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ABSTRACT 

The structure of silica-latex nanocomposites of three matrix chain masses (20, 50, and 160 

kg/mol of poly(ethyl methacrylate)) are studied using a SAXS/TEM approach, coupled via 

Monte Carlo simulations of scattering of fully polydisperse silica nanoparticle aggregates. At 

low silica concentrations (1%v), the impact of the matrix chain mass on the structure is 

quantified in terms of the aggregation number distribution function, highest mass leading to 

individual dispersion, whereas the lower masses favor the formation of small aggregates. Both 

simulations for SAXS and TEM give compatible aggregate compacities around 10%v, 

indicating that the construction algorithm for aggregates is realistic. Our results on structure 

are rationalized in terms of the critical collision time between nanoparticles due to diffusion in 

viscous matrices. At higher concentrations, aggregates overlap and form a percolated 

network, with a smaller and lighter mesh in presence of high mass polymers. The linear 

rheology is investigated with oscillatory shear experiments. It shows a feature related to the 

silica structure at low frequencies, the amplitude of which can be described by two power 

laws separated by the percolation threshold of aggregates.       
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1. INTRODUCTION  
 

Polymer nanocomposites are formed by incorporation of nanoparticles (NP) into polymer 

matrices, usually with the aim of improving material properties 1-4. Among the latter, the 

mechanical or rheological behavior is found to depend strongly on microstructure, i.e. on the 

spatial arrangement of the NPs in the matrix 3, 5-8. Nanocomposites, in particular model 

systems obtained by mixing polymer and NPs in solution followed by solvent casting have 

been abundantly studied in the literature 9-12. These systems allow for a large variation of 

experimental parameters, like matrix polymer chain mass 13, 14, or grafting chemistry on NPs 
12, 15. At high enough temperatures, typically above the matrix Tg, the structure of systems can 

evolve if the NP mobility is sufficiently high. This effect has been exploited by several 

authors 9, 16-18. Jia et al 17, e.g., have studied NP aggregation as a function of annealing 

temperature and matrix molecular mass, finding higher aggregation at elevated temperatures 

and low masses. This effect is related to the matrix viscosity, which controls the NP 

diffusivity. In most of the references cited above, structural analysis of complex assemblies or 

dispersions is performed by small angle scattering or electron microscopy techniques. The 

latter are rarely coupled 19, and only a few quantitative comparisons of reciprocal and direct 

space methods exist, e.g. 5, 20.   

 

The latex-route is another way to obtain polymer nanocomposites with controllable structures. 

Latex film formation is well-understood 21, 22, and the dissolution of latex beads in presence or 

absence of silica NPs has been recently followed in detail 23. The dispersion of the NPs in the 

latex matrix is primarily a consequence of the interactions between the beads while still in 

aqueous suspension. Triggering repulsions by pH has been used by us before to change 

aggregation in the final nanocomposite 24, 25, and thus reinforcement 26. As with solvent-cast 

nanocomposites, reorganization on accessible time scales of the NPs after evaporation of the 

aqueous solvent is possible if the mobility of the NPs in the matrix is high enough, the latter 

being controlled by matrix viscosity, and thus matrix chain mass 27. To our best knowledge, 

there is no study on the effect of chain mass on filler reorganization in latex films, which is 

the purpose of the present contribution.  

 

The outline of this article is the following. First an analysis of transmission electron 

microscopy (TEM) pictures in terms of distribution functions of aggregation numbers is 

presented, for nanocomposites made with matrix chains of three different masses. Then, a 
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small angle X-ray scattering (SAXS) analysis is quantitatively coupled to the TEM results by 

introducing the aggregate distributions in a fully polydisperse Monte Carlo simulation of 

scattering of aggregates. Apart from a recent study done on a different system 19, we are not 

aware of such quantitative combined studies. In the second part of the results section, we 

explore the rheological properties of the nanocomposites, and isolate the silica contribution 

before and after the percolation threshold. In the discussion, finally, the impact of the 

rheology on the structure, and of the structure on the rheology, is compared.     
 

