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Abstract 
This paper describes an original method for speech quality 
evaluation in the presence of different types of background 
noises for a range of communications (mobile, VoIP, RTC). 
The model is obtained from subjective experiments described 
in [1]. These experiments show that background noise can be 
more or less tolerated by listeners, depending on the sources of 
noise that can be identified. Using a classification method, the 
background noises can be classified into four groups. For each 
one of the four groups, a relation between loudness of the 
noise and speech quality is proposed. 
Index Terms: speech quality, background noise classification, 
non-intrusive model, model based on signal 

1. Introduction 
Previous subjective experiments [1] have shown the influence 
of loudness of background noise on perceived speech quality. 
An interesting point to note is that their relation depends on 
meaning associated with the sources of the background noise. 
For example, if the listener identifies the noise as coming from 
a source in the vicinity of the talker, some tolerance was 
noticed for the voice quality assessment. This can be seen in 
figure 1, for noises coming from: a city environment, inside of 
a restaurant, and a television. The evaluation of speech quality 
is higher for these noise sources than for others which do not 
have informational content. This result was confirmed in two 
experiments: the first combined different kinds of noises with 
three different levels of loudness (cf. figure 1), and the second 
also involved various voice codecs and IP degradations.  

 

Figure 1: Differences of speech quality for the six 
kinds of noises for three loudness levels (the flat line 
represents the situation without background noise) 

This effect of background-noise-type influencing evaluation of 
speech quality is not taken into account in existent models, 
such as ITU-T PESQ/P.862 [2] and ITU-T G.107/E model [3].  
The present paper proposes an original model of speech 
quality perception for situations in which there are different 
kinds of noises present in the speech signals. 
First, models relating loudness and type of the background 
noise to speech quality will be presented. Then, a 
classification scheme allowing to separation of the four groups 
of background noises will be described. This model will be 
tested using stimuli from the first experiment [1] and the 
results will be compared to the existing PESQ model [2].  

2. Presentation of the proposed model 
Subjective experiments [1] lead us to separate background 
noise into four classes according to the level of tolerance of 
noise in the assessment of speech quality: 

•  Class 1 � Intelligible noise. This group includes noise 
from music or some other speech. This class of 
background noise is characterized by high tolerance of 
noise by subjects concerning the speech quality 
perception, in comparison with a random noise with 
same loudness.  

•  Class 2 � Environmental noise. This noise has 
informational content and has given information about 
the location of the talker, such as city noise, restaurant 
noise... This class is characterised by light tolerance of 
noise by subjects concerning the speech quality 
perception.  

•  Class 3 � Breath noise. This noise is stationary and 
does not contain informational content. Examples are 
random pink noise, stationary wind noise or stationary 
speech noise. 

•  Class 4 � Crackling noise. This noise does not contain 
informational content and is stationary, such as electric 
noise. This class is characterised by a significant 
decrease in speech quality perception, as assessed by 
subjects, in comparison to random noise with the same 
loudness. 

For each of the four classes of noise, a relation between 
loudness of the noise and estimated speech quality with MOS-
LQSN score has been determined (figure 2) from the 152 
stimuli used in the first experiment [1]. The classes are 
empirically labelled for each of the 152 sounds. The optimum 
relation between loudness of the noise and MOS-LQSN is 
characterized by a logarithmic regression. 



Figure 2: relation between noise level and speech quality for 
the four classes of background noises. 

Four steps are necessary in applying the speech quality model. 
First, voice activity detection (VAD) is used to detect the 
presence of background noise in the audio signal. This 
technique is described in [4]. Second, the overall loudness of 
the background noise is computed using Zwicker's model [5]. 
Third, the class of background noise is calculated from signal 
analysis. Finally, a logarithmic relation is applied according to 
the class of background noise in order to obtain the MOS 
Score.  
The next part of the paper describes the way this classification 
model is constructed. 

3. Classification of background noises 

3.1. Methodology 
First of all, a set of 632 stimuli was selected, composed of  
various types of background noises from two experiments 
explained in [1], and from a public sound database. 
Eight indicators were then computed on the 632 background 
noises of this set; some of them are well-known objective 
measures for the discrimination between different kinds of 
sound [6] or recognition of real-life sound and speech [7]. 
1. The signal correlation: This is the correlation 

between the signal and its one sample shifted version 
(Bravais-Pearson coefficient) 

2. The zero-crossing rate (ZCR) of noise 
3. The variation of acoustic power of noise 
4. The spectral centroid of noise 
5. The spectral roughness of noise 
6. The spectral flux of noise 
7. The spectral rolloff point of noise 
8. The harmonic coefficient 
The classes are empirically labelled according to the tolerance 
level in the assessment of speech quality, which was obtained 
after listening of each sound. 
The classification tree algorithm [8] was then used to obtain  a 
full decision tree. The entry parameters to the classification 
tree algorithm were made up of the 8x632 indicators and the 
class label of each of the 632 sounds. Post-analysis produced 
an optimum decision tree using only necessary indicators 
presented above, and keeping a low classification error. 

