acoustic impedances behind the porous sample can be  

 

 

  

 

achieved by changing an air space depth behind. The 

acoustic impedance ZS at a reference surface can be related 

to the characteristic impedance Zc and the propagation 

constant keq as follows: 

 

              𝑍𝑐 = ±√
𝑍𝑎1𝑍𝑎2(𝑍𝑠1−𝑍𝑠2)−𝑍𝑠1𝑍𝑠2(𝑍𝑎𝑖−𝑍𝑎2)

(𝑍𝑠1−𝑍𝑠2)−(𝑍𝑎1+𝑍𝑎2)
   (8) 

             𝑘𝑒𝑞 =
1

2𝑗𝑑
ln (

𝑍𝑎1+𝑍𝑐

𝑍𝑎1−𝑍𝑐

𝑍𝑠1−𝑍𝑐

𝑍𝑠1+𝑍𝑐
)    (9) 

 

where Za1 and Za2 are the impedance of a closed tube with 

different air space depths of L1 and L2 respectively, and Zs1 

and Zs2 are the reference surface impedances. The 

impedances of a closed tube are:  

 

                       𝑍𝑎1 = −𝑗𝜌𝑐 𝑐𝑜𝑡(𝑘𝐿1)             (10)  

                       𝑍𝑎2 = −𝑗𝜌𝑐 𝑐𝑜𝑡(𝑘𝐿2)             (11) 

 

Figure 2. Two damping pads attached to a steel plate (left). 

A porous material inside a cavity (right) 

Figure 3. Impedance tube measurement of the "two-cavity-

method" 



where 𝜌, c and k are air density, speed of sound and 

wavenumber respectively.  

 

 

3.3 Experimental procedure and results 
 

A porous sample with a thickness of 3 cm was cut and 

placed inside the impedance tube. Following the procedure 

detailed in [10], Zc and keq were obtained from a set of 

measured surface impedances (Zs1 and Zs2) and equation 8 

and 9. A big tube with a diameter of 10 cm was used to 

measure Zs1 and Zs2 for frequencies up to 1.6 kHz, and a 

small tube with a diameter of 3 cm was used for a range 

from 1.6 kHz to 6.4 kHz. Obtained parameters are shown in 

figure 4. Note that Zc is normalized with the air impedance 

(𝜌c). 

 

 

 

 

Once Zc and keq are obtained, the equivalent fluid 

parameters (ceq and ρeq) can be deduced with equation (3), 

(4) and (5). The equivalent celerity and density of the 

porous material are shown in figure 5. Visible transitions 

after 1.6 kHz seen in both figure 4 and 5 are due to lesser 

measurement qualities of the small impedance tube. 

Nevertheless, the empirical Delany-Bazley model is 

comparable to experimental results. The real parts of the 

equivalent celerity and density seen in figure 5 are averaged 

over 1/3 octave bands then used to calculate resonant 

frequencies and modeshapes in FEM modeling of an 

uncoupled damped cavity subsystem of case (c).  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

  

 4 Subsystem damping loss factor 

 

In order to give more accurate numerical predictions of 

subsystem energy levels, experimentally estimated 

subsystem damping levels (η1 and η2) were plugged into 

equation 1. The damping levels are estimated by the high-

resolution modal analysis method detailed in [3]. The 

subsystem damping for all three cases in figure 1 was 

considered: 1) a bare plate, 2) an empty cavity, 3) a plate 

damped with a single damping pad, 4) a plate damped with 

two damping pads and 5) a damped cavity. Impulse 

responses were taken at several locations on the plate 

subsystem and inside the cavity subsystem then damping 

levels were estimated and averaged from a number of 

selected resonant peaks for each 1/3 octave band. In figure 

6, damping levels of individual modes for a plate damped 

with a single damping pad are shown in dots, and an 

average value is shown in line. Figure 7 shows averaged 

levels of all five subsystems. The influence of the 

dissipative materials is apparent. However, two damping 

pads do not double the loss factors compared to those of a 

single pad. The levels are approximately twice at low 

frequencies, and the effect diminishes as frequency 

increases.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

The damping level (η1 and η2) has a direct impact on 

subsystem energy levels as seen in equation 1. In other 

words, an accuracy of the SmEdA depends on them. Unless 

exact damping levels are determined, a numerical 

Figure 5. Measured and analytical complex equivalent 

parameters of the porous material. (1) Real part of 

equivalent celerity. (2) Real part of equivalent density. 