 

2. MATERIALS AND METHODS 

Silica nanoparticles: The aqueous solution of silica NPs, Ludox TM40, was purchased from 

Aldrich and was characterized by SAXS after dilution in deionized water down to a volume 

fraction of 0.004. The scattered intensity was well fitted with a log-normal distribution of 

spherical objects (Rsi =14 nm and σ  = 11%, cf. SI). From this distribution, the average silica 

NP volume and the average projected surface area can be calculated: Vsi = 1.21 104 nm3, and 

Asi = 630 nm2. Image analysis of TEM results gave very similar NP characteristics (cf. SI): Rsi 

= 13.1 nm and σ  = 12%. 

Poly(ethyl methacrylate) (PEMA) nanolatices: Polymer NPs were synthesized by free 

radical emulsion polymerization using a semi-continuous batch method. The synthesis was 

adapted from similar protocols 28. All materials were used as received. Ethyl methacrylate 

(EMA, Aldrich, 99% purity), ammonium persulfate ((NH4)2S2O8), tert-dodecylmercaptan 

(TDM Aldrich, 98.5% purity) and sodium dihydrogenphosphate (NaH2PO4 - H2O) were used 

as initiator, transfer agent and buffer, respectively. The surfactant used for stabilization was 

sodium dodecyl sulfate (SDS, >98.5% purity). Deionized water was used throughout. The 

semi-continuous emulsion polymerization was carried out at 80°C in a 250 ml glass reactor 

fitted with a reflux condenser, stainless-steel stirrer, temperature probe, argon inlet and two 

feed inlet tubes. The initial charge in the reactor was the surfactant, buffer, initiator and water. 

To remove oxygen, argon gas was bubbled through the solution into the reactor for 15 min 

under 250 rpm stirring. Once the temperature of the charge stabilized at 80°C, 0.5 mL of 

initiator solution (0.324 g in 2 ml of water) was injected into the flask and the feed streams 

were initiated. The first feed stream was a solution of initiator, surfactant and buffer in water 

(feeding rate = 0.39 g/min), and the second was the monomer-transfer agent mixture (feeding 
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rate = 0.194 g/min to maintain starved conditions). The monomer and aqueous feeds were 

calculated to finish the addition in 1 h. Subsequently, the polymerization was continued in 

batch for 1 h. Different chain masses (from 20 to 160 kg/mol) were generated by varying the 

amount of transfer agent. In our nomenclature PEMA_M corresponds to a sample with a M 

kg/mol matrix. PEMA160 was synthetized without transfer agent, whereas PEMA50 and 

PEMA20 were obtained using 0.0059 and 0.0108 TDM/EMA mass ratios, respectively. The 

polymer mass content of nanolatex was 10%w.  

Nanolatex particle sizes were characterized by dynamic light scattering using a cumulant 

analysis. Polymeric particle diameters were comprised between 20 and 30 nm. After drying 

and solubilization in tetrahydrofuran, molecular weight characterization of polymeric chains 

was done by gel permeation chromatography (GPC) using PMMA standards for calibration. 

Polydispersity indexes were all less than 1.9. Although it is possible to use controlled radical 

polymerization to considerably decrease polydispersity indices 29, 30, the wide range of masses 

studied here - from a few entanglement masses of PEMA (between 6 and 8 kg/mol according 

to linear rheology, compatible with ref. 31) to almost twenty times more - made such a refined 

approach unnecessary. Based on carbonyl peaks analysis of 13C NMR spectra obtained in 

CDCl3, the tacticity of PEMA chains was measured: 77.5% syndiotactic and 22.5% isotactic. 

Characteristics of initial colloidal solutions are summarized in Table 1. 

 PEMA20  PEMA50  PEMA160  Silica TM40  
Nanoparticle diameter Dp (nm)  20  26  19  28  
Dp polydispersity index  0.3  0.3  0.3  0.11  
Molecular weight Mw (kg/mol)  18.5  51.6  159  -  
Polydispersity index Mw/Mn 1.7  1.6  1.9  -  

Tg (°C) 65 74 76 - 
 

Table 1: Latex and silica nanoparticle characteristics. 

