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Boolean Functions: Cryptography and Applications BFCA’05

Fonctions Booléennes : Cryptographie & Applications

EXPONENTIAL SUMS AND BOOLEAN FUNCTIONS

Julien Bringer1 and Valérie Gillot, Philippe Langevin2

Abstract. We study the nonlinearity of Boolean functions
constructed by means of a subgroup of the multiplicative
group of a finite field. The functions that we consider are
constant over the non trivial cosets of a subgroup of small
index. Classical properties of Gauss sums lead us to propose
a new conjecture of the Patterson-Wiedemann type. One
of the major steps of this approach consists in finding good
estimations of exponential sums restricted over subgroup.

1. Nonlinearity

All along the paper, L denotes a finite extension of degree m
of F2 the field of order two. The canonical additive character of
L is denoted by µ. It is defined by means of the abolute trace
of L over F2 by µ(x) = (−1)TrL(x). The Fourier coefficient of a
complex mapping f is defined, at a ∈ L, by

f̂(a) =
∑

x∈L

f(x)µ
(
ax

)
. (1)

We denote by R(f) := supa∈L |f̂(a)| the spectral amplitude of f .
One of the most exciting challenge at the intersection of the coding
theory and cryptography consists in finding the minimal spectral
amplitude that can achieve a binary function i.e. a mapping from
L into ±1. For a such function, the Parseval relation says that
R(f) is greater than or equal to

√
2m. This fact splits the problem
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in two case according to the parity of m. In the case of m is even,
there exists bent functions of spectral amplitude

√
2m and that is

the best that we can do. The main questions are : how to construct
bent functions, how to classify or merely how to count them. In
the case of m is odd, the exact value of Rm = inff R(f) is not
known, and the famous conjecture of Patterson-Wiedemann [6]
claims the asymptotic behavior:

Rm ∼
√

2m. (2)

Now, let G be the subgroup of L× of index v. We ask similar
questions. What is the maximal value, say Rv(f), of the character
sums

f̃(a) =
∑

x∈G

f(x)µ
(
ax

)
?

The minimal value, say Rv
m of the Rv(f)’s when f ranges the

set of binary functions is called the spectral radius of index v, in
this paper we study theses numbers. The main goal of the present
contribution is to exhibit examples of groups with small index such
Rv

m is rather small. For one thing that could seem artificial but
recent works of Bringer, summarized in the next section, show
links with the Patterson-Wiedemann conjecture. In section (5),
we recall the basic notion over exponential sums that we apply to
construct our examples.

2. Bringer construction

Let G be a subgroup of index v of L× and let Ω be the quotient
group L×/G. Let s be a balanced mapping defined over Ω such
that s(ω) = ±1 for all ω 6= 1, s(1) = 0, and

∑
ω∈Ω s(ω) = 0. We

consider the binary function

h(x) = f(x)g(x) +
∑

16=ω∈Ω

s(ω)g(x/ω) (3)

where f is a binary function, and where g is the indicating function

of G i.e. g(x) =

{
1, x ∈ G;

0, x 6∈ G.
. In this paper, we will say that the

binary function h is a configuration of index v by the sequence s
and the section f , briefly a (v, s, f)-configuration. The function h
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is constant over all cosets of G except over G itself. As in [4], we
write the Fourier coefficient of g at a by means of Gauss sums

ĝ(a) =
1

v

∑

χ⊥G

τL(χ)χ̄(a). (4)

See [5], for generality on Gauss sums. Hence

ĥ(a) =
1

v

∑

χ⊥G

τL(χ)s(χ)χ̄(a) + f̃(a). (5)

where s(χ) =
∑

ω∈Ω s(ω)χ̄(ω). Note this last sum is nothing
but the multiplicative Fourier coefficient of s considered as a map-
ping from the group G into {−1, 0,+1}. For χ 6= 1, let us set
τL(χ) = υ(χ)

