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Abstract. Designing algorithms for distributed systems that provide
a round abstraction is often simpler than designing for those that do
not provide such an abstraction. However, distributed systems need to
tolerate various kinds of failures. The concept of a synchronizer deals with
both: It constructs rounds and allows masking of transmission failures.
One simple way of dealing with transmission failures is to retransmit
a message until it is known that the message was successfully received.
We calculate the exact value of the average rate of a retransmission-
based synchronizer in an environment with probabilistic message loss,
within which the synchronizer shows nontrivial timing behavior. The
theoretic results, based on Markov theory, are backed up with Monte
Carlo simulations.

1 Introduction

Analyzing the time-complexity of an algorithm is at the core of computer sci-
ence. Classically this is carried out by counting the number of steps executed
by a Turing machine. In distributed computing [12, 1], local computations are
typically viewed as being completed in zero time, focusing on communication
delays only. This view is useful for algorithms that communicate heavily, with
only a few local operations of negligible duration between two communications.

In this work we are focusing on the implementation of an important sub-
set of distributed algorithms where communication and computation are highly
structured, namely round based algorithms [2, 4, 8, 17]: Each process performs
its computations in consecutive rounds. Thereby a single round consists of (1)
the processes exchanging data with each other and (2) each process executing
local computations. Call the number of rounds it takes to complete a task the
round-complexity.

We consider repeated instances of a problem, i.e., a problem is repeatedly
solved during an infinite execution. Such problems arise when the distributed
system under consideration provides a continuous service to the top-level ap-
plication, e.g., repeatedly solves distributed consensus [11] in the context of

∗This research was partially supported by grants P21694 and P20529 of the Austrian
Science Fund (FWF).



state-machine replication. A natural performance measure for these systems is
the average number of problem instances solved per round during an execution.
In case a single problem instance has a round-complexity of a constant number
R > 1 of rounds, we readily obtain a rate of 1/R.

If we are interested in time-complexity in terms of Newtonian real-time, we
can scale the round-complexity with the duration (bounds) of a round, yielding
a real-time rate of 1/RT , if T is the duration of a single round. Note that the
attainable accuracy of the calculated real-time rate thus heavily relies on the
ability to obtain a good measurement of T . In case the data exchange within a
single round comprises each process broadcasting a message and receiving mes-
sages from all other processes, T can be related to message latency and local
computation upper and lower bounds, typically yielding precise bounds for the
round duration T . However, there are interesting distributed systems where T
cannot be easily related to message delays: consider, for example, a distributed
system that faces the problem of message loss, and where it might happen that
processes have to resend messages several times before they are correctly re-
ceived, and the next round can be started. It is exactly these nontrivial systems
the determination of whose round duration T is the scope of this paper.

We claim to make the following contributions in this paper: (1) We give an
algorithmic way to determine the expected round duration of a general retrans-
mission scheme, thereby generalizing results concerning stochastic max-plus sys-
tems by Resing et al. [18]. (2) We present simulation results providing (a) deeper
insights in the convergence behavior of round duration times and indicating that
(b) the error we make when restricting ourselves to having a maximum number
of retransmissions is small. (3) We present nontrivial theoretical bounds on the
convergence speed of round durations to the expected round duration.

Section 2 introduces the retransmission scheme in question and the proba-
bilistic environment in which the round duration is investigated, and reduces the
calculation of the expected round duration to the study of a certain random pro-
cess. Section 3 provides a way to compute the asymptotically expected round
duration λ, and also presents theoretical bounds on the convergence speed of
round durations to λ. Section 4 contains simulation results. We give an overview
on related work in Section 5.

An extended version of this paper, containing detailed proofs, appeared as a
technical report [15].

2 Retransmitting under Probabilistic Message Loss

Simulations that provide stronger communication directives on top of a system
satisfying weaker communication directives are commonly used in distributed
computing [9, 8]. In this section we present one such simulation—a retransmission
scheme. The proposed retransmission scheme is a modified version of the α
synchronizer [2].

We assume a fully-connected network of processes 1, 2, . . . , N . Given an algo-
rithm B designed to work in a failure-free round model, we construct algorithm



A(B), simulating B on top of a model with transient message loss. The idea of
the simulation is simple: Algorithm A(B) retransmits B’s messages until it is
known that they have been successfully received by all processes.