 

Note that there are some minor differences in the nanolatex sizes. As this article focuses on 

the effect of polymer molecular weight, and a strong difference between PEMA160 and 

PEMA20 (which have virtually the same diameters) is found, and no difference between 

PEMA20 and PEMA50 (which differ slightly in diameter), it can be safely concluded that this 

parameter is not relevant for the present study. The glass-transition temperature of PEMA 

matrices has been determined by Differential Scanning Calorimetry (DSC) at 20 K/min and 
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increases from 65°C to 76°C with increasing molecular weight following the Flory-Fox 

equation 32 (see Table 1 and SI for details).   

Nanocomposite film preparation: Prior to preparation of nanocomposite films by solvent 

casting in a Teflon mold, colloidal solutions were extensively dialyzed against deionized 

water to remove residual reactants and salts until obtaining a conductivity inferior to 10 

µS/cm. Mass contents of aqueous solutions were determined by the gravimetric method. After 

dialysis, the nanolatex mass contents were about 5% w/w and silica colloidal solution was 

15% w/w. Considering measured densities of silica and PEMA (ρsi = 2.25 g/cm3 and ρPEMA =  

1.13 g/cm3, respectively), mixtures of solutions were prepared. Mixtures were degased 

overnight in a dessicator, whereas the Teflon mold was degased into the oven at 80°C under 

vacuum. Mixtures were dried about 8 hours in an oven at 80°C to obtain transparent films. 

Subsequently, to ensure latex bead dissolution 23, samples were annealed for seven days at 

180°C under vacuum. During this annealing, residuals surfactants degraded and provided a 

slightly brown coloring to samples. GPC analysis showed that polymer molecular weights 

were not affected by this procedure (see SI). Note that similar to many acrylates, PEMA has 

favorable interactions by hydrogen bonding with bare silica33, 34, which should be independent 

of polymer mass. 

Nanocomposite film characterization: Thermogravimetric analysis (TGA) was performed 

to check silica volume fraction Φsi of nanocomposite samples. 20 mg samples were heated 

from 30°C to 650°C at a rate of 30 K/min under nitrogen. From the plot of sample weight vs. 

temperature, the sample weight fraction W remaining after thermal decomposition was 

determined. For pure PEMA, this is denoted WPEMA (resp. WNC for nanocomposites). To 

correct for the small amount of incombustibles present in the pure PEMA (WPEMA of the order 

of 2%), the silica fraction in nanocomposites was determined by: 

 

Φ�� = ���			�
��
(�	��)
(���	�
��
(�	��))/���	�	(�	���	�
��
(�	��)))/�
��
)                     (1) 

 

The Φsi values determined by TGA were in good agreement with the nominal volume fraction 

ΦN as deduced from the polymer and silica weight used in the preparation. Only the nominal 

silica volume fractions will be given throughout this article (Φsi ≈ Φ N). The glass-transition 
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temperature of the PEMA composites did not show any significant variation with the silica 

fraction, in agreement with Moll et al 34  in this concentration range. 

Rheology: The rheological response in the linear regime of nanocomposites was obtained 

with a stress-controlled rheometer AR2000, used in the strain-controlled mode in plate−plate 

geometry (20 mm diameter). Isothermal frequency sweeps at fixed low deformation level (γ = 

0.2%) were performed in the temperature range from 100°C to 180°C. Using the principle of 

time−temperature superposition, master curves of the storage modulus, G′(ω), and the loss 

modulus, G″(ω), were constructed at a reference temperature of 180°C based on frequency 

sweeps between ω = 0.01 and 600 rad/s. In order to evaluate the statistical relevance of the 

results, five identical samples for both the matrix and 10% nanocomposites were formulated 

independently and characterized in rheology. The error bars for the moduli are about 18% 

with 95% confidence intervals, which is comparable to the symbol size and thus rather low 

with respect to the many orders of magnitude covered by G’ and G’’. The horizontal shift 

factors, aT, obtained from the master curve construction were not found to evolve from the 

matrix to the highest silica fraction for the three masses. Their evolution with the inverse of 

temperature can be well described with the classical Williams−Landel−Ferry (WLF) 

equation35 using the PEMA coefficients from ref. 36 (C1 = 6.3 and C2 = 184 K at our reference 

temperature, see SI). It means that the temperature dependence of the relaxation process 

probed here is not significantly modified by the introduction of filler, in spite of strong 

variation of the G′ and G″ shapes. Such behavior was already observed in the literature for 

nanocomposite systems.5 

Structural analysis of nanocomposites: Samples for TEM were prepared by immersing a 

thin strip of sample in an epoxy resin (EPON 812) and curing it at 60°C for 72h. After resin 

polymerization, sections with a nominal thickness of 70 nm were cut with an ultramicrotome 