√
q, note that |υ(χ)| = 1. Since s is balanced, we

have

ĥ(a) =

√
q

v

∑

16=χ⊥G

υ(χ)s(χ)χ̄(a) + f̃(a). (6)

The last expression allows us to guess sufficients conditions in
order to construct a configuration with a small spectral amplitude.
For example, if the υ(χ)’s are closed to 1, for all the non trivial
χ, then thanks to orthogonality relations, the previous equation

becomes ĥ(a) ∼ s(ω)
√

q + f̃(a), where a ∈ ω ∈ Ω. And so, if the
second term is negligeable compared to

√
q , then h would have

a spectral amplitude near
√

q. This kind of construction would
be helpfull to confirm the Patterson and Wiedemann conjecture.
The hypothesis of the example can be achieve in some special case
(e.g. for some values of m or for m growing to infinity). A main
problem is how small the second term can be.

This is a more general problem than the conjecture of Patterson
and Wiedemann, but it is interesting to notice that, if we want to
find functions with high non-linearity over L in a such way, we do
not have to be very tight over G.

These are the reasons why, as we said in the introduction, we
focus our interest in the last point and we try to understand the
behaviour of Rv

m. First, note that the Parseval relation, as in the
all space case, gives us a lower bound :

∑

a∈L

f̃(a)2 = 2m 2m − 1

v
=⇒ Rv(f) ≥

√
2m − 1

v
. (7)
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Again, the question is how far to this lower bound are we ? By
analogy with the all-space case, and due to numerical results, we
guess that the Patterson-Wiedemann conjecture would become :

Conjecture 2.1. Let v be an odd integer. For a large integer m
such that v | (2m − 1) :

Rv
m ∼

√
2m

v

3. Quadratic residue construction

In this section, we present a nice configuration involving qua-
dratic residue that gives an higly nonlinear Boolean function of 15
variables constant on the group of index 7 of F×

215 .

Let v > 3 be a prime congruent to 3 modulo 4 such that 2 gener-
ates the group of quadratic residues modulo v. In the terminology
of [3], the pair (v, 2) satisfies the quadratic residue conditions. Let
χ be a multiplicative character of order v. There exist integers t,
A and B such that :

τL(χ) = 2t(A + B
√
−v), 2 6 |AB;

where t is deeply connected to both Stickelberger theorem and the
class number of the quadratic field Q(

√
−l). For all 0 ≤ j < v,

τL(χj) = 2t
(
A +

(
j

v

)
B
√
−v

)

Let γ be primitive root of L. We assume that χ(γ) is equal
to ζv the principal root of order v. The elements γ0, γ1,. . . , γv−1

forms a system of representatives of Ω. We define the quadratic

residue spread by

h(x) =

v−1∑

j=1

(
j

v

)
g(γ−jx).

It is a balanced function, ĥ(0) = 0 and the other Fourier coef-
ficients are given by means of the Legendre symbole

ĥ(γk) = 2t ×
((k

v

)
A − B + vBδ0(k)

)
(8)
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where δ0(k) = 1 or 0 according to whether k = 0 or not. Indeed,

from Gauss we know
∑v−1

j=0

(
j

v

)
ζks
v =

(
s

v

)√
−v. In particular,

s(χj) =
∑v−1

i=0

(
i

v

)
χ̄(γij) = −

(
j

v

)
. The remainder is a straight-

forward calculation:

vĥ(γk) =

v−1∑

j=1

τL(χj)s(χ̄j)χj(γk) = −
v−1∑

j=1

τL(χj)[

(
j

v

)√
−v]ζkj

= −2t
v−1∑

j=1

[A

(
j

v

)√
−v − Bv]ζkj

= −2tA
√
−v

v−1∑

j=1

(
j

v

)
ζkj + 2tBv

v−1∑

j=1

ζkj

= 2tAv

(
k

v

)
+ 2tBv

v−1∑

j=1

ζkj.