Explicitly, each process periodically, in each of its steps, broadcasts (1) its cur-
rent (simulated) round number Rnd , (2) algorithm B’s message for the current
round (Rnd), and (3) algorithm B’s message for the previous round (Rnd − 1).
A process remains in simulated round Rnd until it has received all other pro-
cesses’ round Rnd messages. When it has, it advances to simulated round Rnd+1.

In an execution of algorithm A(B), see Figure 1, we define the start of sim-

ulated round r at process i, denoted by Ti(r), to be the number of the step in
which process i advances to simulated round r. We assume Ti(1) = 1. Further-
more, define L(r) to be the number of the step in which the last process advances
to simulated round r, i.e., L(r) = maxi Ti(r). The duration of simulated round r
at process i is Ti(r + 1) − Ti(r), that is, we measure the round duration in the
number of steps taken by a process.

Define the effective transmission delay δj,i(r) to be the number of tries until
process j’s simulated round r message is successfully received for the first time by
process i.3 We obtain the following equation relating the starts of the simulated
rounds:

Ti(r + 1) = max
16j6N

(

Tj(r) + δj,i(r)
)

(1)

Figure 1 depicts part of an execution of A(B). Messages from process i to
itself are not depicted as they can be assumed to be received in the next step.

To allow for a quantitative assessment of the durations of the simulated
rounds, we extend the environment using a probability space. Let ProbLoss(p)
be the following probability distribution: The random variables δj,i(r) are pair-
wise independent, and for any two processes i 6= j, the probability that δj,i(r) = z
is equal to (1− p)z−1 · p, i.e., using p as the probability of a successful message
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Fig. 1. An execution of A(B)

3Formally, for any two processes i and j, let δj,i(r)−1 be the smallest number ℓ > 0
such that (1) process j sends a message m in its (Tj(r) + ℓ)th step and (2) process i
receives m from j in its (Tj(r) + ℓ+ 1)th step.



transmission, the first z − 1 tries of sending j’s round r message to i failed and
the zth try was successful. Note that we can assume δi,i(r) = 1.

For computational purposes we further introduce the probability distribution
ProbLoss(p,M), whereM ∈ N∪{∞}, which is a variant of ProbLoss(p) where
the number of tries per simulated round message until it is successfully received is
bounded by M . Call M the maximum number of tries per round. Variable δj,i(r)
can take values in the set {z ∈ N | 1 6 z 6 M}. For any two processes i 6= j, and
for integers z with 1 6 z < M , the probability that δj,i(r) = z is (1−p)z−1 ·p. In
the remaining cases, i.e., with probability (1 − p)M−1, δj,i(r) = M . If M = ∞,
this case vanishes. In particular, ProbLoss(p,∞) = ProbLoss(p).

We will see in Sections 3.3 and 4, that the error we make when calculating
the expected duration of the simulated rounds in ProbLoss(p,M) with finite M
instead of ProbLoss(p) is small, even for small values of M .

3 Calculating the Expected Round Duration

The expected round duration of the presented retransmission scheme, in the
case of ProbLoss(p,M), is determined by introducing an appropriate Markov
chain, and analyzing its steady state. To this end, we define a Markov chain
Λ(r), for an arbitrary round r > 1, that (1) captures enough of the dynamics of
round construction to determine the round durations and (2) is simple enough
to allow efficient computation of each of the process i’s expected round duration

λi, defined by λi = E limr Ti(r)/r.
Since for each process i and r > 2, it holds that L(r− 1) 6 Ti(r) 6 L(r), we

obtain the following equivalence:

Proposition 1. If L(r)/r converges, then lim
r→∞

Ti(r)/r = lim
r→∞

L(r)/r.

We can thus reduce the study of the processes’ average round durations to the
study of the sequence L(r)/r as r → ∞. In particular, for any two processes i, j
it holds that λi = λj = λ, where λ = E limr L(r)/r.

3.1 Round Durations as a Markov Chain

A Markov chain is a discrete-time stochastic process X(r) in which the proba-
bility distribution for X(r + 1) only depends on the value of X(r). We denote
the transition probability from state Y to state X by PX,Y .