Figure 4. Complex equivalent parameters of the porous 

material. (1) Normalized characteristic impedance. (2) 

Fluid wavenumber 

Figure 6. Damping loss factors of the plate treated with a 

single damping pad (case (b)). The red dot are damping 

levels of individual modes, and the blue line is an average 

value in 1/3 octave band.  

Figure 7. Experimentally estimated subsystem damping loss 

factors averaged in 1/3 octave band for case (a), (b) and (c). 

(1) Plate subsystem damping. (2) Cavity subsystem 

damping. 



prediction is bound to deviate from an experimental result. 

Suppose that experimentally obtained damping levels are 

over or under estimated, then upper and lower bounds of 

the energy ratio (Ecavity/Eplate) can be set by considering the 

lowest and the highest damping levels in frequency bands.   

Even if an energy ratio deduced from the average damping 

levels differs from an experimental result, at least its 

possible deviation range can be predicted for an 

engineering purpose. Such results will be given in section 5. 

 

 

5 Subsystem energy relation 
 

5.1 Numerical and experimental 
procedure 

 

SmEdA subsystem energy levels were deduced as the 

power was injected into a random position on the plate 

surface. This was done by solving the SmEdA power flow 

equation [1]. This was also experimentally done as seen in 

figure 8. As the plate was excited by a stationary harmonic 

point force (sweep signal), the plate velocity and the cavity 

pressure were simultaneously measured and averaged over 

multiple locations in order to give the subsystem energy 

levels [11]. A frequency range for case (a) and (b) is up to 

10 kHz. Note that a frequency range for case (c) is up to the 

5 kHz band since the porous material properties measured 

with the impedance tube are valid until 6.4 kHz.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

5.2 Result and discussion 
 

Numerically obtained subsystem energy levels for three 

cases are shown in figure 9. Note that the SmEdA 

calculations were rendered with average subsystem 

damping levels. For case (a) and (b), the influence of the 

damping pad is apparent as seen in figure 9-(1). A single 

damping pad diminishes the plate energy levels by an 

average 7.5 dB compared to (a) at all frequencies. Two 

damping pads do not give twice the damping loss factor as 

seen in figure 7-(1). However, its effect is almost doubled 

in plate subsystem energies as the levels are decreased by 

an average 4 dB more than a single pad. The cavity energy 

levels also decrease when dissipative materials are applied 

to either subsystem. However, changes in acoustic energies 

are smaller between case (b) and (c) than those in plate 

energies. The effect of the porous material is also clearly 

seen in figure 9-(2). The porous material reduces the cavity 

energies by an average 3.5 dB compared to the empty 

cavity of case (a). Interestingly, the cavity energy levels are 

reduced more by treating the plate subsystem than directly 

treating the cavity at almost all frequencies.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

  

Subsystem energy levels experimentally obtained are 

presented in figure 10. The plate energies in figure 10-(1) 

are in accordance with the numerical results for all cases 

although the numerical levels are generally overestimated. 