Let χ be a multiplicative character of order 7 in F215 . We can
realize χ as the lift of a non trivial multiplicative character χ′ of
F8, so that

τF
215

(χ) = (τF8
(χ′))5 = (−1 +

√
−7)5 = −16(11 +

√
−7)

i.e. A = 11 and B = 1, whence the Fourier transform of the
quadratic spread takes the values −160, −96 and 192.

By an exhaustive computer search among the monomial xs, we
have found that the binary function

h(xs) = µ(x755)g(x) +

v−1∑

j=1

(
j

v

)
g(γ−jx).

has spectral amplitude 232 when s = 755. The spectrum of the
function is detailed in table 1. We believe it is possible to obtain
such good nonlinearity for all the instances m = 3r for which the
Gauss sums lies within a narrow angular sector. It is the case for
m = 15. According to the table table 2 below, the best situation
for that point of view seems r = 13 i.e. for dimension 39.
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Table 1. Spectrum of the quadratic resisue spread

h(x) = µ(x755)g(x) +
∑v−1

j=1

(
j

v

)
g(x/γj).

value -216 -152 -88 -24 40 104 168 232
multiplicity 7550 6494 1208 3020 755 151 6795 6795

Table 2. arguments of the Gauss sums for the
group of index 7 in an extension of degree r of F8

lies in a sector of ∆ degree.

r 13 26 39 52 65 78 91 96 83 70 57 31 44 18 5
∆ 1 3 5 7 9 11 11 15 17 19 21 23 13 25 27

4. Asymptotic Bound

Asymptotically, it is known [7] that almost all boolean func-
tions have high non linearities, and so that they have low spectral
amplitudes. For binary functions over a subgroup G of L×, we
show here that this phenomenon is always true.

First, let us recall known bounds on sums of binomial coeffi-
cients.

Lemma 4.1. Let N be any positive integer and 0 < λ < 1/2.
Then

2NH2(λ)

√
8Nλ(1 − λ)

≤
∑

0≤i≤λN

(
N

i

)
≤ 2NH2(λ) < 2Ne−2N(1/2−λ)2

where H2(x) = −x log2(x) − (1 − x) log2(1 − x) is the entropy

function.

This lemma implies the following result :

Theorem 4.2. Let m > 0 be an integer, G a subgroup of L× and

N, v the order and the index of G. Let c be any strictly positive

real number such that N > 2c2m. Then, the density of the set {f :

G → {±1}, Rv(f) ≤ c
√

2Nm} is greater than 1 − 2m(1−c2 log2(e)).

If c2 log2(e) > 1, then this density tends to 1 when m tends to

infinity. For every m ≥ 3 and G such that N > 2m, a majority

of functions f defined over G are such that Rv(f) ≤
√

2Nm.
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EXPONENTIAL SUMS AND BOOLEAN FUNCTIONS 7

Proof. Let l : L → F2 be a linear function and lG its restriction
over G, then the number of functions f : G → {±1}, such that
the distance between f and µ(lG) over G is lower than N/2 −
c
√

m
√

N/2, is :

A =
∑

0≤i≤N/2−c
√

m
√

N/2

(
N

i

)
.

Thanks to lemma 4.1, we deduce that : A ≤ 2Ne−2N(1/2−λ)2 ,

where 0 < λ = 1/2 − c
√

m/
√

2N < 1/2. So, A ≤ 2N−mc2 log2(e).
Hence, the number of functions f at a distance over G lower

than N/2 − c
√

m
√

N/2 from a linear function is at most 2mA =

2m+N−mc2 log2(e). As f̃(a) = N − 2d(f, x 7→ µ(ax)), we obtain
that the density of the set defined previously in the theorem,
among all the binary functions defined over G, is greater than

1 − 2m(1−c2 log2(e)).
Moreover, if c2 log2(e) > 1 and if we have a sequence (Gm)m,

where for all m, Gm is a subgroup of order Nm > 2c2m of F×
2m ,

then the density, of the functions defined over Gm such that Rvm(f) ≤
c
√

2Nmm, tends toward 1 when m grows to the infinity.