A Markov chain that, by definition, fully captures the dynamics of the round
durations is T (r), where T (r) is defined to be the collection of local round finish-
ing times Ti(r) from Equation (1). However, directly using Markov chain T (r)
for the calculation of λ is infeasible since Ti(r), for each process i, grows without
bound in r, and thereby its state space is infinite. For this reason we introduce
Markov chain Λ(r) which optimizes T (r) in two ways and which we use to com-
pute λ: One can achieve a finite state space by considering differences of T (r),
instead of T (r). This is one optimization we built into Λ(r) and only by it are
we enabled to use the computer to calculate the expected round duration. The



other optimization in Λ(r), which is orthogonal to the first one, is that we do not
record the local round finishing times (resp. the difference of local round finish-
ing times) for every of the N processes, but only record the number of processes
that are associated a given value. This reduces the size of the state space from
MN to

(

N+M−1
M−1

)

, which is significant, because in practical situations, it suffices
to use modest values of M as will be shown in Section 4.

We are now ready to define Λ(r). Its state space L is defined to be the set

of M -tuples (σ1, . . . , σM ) of nonnegative integers such that
∑M

z=1 σz = N . The
M -tuples from L are related to T (r) as follows: Let #X be the cardinality of
set X, and define

σz(r) = #
{

i | Ti(r)− L(r − 1) = z
}

(2)

for r > 1, where we set L(0) = 0 to make the case r = 1 in (2) well-defined. Note
that Ti(r)−L(r− 1) is always greater than 0, because δj,i(r) in Equation (1) is
greater than 0. Finally, set

Λ(r) =
(

σ1(r), . . . , σM (r)
)

. (3)

The intuition for Λ(r) is as follows: For each z, σz(r) captures the number
of processes that start simulated round r, z steps after the last process started
the last simulated round, namely r − 1. For example, in case of the execution
depicted in Figure 1, σ1(r) = 0, σ2(r) = 1 and σ3(r) = 2. Since algorithm A(B)
always waits for the last simulated round message received, and the maximum
number of tries until the message is correctly received is bounded by M , we
obtain that σz(r) = 0 for z < 1 and z > M . Knowing σz(r), for each z with
1 6 z 6 M , thus provides sufficient information (1) on the processes’ states in
order to calculate the probability of the next state Λ(r+1) = (σ1, . . . , σM ), and
(2) to determine L(r + 1) − L(r) and by this the simulated round duration for
the last process. We first obtain:

Proposition 2. Λ(r) is a Markov chain.

In fact Proposition 2 even holds for a wider class of delay distributions δj,i(r);
namely those invariant under permutation of processes. Likewise, many results in
the remainder of this section are applicable to a wider class of delay distributions:
For example, we might lift the independence restriction on the δj,i(r) for fixed
r and assume strong correlation between the delays, i.e., for each process j and
each round r, δj,i(r) = δj,i′(r) for any two processes i, i′.4

Let X(r) be a Markov chain with countable state space X and transition
probability distribution P . Further, let π be a probability distribution on X . We
call π a stationary distribution for X(r) if π(X) =

∑

Y ∈X PX,Y · π(Y ) for all
X ∈ X . Intuitively, π(X) is the asymptotic relative amount of time in which
Markov chain X(r) is in state X.

Definition 1. Call a Markov chain good if it is aperiodic, irreducible, Harris

recurrent, and has a unique stationary distribution.

4Rajsbaum and Sidi [17] call this “negligible transmission delays”.



Proposition 3. Λ(r) is a good Markov chain.

Denote by π the unique stationary distribution of Λ(r), which exists because
of Proposition 3. Define the function σ : L → R by setting σ(Λ) = max{z | σz 6=
0} where Λ = (σ1, . . . , σM ) ∈ L. By abuse of notation, we write σ(r) instead of
σ
(

Λ(r)
)

. From the next proposition follows that σ(r) = L(r)−L(r−1), i.e., σ(r)
is the last process’ duration of simulated round r− 1. For example σ(r+ 1) = 5
in the execution in Figure 1.

Proposition 4. L(r) =
∑r

k=1 σ(k)

The following theorem is key for calculating the expected simulated round
duration λ. We will use the theorem for the computation of λ starting in Sec-
tion 3.2. It states that the simulated round duration averages L(r)/r up to some
round r converge to a finite λ almost surely as r goes to infinity. This holds
even for M = ∞, that is, if no bound is assumed on the number of tries until
successful reception of a message. The theorem further relates λ to the steady
state π of Λ(r). Let Lz ⊆ L denote the set of states Λ such that σ(Λ) = z.