(Leica Ultracut) and placed on TEM grids (Formvar carbon-coated Cu grids, EMS). Slices 

were observed with a 1200EX2 Jeol TEM at 100 kV. Images were captured with a Quemesa 

SIS Olympus numerical camera equipped with an 11 MPixels CCD detector. Representative 

images as those shown in this article were obtained with a 20 000 magnification. For the 1% 

nanocomposites, image analysis was performed on 3000 magnification pictures in order to 

achieve better statistics via observation of a higher number of aggregates. The grain analysis 

tool of Gwyddion Software was used to identify the silica NPs by intensity thresholding, and 

to determine the distribution of polymer-free areas occupied by aggregates. The resolution of 

the images is 200 dpi (magn. 20000, pixel size 0.72 x 0.72 nm2) for the TEM data shown in 



 
 

7 
 

this article. Images used for quantitative analysis of many aggregates have a pixel size of 4.5 

x 4.5 nm2). An average NP covers ca. 27 pixels, or about 6 pixels in diameter, which gives us 

an errorbar estimate of ±1 pixel, or a maximum of ± ca. 30% of a single NP area. Due to the 

measurement of many NPs, the error in aggregation number associated with the precision of 

the TEM pictures is probably a factor of ten lower, i.e. ca 3%.  Small angle X-ray scattering 

(SAXS) was performed on beamline ID2 at the European Synchrotron Radiation Facility 

(ESRF, Grenoble FR) at a wavelength of 1 Å with a sample to detector distance of 2.5 m, 

yielding a total q-range from 0.001 to 0.15 Å−1. The scattering cross section per unit sample 

volume dΣ/dΩ (in cm-1) – which we term scattered intensity I(q) – was obtained by using 

standard procedures including background subtraction and calibration given by ESRF.  

Monte Carlo simulations of intra-aggregate structure factors: The scattered intensity of 

an isotropically averaged single aggregate containing Nagg identical nanoparticles is given by 

the product of the form factor P(q) and the intra-aggregate structure factor Sintra(q). 37 The 

former represents the scattering from individual spheres, whereas the latter expresses the 

Fourier transform of the positional correlations of the NPs in an aggregate. The isotropically 

averaged contribution to the partial structure factor due to two spherically symmetric beads 

can be calculated using the Debye formula 38 

S��(q) = ���	�����	�� !
����	�� 

                                           (2a) 

where ri and rj are the bead positions (center of mass). Summing all contributions gives  

S��"�#(q) = 1 + &
'())

∑ S��(q)
'())
�+,                    (2b) 

where Nagg is the number of beads per aggregate. Obvious limits of Sintra(q) are Nagg at low q, 

and one at high q. The detailed positions of the NPs need to be fixed by some aggregate 

construction algorithm. Here, we simply aggregate the Nagg nanoparticles randomly starting 

with a seed particle and sticking one NP after the other to the growing aggregate, on a random 

position, provided that there is no collision. Note that additional NPs are thus added on any 

point at the surface of any previously positioned NP of the aggregate, thereby possibly 

creating branches. Moreover, the only input for the structure factor in eq. (2a) being the 

distance, it is not even necessary for NPs to be topologically connected, as close interparticle 

distances may also occur without sticking in the random aggregation process. In the absence 

of any a priori knowledge on the mechanisms of aggregate construction, only connectivity 
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(via the minimum distance between NPs, defined by their excluded volume) and Nagg are thus 

imposed. Two features of Sintra are thereby constrained: the low-q value of Sintra describing the 

total mass of the aggregate, and the position of the NP-NP correlation peak.   