3.2. Stimuli 
The set of 632 stimuli was a combination of 344 stimuli used 
in experiments 1 and 2 (see [1] for detail) and of 288 other 
stimuli issued from a public sound database.  
These 288 new stimuli were composed of 48 new sounds, such 
as circuit noise, wind noise, car noise, vacuum cleaner noise, 
hairdryer noise, babble noise, natural noise or music noise, 
presented with six conditions of degradation.  
To simulate noise for narrow band transmission, each noise 
signal was sampled at 8 KHz and filtered with a band pass IRS 
filter (300 – 3400 Hz), then encoded and decoded either with 
G.711 or G.729.  
To simulate noise for wideband transmission, each sound was 
sampled to 16 KHz and filtered with a band pass filter using 
ITU-T P.341 (50 – 7000 Hz), then encoded and decoded with 
G.722. 
The three coding conditions were presented at two loudness 
levels (N=63 and 47 dB SPL in the case of random pink 
noise). Each noise signal was eight seconds long. 

3.3. Determination of the different classes 
Each used background noise for each degradation was 
attributed to one of the four classes (by the first author) 
because some that are, perfectly recognisable without 
degradation may no longer be as such with the insertion of 
degradation (encoding-decoding / packet loss). Thus, a better 
source recognition is observed when noise is encoded and 
decoded with a wideband codec (G.722) than with a 
narrowband codec (G.711 or G.729).  

3.4. Presentation of the classification model  
This section presents the results of the tree classification 
method explained in section 3.1. In a construction step, 500 
stimuli out of 632 were randomly chosen to compute model 
parameters. The last 132 stimuli were used to validate the 
model.  

 

Figure 3: Decision tree classification of the four 
classes of noises. 

The optimum decision tree is presented in figure 3. It shows 
that only two indicators were necessary to classify the different 
kinds of noises into four classes. The first is a temporal 
indicator named "the variation of acoustic power". The 
second is a spectral indicator named "spectral flux" according 
to [6]. 



The temporal indicator represents the time variation of the 
power of the noise signal. It is defined as the standard 
deviation of power of all frames of the signal. Power is 
computed for every frame, each consisting of 512 samples, 
with an overlap between successive frames of 256 samples 
(50%), corresponding to a time period of 64 ms per frame, 
with an overlap of 32 ms with a sample rate of 8 KHz. The 
acoustics power for frame i, Pi is given by: 
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Where n=1…N represents the samples on frame i with N=512, 
and xn is the amplitude of sample n. When the background 
noise is longer than one frame, the value IND_TMP of 
temporal indicator is calculated as the standard deviation of 
acoustic power P of all frames. 
For the noises used, this indicator increases as the noise 
becomes more and more non-stationary.  
The spectral indicator is designated by "IND_FRQ", and is 
calculated from the power spectral density (PSD) of the 
background noise. This indicator is determined per frame 
using 256 samples, corresponding to a time period of 32 ms 
with a sample rate of 8 KHz. Unlike the temporal indicator, 
there is no overlap between successive frames. The spectral 
flux SF represents how quickly the power spectrum of a signal 
is changing. SF for frame i, SFi is given by: 
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Where ak represents the PSD value of the frequency 
components k of the frame i or i-1. IND_FRQ is defined as 
the mean of SF coefficient for all frames. 
Firstly, the proposed tree separates background noise into two 
categories related to the stationarity of the noise. If the 
variation of acoustic power is less than IND_TMP=1.03485, 
then the background noise is considered as stationary, 
otherwise it is considered as non-stationary.  
Secondly, these two main categories can be subdivided using 
the spectral flux indicator. In the first case of stationary noise, 
if the value of spectral flux is lower than 0.145, the noise 
belongs to the class "crackling" otherwise it belongs to the 
class "breath". In the case of non-stationary noise, if the value 
of spectral flux is lower than 0.280, the noise belongs to the 
class "environment" otherwise it belongs to the class 
"intelligible". 
The predictive potential of the tree can be assessed by 
calculating the number of background noises that are correctly 
classified.  
This proposed tree presents a global percentage of correct 
classifications of 87.3 %. More precisely, the percentage of 
correctly classified for each class is as follows: 

•  100% for the class "crackling" 

•  96.4% for the class "breath" 

•  79.2% for the class "environment" 

•  95.9% for the class "intelligible" 
It appears that "environment" class obtains a proportion of 
correctly classified noises lower than the other classes. It is 
caused by the similarity of certain noises that can be classified 
into two classes, for example, wind noise or hair drier sounds 
which are between environment and breath noises.  