Theorem 1. L(r)/r → λ with probability 1. It is λ =
∑M

z=1 z · π(Lz) < ∞.

3.2 Using Λ(r) to Compute λ

We now state an algorithm that, given parameters M 6= ∞, N , and p, computes
the expected simulated round duration λ (see Theorem 1). In its core is a stan-
dard procedure to compute the stationary distribution of a Markov chain, in
form of a matrix inversion. In order to utilize this standard procedure, we need
to explicitly state the transition probability distributions PXY , which we regard
as a matrix P . For ease of exposition we state P for the system of processes with
probabilistic loop-back links, i.e., we do not assume that δi,i(r) = 1 holds. Later,
we explain how to arrive at a formula for P in the case of the (more realistic)
assumption of δi,i(r) = 1.

A first observation yields that matrix P bears some symmetry, and thus some
of the matrix’ entries can be reduced to others. In fact we first consider the
transition probability from normalized Λ states only, that is, Λ = (σ1, . . . , σM )
with σM 6= 0.

In a second step we observe that a non-normalized state Λ can be transformed
to a normalized state Λ′ = Norm(Λ) without changing its outgoing transition
probabilities, i.e., for any state X in L, it holds that PX,Λ = PX,Λ′ : Thereby
Norm is the function L → L defined by:

Norm(σ1, . . . , σM ) =

{

(σ1, . . . , σM ) if σM 6= 0

Norm(0, σ1, . . . , σM−1) otherwise

For example, assuming that M = 5, and considering the execution in Fig-
ure 1, it holds that Λ(r) = (0, 1, 2, 0, 0). Normalization, that is, right alignment
of the last processes, yields Norm(Λ(r)) = (0, 0, 0, 1, 2).



Further, for any Λ = (σ1, . . . , σM ) in L with σM 6= 0, and any 1 6 z 6 M ,
let P (6 z | Λ) be the conditional probability that a specific process i is in the
set {i | Ti(r + 1) − L(r) 6 z}, given that Λ(r) = Λ. We easily observe that i is
in the set if and only if all the following M conditions are fulfilled: for each u,
1 6 u 6 M : for all processes j for which Tj(r) − L(r − 1) = u (this holds for
σu(r) many) it holds that δj,i(r) 6 z +M − u. Therefore we obtain:

P (6 z | Λ(r)) =
∏

16u6M

P (δ 6 z +M − u)σu(r) , (4)

for all z, 1 6 z 6 M . Let P (z | Λ) be the conditional probability that process i
is in the set {i | Ti(r+1)−L(r) = z}, given that Λ(r) = Λ. From Equation (4),
we immediately obtain:

P (1 | Λ) = P (6 1 | Λ) and

P (z | Λ) = P (6 z | Λ)− P (6 z − 1 | Λ) , (5)

for all z, 1 < z 6 M . We may finally state the transition matrix P : for each
X,Y ∈ L, with X = (σ1, . . . , σM ) and Y = (σ′

1, . . . , σ
′
M ),

PXY =
∏

16z6M

(

N −
∑z−1

k=1 σk

σz

)

P (z | Norm(Y ))σz . (6)

Note that for a system where δi,i(r) = 1 holds, in Equation (4), one has the
account for the fact that a process i definitely receives its own message after 1
step. In order to specify a transition probability analogous to Equation (4), it is
thus necessary to know to which of the σk(r) in Λ(r), process i did count for, that
is, for which k, Ti(r)− L(r − 1) = k holds. We then replace σk(r) by σk(r)− 1,
and keep σu(r) for u 6= k. Formally, let P (6 z | Λ, k), with 1 6 k 6 M , be the
conditional probability that process i is in the set {i | Ti(r + 1) − L(r) 6 z},
given that Λ(r) = Λ, as well as Ti(r)− L(r − 1) = k. Then:

P (6 z | Λ(r), k) =
∏

16u6M

P (δ 6 z +M − u)σu(r)−1{k}(u)

where 1{k}(u) is the indicator function, having value 1 for u = k and 0 oth-
erwise. Equation (5) can be generalized in a straightforward manner to obtain
expressions for P (z | Λ, k).