Adding polydispersity in size for the nanoparticles requires to weight properly each partial 

correlation by the proper mass, i.e. using Pi(q) and Pj(q), and the use of a simple product 

(P×Sintra) is no more valid 39. In the case of assemblies of N independent aggregates (i.e., 

measured at high dilution) of different Nagg, the total scattered intensity is given by a weighted 

average and reads 19 

( ) ( ) ( )∑ ∑
=

=
N

N

1ji,
ijjiji

 totalsi

2
si

agg

qS qPqP VV   
V

∆ρ Φ
 I(q)

                                (3)
 

where Vi and Vj are the corresponding silica volumes of the NPs i and j. In eq. (3), the first 

sum runs over the total number of aggregates N. There, we used the distribution function in 

Nagg obtained from the electron microscopy. The averaging sum accounts correctly for the 

contributions of aggregates of different mass, with a stronger weight for bigger aggregates. 

One may note that using the monodisperse version, eq. (2b), has been tried out initially. This 

amounts to taking into account the distribution of center-to-center distances introduced by 

polydispersity, but not the weighting. It was shown that for our low polydispersity samples 

(σ  = 11%) this estimation was acceptable for the low-q scattering, but induced clearly visible 

artefacts in the region of the form factor oscillations, i.e. at rather low intensities. 

 

3. RESULTS 
 
3.1 Nanocomposite structure  

The structure of the silica NPs in the PEMA-nanocomposites has been studied as a function of 

silica volume fraction (Φsi = 1, 3, 10%v) and matrix chain mass (20, 50, 160 kg/mol, see 

Table 1) by TEM. Representative results are shown in Figure 1. Quantitative analysis as 

described below has been performed on several pictures at six times lower magnification. 

From the different apparent silica densities, some difference in the real thickness of the slices 

can be deduced. For 1%v samples, the thickness is 70±20 nm. At 10%v, the thickness 

decreases from about 110±10 nm for PEMA20 to ca. 65±5 nm for PEMA50 and PEMA160.  
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Figure 1: TEM images of nanocomposites made with PEMA20 (upper line), PEMA50 (intermediate 
line) and PEMA160 (lower line), at three silica volume fractions: 1%v (left), 3%v (center) and 10%v 
(right). In spite of a fixed nominal thickness of the slices (70 nm), some variations are observed as 
discussed in the text. White horizontal bars in the right column of images indicate the characteristic 
size measured for 10% nanocomposites by SAXS.  

 

The influence of silica volume fraction is readily seen by comparing the three columns in 

Figure 1. For 1%v, shown in the left column, the vast majority of NPs are well-dispersed, i.e. 

individually or in small aggregates at all polymer masses. Judging from the absence of any 

aggregate in the lowest image (160 kg/mol), the dispersion is best at the highest mass. At 

3%v, in the series shown in the column in the middle, the beginning of network formation is 

observed. At 20 kg/mol, thick and lengthy aggregates are visible, but these branches do not 

form a percolating network yet. Due to the heterogeneous distribution, it is difficult to 

estimate the lateral branch size, but a typical number of two to four NPs, corresponding to 60 

to 120 nm, can be put forward. At 50 kg/mol, and similarly at 160 kg/mol, much less 

aggregation is evidenced: branches become thinner, of typical lateral dimension one or two 

NPs, and break-up into shorter aggregates. Thus, at 3%v, the higher mass moves the system 

away from percolation. At the highest silica volume fraction of 10%v, finally, in the TEM 

pictures shown in the right-hand column in Figure 1, a thick network is found at the low 

polymer mass of 20 kg/mol. The typical silica network mesh size is difficult to estimate from 
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the TEM pictures, but from the typical width of the silica-free holes or channels it is seen to 

be around 150 nm. This value can be compared to the mesh size extracted from the SAXS 

measurements below, and the corresponding size bar is superimposed in Figure 1. A thinner 

network is observed at 50 kg/mol, with the same typical holes and thus approximate silica 

mesh size. At the highest mass of 160 kg/mol, the presence of still many individual NPs 

together with polymer channels indicates that a silica network is under formation, of again 

roughly the same typical mesh size as with lower masses. Summarizing the visual inspection 

of the TEM-pictures shown in Figure 1, (i) an increase in silica volume fraction favors the 

formation of a network. (ii) For a given silica concentration, samples appear to be better 

dispersed in nanocomposites made with higher polymer masses.  