The differences between plate energies for case (a) and (b) 

in experimental result are rather small compared to those in 

numerical result. The same tendencies are shown in the 

cavity energies as well in figure 10-(2). The SmEdA 

method can well predict the influence of different damping 

mechanisms of all three cases but overestimates overall 

levels. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 11 shows experimentally obtained subsystem 

energy ratio (Ecavity/Eplate) for case (b) in red solid line, when 

the plate is treated with two damping pads. The upper 

numerical limit in black dotted line is given when the 

Figure 8. Experimental setup of the plate-cavity coupled 

structure. Subsystem frequency responses (plate velocity 

and cavity pressure) are simultaneously measured as the 

plate is excited. Force and acceleration at the drive point are 

also measured with an impedance head.  

Figure 9. Numerically obtained subsystem energy levels in 

1/3 octave bands for case (a), (b) and (c). (1) Plate 

subsystem energy. (2) Cavity subsystem energy 

Figure 10. Experimentally obtained subsystem energy 

levels in 1/3 octave bands for case (a), (b) and (c). (1) Plate 

subsystem energy. (2) Cavity subsystem energy 



lowest damping levels for both subsystems are considered. 

The highest damping levels then set the lower limit. 

Experimental result is within the limits only at high 

frequencies above 1 kHz. The discrepancies at low 

frequencies could be due to the coupling mechanism in 

experimental setup. If the plate boundaries are not ideally  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

clamped, this changes the actual dimension of the plate 

different from that of the finite element model of an 

uncoupled plate. Such differences can change a number of 

plate resonant modes and modal orders which can 

eventually lead to different spectral and spatial couplings 

with the cavity modes. Then the amount of energy 

exchanged through these couplings can deviate from 

numerical predictions.  

Figure 12 shows both numerical and experimental 

energy ratios for all three cases. The dissipative treatment 

applied to the plate subsystem alone did not result in 

substantial change compared to case (a). As seen in figure 

12-(1) and 12-(2), both numerical and experimental results 

of case (b) are comparable for the mid-high domain (above 

800 Hz). Since the structural treatment resulted in reduction 

of both subsystem energy levels as seen in figure 9 and 10, 

their ratios remain almost unchanged. However, the ratio of 

case (c) is lower than the rest since only the cavity energies 

are reduced by the porous material. The ratio of case (c) is 

approximately 4 dB lower than the rest for both numerical 

and experimental results. This clearly demonstrates a 

necessity of the direct acoustic response reduction by an 

absorbing material if a change in subsystem energy ratio is 

expected.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 12-(3) shows direct comparisons between 

numerical and experimental results for case (a) and (c). The 

numerical predictions are overall comparable to 

experimental results notably for the mid-high domain. 

Above 1 kHz, discrepancies between numerical and 

experimental results are an average 1.7 dB for case (a) and 

an average 2.2 dB for case (c).    

The SmEdA predictions demonstrate overall 

comparable performance with experimental results for 

plate-cavity coupled problems. The method can also 

successfully predict the subsystem energy relation when 

subsystems are treated with dissipative materials. However, 

the discrepancies at low frequencies are persistent for all 

three cases. This could be due to non-ideal boundary 

condition brought by the coupling mechanism in 

experimental setup.  

 

 

6 Conclusion 
 

A plate-cavity coupled problem is investigated in the 

framework of SmEdA. When each subsystem is treated 

with dissipative materials (viscoelastic and porous), they 

can be modeled as equivalent single layer and equivalent 

fluid respectively. The equivalent properties of a porous 

material can be deduced from the simple impedance tube 

measurement of "two-cavity-method." Obtained parameters 

are complex and frequency dependent.  

It is demonstrated that the dissipative treatments have 

clear influence over subsystem damping levels as well as 

subsystem energy levels. However, accurate subsystem 

damping levels are required for deducing correct energy 

levels. Otherwise, the energy ratio can be predicted within a 

range whose upper and lower limits can be set by 

considering the lowest and the highest damping levels in 

frequency bands.  It is also shown that an energy ratio of 

the cavity subsystem over the plate subsystem is not 

significantly modified if only the structural subsystem is 

treated. This can be achieved by treating the cavity 

subsystem alone with a porous material. 
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