The dependency of P (6 z | Λ(r), k) on k is finally accounted for in Equa-
tion (6), by additionally considering all possible choices of processes whose sum
makes up σz.

Let Λ1, Λ2, . . . , Λn be any enumeration of states in L. We write Pij = PΛiΛj

and πi = π(Λi) to view P as an n × n matrix and π as a column vector. By
definition, the unique stationary distribution π satisfies (1) π = P ·π, (2)

∑

i πi =
1, and (3) πi > 0. It is an elementary linear algebraic fact that these properties
suffice to characterize π by the following formula:

π =
(

P (n→1) − I(n→0)
)−1

· e (7)



where e = (0, . . . , 0, 1)T , P (n→1) is matrix P with its entries in the nth row set
to 1, and I(n→0) is the identity matrix with its entries in the nth row set to zero.

After calculating π, we can use Theorem 1 to finally determine the expected
simulated round duration λ. The time complexity of this approach is determined
by the matrix inversion of P . Its time complexity is within O(n3), where n is
the number of states in the Markov chain Λ(r). Since the state space is given
by the set of M -tuples whose entries are within {1, . . . ,M} and whose sum is
N , we obtain n =

(

N+M−1
M−1

)

. In Sections 3.4 and 4 we show that already small
values of M yield good approximations of λ, that quickly converge with growing
M . This leads to a tractable time complexity of the proposed algorithm.

3.3 Results

The presented algorithm allows to obtain analytic expressions for λ for fixed N
and M in terms of probability p. Figure 2 contains the expressions of λ(p,N) for
M = 2 and N equal to 2 and 3, respectively. For larger M and N , the expressions
already become significantly longer.

Figures 3(a) and 3(b) show solutions of λ(p) for systems with N = 2 and N =
4, respectively. We observe that for high values of the probability of successful
communication p, systems with different M have approximately same slope.
Since real distributed systems typically have a high p value, we may approximate
λ for higher M values with that of significantly lower M values. The effect is
further investigated in Section 4 by means of Monte Carlo simulation.

3.4 Rate of Convergence

Theorem 1 states that L(r)/r converges to λ with probability 1, however it does
not give a rate of convergence. We now present a lower bound on the speed of
this convergence.

The fundamental facts regarding the convergence speed of L(r)/r are: (1)
The expected value of L(r)/r is λ + O(r−1) as r → ∞. (2) The variance of
L(r)/r converges to zero; more precisely, it is O(r−1) as r → ∞. Chebyshev’s
inequality provides a way of utilizing these two facts, and yields the following
corollary. It bounds the probability for the event |L(r)/r− λ| > A, where A is a
positive real number. (A more general statement is [15, Theorem 5].)

Corollary 1. For all A > 0, the probability that |L(r)/r − λ| > A is O
(

r−2
)

.

λ(p,2)= 6−6p+p2

3−2p

λ(p,3)= 2−8p+18p2−16p3+12p4+24p5−64p6+22p7+30p8−22p9+3p10

1−4p+9p2−8p3+6p4+12p5−27p6+6p7+12p8−6p9

Fig. 2. Expressions for λ(p, 2) and λ(p, 3) in a system with M = 2
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Fig. 3. λ versus p in a system with different choices of N

4 Simulations

In this section we study the applicability of the results obtained in the previous
section to calculate the expected round duration the simulating algorithm in a
distributed system with N processes in a p-lossy environment. The algorithm
presented in Section 3.2, however, only yields results for M < ∞. Therefore, the
question arises whether the solutions for finite M yield (close) approximations
for M = ∞. Hence, we study the behavior of the random process T (r)/r for
increasing r, for differentM , with Monte Carlo simulations carried out in Matlab.

We considered the behavior of a system of N = 5 processes, for different
parameters M and p. The results of the simulation are plotted in Figures 4(a)–
4(c). They show: (1) The expected round duration λ, computed by the algorithm
presented in Section 3.2 for a system with M = 4, drawn as a constant function.
(2) The simulation results of sequence T1(r)/r, that is process 1’s round starts,
relative to the calculated λ, for rounds 1 6 r 6 150, for two systems: one with
parameter M = 4, the other with parameter M = ∞, averaged over 500 runs.