Using image analysis, it is possible to quantify the extent of aggregation, at least for the 

lowest volume fraction, where individual aggregates and NPs are easily recognized. Two 

procedures were used to estimate minimum and maximum values for the number of NPs per 

aggregate, respectively Nagg
min and Nagg

max. The hypothesis for the Nagg
min calculation is that 

the number of superimposing projections of NPs in the plane of observation is negligible at 

low volume fractions and the whole silica aggregate is contained in the TEM sample slice of 

thickness e. Hence Nagg
min can be calculated dividing the area occupied by silica inside 

aggregates Aagg by the average area occupied by one silica nanoparticle Asi as determined 

from the NP log-normal size distribution given in the materials section: 

si

aggmin
agg A

A
N =                                                           (4) 

Note that an estimate of the aggregation number based on numerical simulations of fractal 

aggregates has been proposed 40 and applied in the literature 5. The local silica volume 

fraction inside aggregates, which defines the compacity κ, can be estimated for each 

aggregate from TEM images by dividing the observed silica volume by the aggregate volume 

in the slice. Each such aggregate volume was calculated by multiplying the sample slice 

thickness e with the observed surface area πRagg
2, where the radius Ragg is the one of the 

smallest disc in which the aggregate can be contained.  

2
agg

si
min
aggTEM

R  πe

V N
κ =                               (5) 
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Vsi denotes the average NP volume. For very small aggregation numbers Nagg = 1 and 2, the 

compacity was set to its geometrical value of 100% and 25%, respectively. For Nagg
min ≥ 3, we 

have determined the average over κTEM for hundreds of aggregates in pictures with typically 

10 000 NPs, giving on average κTEM ≈ 10% for the three polymer masses. This value as well 

as its evolution with aggregate size will be compared to the simulation results later in this 

article.  

                                                       

Figure 2: Schematic representation of silica NP aggregate in TEM slice. Solid NPs in the film 
thickness e are observed by TEM and define Ragg and Nagg

min. Empty NPs have been estimated to be 
part of the initial aggregate but removed through the cutting procedure. They contribute to the 
estimation of Nagg

max as explained in the text. 

 

Aggregates may have been cut during slicing, and we can use this compacity κTEM and the 

observed 2D-size Ragg to estimate the aggregation number before slicing, Nagg
max: 

 

si

TEM3
agg

max
agg V

 κR π
3
4

N =                                                      (6) 

Here, we assume that the observed 2D-size is representative of the initial 3D-size of 

aggregates before slicing, as illustrated in Figure 2. The limitation due to the two-dimensional 

projection of three-dimensional aggregates is obvious: there is no reason for aggregates to be 

of spherical symmetry, and therefore the diameter 2Ragg as determined from the projection is 

only an estimation lying somewhere between the minimal and the maximal extension of the 

aggregates. The aggregates were automatically identified in low magnification pictures 

(×3000) displaying more than 5000 objects, using the intensity threshold tool of Gwyddion 

software. Aagg and Ragg were calculated using the grain analysis tool of the software. 

Note that the aggregation numbers defined by eqs. (4) and (6) are approximations of the real 

ones, due to the use of the average particle area instead of the individual ones. For the same 
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reason, fractional values of aggregation numbers can be obtained. Therefore, a binning 

operation into integer values of the aggregation number was performed on the Nagg- 

distributions. This was necessary for the quantitative cross-check between direct-space (TEM) 

and reciprocal space (SAXS) which we will develop below, using the integer distribution as 

input for the Monte Carlo simulations. The results for the distribution fsi of Nagg
min and Nagg

max 

are shown in Figure 3, for the lowest silica volume fraction (1%v), and the three different 

polymer masses. fsi(Nagg) is the fraction of NPs present in the form of aggregates of 

aggregation number Nagg.  