3.5. Validation of the classification model 
The 132 stimuli not taken into account during the learning 
phase were used to verify the robustness of the classification 
model. The percentage of correctly classified background 
noises was 91.47%. Table 1 presents the percentages of the 
correctly classified noises for three combinations of stimuli: all 
632 stimuli, the 500 stimuli used during the learning phase of 
the model of classification, and the 132 stimuli used in the 
validation phase.  

Table 1.Percentage of correctly classified background 
noises for three subsets of the stimuli corpus. 

Number of  
stimuli  

considered 

Percentage 
correctly 
classified 

632 (total) 87.28 % 
500 (learning) 86.20 % 

132 (test) 91.47 % 

3.6. Advantages and applications 
The advantage of the proposed classification model is mainly 
the low number of indicators used to classify several kinds of 
background noises into four classes. This model can also be 
used in real time, for example in telephony applications with 
an implementation directly at the end of the transmission close 
to the listener.  Moreover, the proposed model of classification 
is valid with different conditions of degradations like packet 
loss, or different wideband and narrow band codecs.  

The classification model of background noises can be used 
in many applications. For example, according to the 
classification result a noise cancellation tool can be used or 
not. If the noise is judged to be helpful, noise cancellation is 
not performed, as opposed to situations when the noise is 
considered to be disturbing. The classification model can also 
be used to identify the type of noise present in speech, helping 
to find the origin of the degradation, thus enabling 
improvement of the quality of service. Furthermore, the 
classification model can be used with existing speech quality 
models like G.107 [3] or PESQ [2], to take into account the 
different kinds of noises present in speech, in order to improve 
the performance of existing model.  

4. Speech quality model using classification 
model vs PESQ model 

Finally, the overall speech quality model based on loudness 
and on classification, as presented in section 2, was evaluated 
in two steps. 

•  Firstly, the model was applied using a perceptual 
loudness determined by subjective experiment described 
in [1] in order to evaluate the performance of the 
proposed model with potential errors due only to 
classification algorithm. 

•  Secondly, the model was applied using an estimation of 
loudness provided by the Zwicker's overall loudness 
model [5] in order to evaluate the performance of the 
model in its application (without subjective experiment 
needs). 

The 152 stimuli of experiment 1 described in [1] were used to 
compare objectives scores with scores from subjective 
experiment. PESQ model obtained a correlation of R=0.91  
(p<0.001)(see [1]). The PESQ evaluation performance was 



taken as reference score and was compared with performance 
of the proposed speech quality model. 

4.1. Speech quality model using perceived 
loudness 

In this step, the speech quality model was evaluated with a 
classification model and subjective loudness.  

 

Figure 4: Comparison of MOS between subjective 
experiment and speech quality model using 
classification model 

The labels represent the background noise classes from 1 to 4, 
obtain by the classification model, as defined in section 2. The 
performance of both methods of regression functions and 
classification model is measured by the correlation coefficient 
between the MOS scores issues from the subjective 
experiment and the scores estimated by the model. The 
correlation score was R=O.98, (p<0.001). 

4.2. Speech quality model using calculated 
Zwicker's loudness model 

In this step, the speech quality model was evaluated with a 
classification model and Zwicker's loudness model.  

 

Figure 5: Comparison of MOS scores between 
subjective experiment and the speech quality model 
using classification model and Zwicker's loudness 
model  

The labels represent the background noise classes, as defined 
section 2. When Zwicker's loudness model is used, the 
correlation coefficient was R=0.93, (p<0.001). This model is 
not as effective as using subjective loudness, but it is still more 
accurate than the reference PESQ model (r = 0.91). In the 
future, Moore's loudness model will be tested to compare the 
accuracy of the two loudness models.   

5. Conclusions 
The present article demonstrates that the different types of 
background noises present in speech signal should be taken 
into account in speech quality models. The developed non-
intrusive model achieves a very good performance in 
comparison with existing intrusive models like PESQ model. 
It uses only two indicators issued from signal analysis and the 
calculated loudness. In this sense, it could be employed in real 
time to evaluate speech quality on a telephony network. An 
interesting point to note is that the proposed speech quality 
model, using classification, as well as giving a MOS score, 
allows identifying the type of noise present in speech. This can 
be helpful in supervision of tasks in communication networks, 
thus improving the quality of service.  
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