In all three cases, it can be observed that the simulated sequence with pa-
rameter M = 4 rapidly approximates the theoretically predicted rate for M = 4.
From the figures we further conclude that calculation of the expected simulated
round duration λ for a system with finite, and even small, M already yields
good approximations of the expected rate of a system with M = ∞ for p > 0.75,
while for practically relevant p > 0.99 one cannot distinguish the finite from the
infinite case.

To further support this claim, we compared analytically obtained λ values for
several settings of parameters p, N , and small M to the rates obtained from 100
Monte-Carlo simulation runs each lasting for 1000 rounds of the corresponding
systems withM = ∞: The resulting Figures 5(a)–5(c) visualizes this comparison:
the figures show the dependency of λ on the number of processes N , and present
the statistical data from the simulations as boxplots. Note that for p = 0.75 the
discrepancy between the analytic results for M = 4 and the simulation results
for M = ∞ is already small, and for p = 0.99 the analytic results for all choices
of M are placed inbetween the lower the upper quartile of the simulation results.
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Fig. 5. λ versus N in systems with different p

5 Related Work

The notion of simulating a stronger system on top of a weaker one is common
in the field of distributed computing [1, Part II]. For instance, Neiger and Toueg
provide automatic translation technique that turns a synchronous algorithm B
that tolerates benign failures into an algorithm A(B) that tolerate more severe
failures. Dwork, Lynch, and Stockmeyer [9] use the simulation of a round struc-
ture on top of a partially synchronous system, and Charron-Bost and Schiper [8]
systematically study simulations of stronger communication axioms in the con-
text of round-based models.



In contrast to randomized algorithms, like Ben-Or’s consensus algorithm [5],
the notion of a probabilistic environment , as we use it, is less common in dis-
tributed computing: One of the few exceptions is Bakr and Keidar [4] who pro-
vide practical performance results on distributed algorithms running on the In-
ternet. On the theoretical side, Bracha and Toueg [7] consider the Consensus
Problem in an environment, for which they assume a nonzero lower bound on
the probability that a message m sent from process i to j in round r is correctly
received, and that the correct reception of m is independent from the correct
reception of a message from i to some process j′ 6= j in the same round r. While
we, too, assume independence of correct receptions, we additionally assume a
constant probability p > 0 of correct transmission, allowing us to derive exact
values for the expected round durations of the presented retransmission scheme,
which was shown to provide perfect rounds on top of fair-lossy executions. The
presented retransmission scheme is based on the α-synchronizer introduced by
Awerbuch [2] together with correctness proofs for asynchronous (non-faulty)
communication networks of arbitrary structure. However, since Awerbuch did
not assume a probability distribution on the message receptions, only trivial
bounds on the performance could be stated. Rajsbaum and Sidi [17] extended
Awerbuch’s analysis by assuming message delays to be negligible, and processes’
processing times to be distributed. They consider (1) the general case as well as
(2) exponential distribution, and derive performance bounds for (1) and exact
values for (2). In terms of our model their assumption translates to assuming
maximum positive correlation between message delays: For each (sender) pro-
cess j and round r, δj,i(r) = δj,i′(r) for any two (receiver) processes i, i′. They
then generalize their approach to the case where δj,i(r) comprises a dependent
(the processing time) and an independent part (the message delay), and show
how to adapt the performance bounds for this case. However, only bounds and
no exact performance values are derived for this case. Rajsbaum [16] presented
bounds for the case of identical exponential distribution of transmission delays
and processing times. Bertsekas and Tsitsiklis [6] state bounds for the case of
constant processing times and independently, exponentially distributed message
delays. However, again, no exact performance values were derived.

Our model comprises negligible processing times and transmission faults,
which result in a discrete distribution of the effective transmission delays δj,i(r).
Interestingly, with one sole exception [18] which considers the case of a 2-
processor system only, we did not find any published results on exact values
of the expected round durations in this case. The nontriviality of this problem is
indicated by the fact that finding the expected round duration is equivalent to
finding the exact value of the Lyapunov exponent of a nontrivial stochastic max-
plus system [10], which is known to be hard problem (e.g., [3]). In particular,
our results can be translated into novel results on stochastic max-plus systems.
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