For the last result, notice that we have 2m(1−c2 log2(e)) < 1
2 if

m ≥ 3 and c = 1. �

Hence, if m ≥ 3 and N > 2m, then
√

2m − 1

v
≤ Rv

m ≤
√

2m

√
2m − 1

v
,

and a majority of functions are between these two bounds. Notice
that in particular, if N = o(2m/m), then the majority of binary
functions f defined over G are such that Rv(f) = o(

√
2m). Which

is sufficient, added to the others points seen in section (2), to
construct boolean functions with high non linearities.

5. Exponential Sums

We consider a polynomial f(X) ∈ L[X] and we write f̃(a) the
Fourier coefficient of the binary function x 7→ µ

(
f(x)

)
:

f̃(a) =
∑

x∈G

µ
(
f(x) + ax

)
=

1

v

∑

x∈L×

µ
(
f(xv) + axv

)
. (9)
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In particular, if the degree of f(X) is an odd integer s > 1 the
famous Hasse-Weil bound gives the estimation

Rv(f) ≤ 1

v
(sv − 1)

√
2m +

1

v
. s

√
2m. (10)

This in comparison of (7) seems bad. However, when the index of
G is fixed and m increases then (10) is the best that one can say.
Whence, for a given polynomial, there is infinitely many extensions
such that the Parseval bound (7) is far from the reallity.

The objective of this section is to estimate the spectral am-
plitude of index v of monomials f(x) = γxs for certain γ ∈ L
and integer s. If m is not prime (m = lt), the strategy consists

to evaluate the exponential sum over K = Fq instead of L, with
[L : K] = l and q = 2t, like in [2]. So, we search instances of
(m, l, t, v, s) where v is the index of a group G and s an exponent
such that Rv(γxs) is small for a good choice of γ ∈ L. In practice,
it is difficult to obtain smooth hypersurfaces from any γxs. So,
we determine the forms of s and vs to apply the results of [2]. Let
wq(e) be the sum of the digits of the q-ary expansion of an integer
e. Assume that wq(s) 6= wq(sv), denote w = max{wq(s), wq(sv)}
and let d ∈ {v, sv} the integer such that w = wq(d).

If d < q is odd or if the q-ary expansion of d is d = 1 + kqj for
any even integer k and j < (m/l), then Theorem 2.1 in [2] gives
the following estimation

Rv(f) ≤ 1

v
(w − 1)l

√
2m +

1

v
(11)

With a computer, we can find a lot of numerical intances (m, l, t, v, s)
satisfying (w − 1)l < (sv − 1). Unfortunately, we did not find any
which satisfy the inequality (??). We obtain the following propo-
sition for group with index 3.

Proposition 5.1. Set m = 2t, with odd t. Consider f(x) = γxs,

with TrL/K(γ) 6= 0. The instance
(
2t, 2, t, 3, (q + 1)/3

)
satisfies

R3
m(f) ≤ 4

3

√
2m +

1

3
(12)
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Proof. Set m = 2t, v = 3, vs = q + 1. If f(x) = γxs, we have to
estimate

f̃(a) =
1

v

∑

x∈L×

µ
(
γxsv + axv

)
=

1

v

∑

x∈L×

µ
(
γxq+1 + ax3

)

If a 6= 0, max{wq(3), wq(q + 1)} = 3, the estimation (11) gives
(12). If a = 0, we have to calculate

f̃(0) =
1

v

∑

x∈L×

µ
(
γxq+1

)

Let µK be the additive character of K and let be x ∈ L×,

µ(γxq+1) = µK(TrL/K(γxq+1)) = µK(xq+1TrL/K(γ)).

The map from L× to K× defined by x 7→ xq+1 is onto, so we have

f̃(0) =
q + 1

v

∑

y∈K×

µK(yTrL/K(γ)) = −q + 1

v

Thus, the inequality (12) rises from |f̃(0)| = q+1
3 ≤ 4

3q + 1
3 .

�
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