0.001

0.01

0.1

1

1 10 100

f si
(N

ag
g)

N
agg

20k
50k

160k

N
agg

-1

 

Figure 3: Distribution of Nagg
min (empty symbols) and Nagg

max (full symbols) obtained from the image 
analysis of 1%v nanocomposites of different matrix molecular weight.  

 

The distributions of the aggregation numbers shown in Figure 3 show that the overwhelming 

majority of the NPs is present individually or in the form of very small aggregates. At 160 

kg/mol, e.g., about 80% of all NPs are single beads. This fraction decreases to between 20 and 

40% for lower masses. A tail up to large Nagg is evidenced for the lowest chain masses, which 

can be roughly described by a Nagg
-1 power law.  The decrease is much stronger for 

PEMA160, where the power law exponent approaches -3. Such a steep power law leads to the 

virtual absence of any aggregates having more than ten beads in this TEM analysis. As a last 

comment, one may note the linear increase of the distribution at high Nagg. It corresponds to 

big aggregates existing only once, and their contribution increases with their mass. Given the 

low fraction of NPs involved in these aggregates, this increase is an artefact caused by the 

limited sample size, 2% of ca. 15000 NPs counted being the order of the highest Nagg.  
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We have combined the direct-space analysis by TEM with SAXS experiments. In reciprocal 

space, scattering experiments give a signal corresponding to the structure averaged over large 

sample areas. The latter are given by the X-ray beam size (typically 100 µm), as compared to 

the small piece of matter focused on in an electron microscope. Also, in SAXS, complete and 

unperturbed three-dimensional aggregates are observed. One of the drawbacks of SAXS is 

that data analysis is much more involved, but precious information can be extracted as we will 

see now. The reduced intensities I(q)/Φsi of the series with PEMA20, PEMA50, and 

PEMA160, are plotted in Figure 4, with clear features. First, the high-q data show the same 

form factor oscillations as expected for identical silica NPs in all samples, minor deviations 

being due to matrix contributions as discussed below. Secondly, a different organization is 

measured in the low-q range in Figures 4a to 4c. There the reduced low-q intensity is seen to 

be highest for the smallest silica volume fraction (1%v), which we interpret as the form factor 

scattering of independent aggregates at this high dilution. A Monte Carlo analysis of this 

average form factor based on the Nagg-distribution of the TEM pictures will be proposed 

below for the 1%v series. As the volume fraction is increased, the interactions between 

aggregates induce a depression of the low-q intensity, indicating structuring of the aggregates 

in space due to repulsive interactions, and the emergence of a peak at intermediate wave 

vectors.  
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Figure 4: Reduced SAXS scattered intensity I(q)/Φsi as a function of wave vector q of (a) PEMA20, 
(b) PEMA50,  and (c) PEMA160 nanocomposites before matrix subtraction. In the inset: comparison 
of absolute intensities of a nanocomposite (50 kg/mol, 1%v) and its matrix.  

 

A technical point concerns the subtraction of the pure matrix background. One sees in any of 

the graphs in Figure 4 that the matrix has the most important relative influence at the lowest 

Φsi (not overlapping in the high-q range). An example is shown in the inset of Figure 4b. 

There the intensity I(q) of PEMA50-1% nanocomposites is compared to its pure matrix 
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intensity. The latter is found to be a monotonously decreasing function with q, reaching high 

enough intensities at low q to cross the 1%v-nanocomposite intensity around 3 10-3 Å-1. This 

illustrates the fact that the matrix properties change upon addition of silica, possibly 

modifying large-scale heterogeneities, and force us to introduce a low-q cut-off for a 

quantitative analysis of the data. Our procedure is to subtract a weighted matrix intensity such 

that the form factor oscillations of the NPs after subtraction – which correspond to the shape 

of the inorganic beads and are thus unaffected by any manipulation – are identical to the 

independently measured pure form factor given in the SI.  We then ignore any intensity values 

below the cut-off. All data from Figure 5 on have undergone this procedure. 

 

In Figure 5a, the same scattering data as in Figures 4a-c is regrouped for 10%v of silica in a 

single plot, after background subtraction. It allows following the characteristic distance of the 

silica network as given by the peak position q*. Our interpretation of the scattering data is 

suggested by the TEM-pictures, where network-like structures are found. First of all, there is 

an identical power law signature at intermediate angles, with Df = 2.5 ± 0.05, which speaks in 

favor of aggregation. As the aggregates are concentrated by increasing the silica volume 

fraction, they are pushed together, and at some stage the typical inter-aggregate distance 

becomes smaller than the size of the aggregates, and interpenetrated aggregates form the 

network visible in the TEM pictures.  
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Figure 5: (a) Reduced SAXS-intensities of 10%v-nanocomposites with 20, 50 and 160 kg/mol 
matrices. Arrows indicate the peak position q*. (b) Silica mesh size d* = 2π/q* for different chain 
masses, before (NA) and after annealing.   
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In the scattering in Figure 5a, the peak position is found to shift to higher q-vectors with 

higher chain masses, indicating the formation of a network of smaller characteristic distance 

given by d*=2π/q*. We identify this distance with the silica mesh size, and it is reported for 

the three chain masses in Figure 5b: d* is found to decrease with increasing chain mass, in 

agreement with the general evolution observed in Figure 1 towards a better dispersion at 

higher mass. Also in Figure 5b, the silica mesh size before annealing (i.e., directly after film 

formation) is reported for further discussion. Finally, for comparison with TEM, we have 

superimposed bars of length d* in Figure 1 as determined by SAXS. At 10%v, the higher the 

mass, the smaller and lighter the silica meshes. 

In the discussion of Figure 4, we have underlined the fact that form factor scattering 

describing aggregates is observed at low silica concentrations. The difficulty is that the 

observed intensity is an average over many different independent aggregates, and it is 

impossible without additional knowledge to deconvolute I(q) into its unknown contributions 

from aggregates of different mass and shape from the scattering alone. However, we have 

quantitative estimations of the aggregation number distribution deduced from the TEM 

observations as shown in Figure 3. We have therefore set up a Monte Carlo simulation 

scheme to account for the scattering of aggregates obeying the experimental Nagg distribution. 

In Figure 6, we compare its predictions to the observed intensities for 1%v-samples 

(PEMA20, 50 and 160, same data as Figure 4, now with background subtraction), i.e. only for 

the highest dilution where structure factors due to correlations between aggregates can be 

neglected. The experimental intensities after background subtraction follow a power law with 

Df = 1.7 ± 0.1 for the lower masses, indicative of aggregation and compatible with, e.g., 

diffusion limited cluster-cluster aggregation 41. Comparison with the power law at 10%v 

given in Figure 5a indicates that the apparent fractal dimension increases with silica 

concentration, as already found by simulations in ref. 42, 43. At the highest mass, the scattered 

intensity shows a different, form factor-like behavior, which suggests good dispersion, in 

agreement with the TEM picture. 
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Figure 6: Comparison of experimental scattered intensities I(q) of 1%v-nanocomposites to 
simulations based on the different experimental Nagg distributions as indicated in the legend. (a) 
PEMA20, (b) PEMA50, (c) PEMA160. The silica form factor is also plotted (dotted line), as well as a 
snapshot of a simulated aggregate (Nagg = 40).  

  

Due to our choice of the construction algorithm of aggregates as explained in the methods 

section, the simulated intensity in eq.(3) does not have any free parameter. For each polymer 

mass, the simulation has been run with the upper and lower estimations for Nagg, i.e. Nagg
max 

and Nagg
min, respectively. A first striking result of Figure 6 is that both predictions do not 

differ significantly in the relevant q-range. Only at the lowest q-values, which are below the 

experimental cut-off, a discrepancy is observed. It is thus concluded that the range of 

aggregation numbers is correctly given by Nagg
min and Nagg

max, thereby validating our 

quantitative analysis of the TEM pictures. A technical comment may be suited here. 

Aggregation is generally related to an increase of the low-q intensity, accompanied by a 

decrease with respect to the form factor of the intermediate-q intensity. Both features are 

visible in Figure 6. This decrease, known as the correlation hole, is a direct consequence of 

the excluded-volume correlations of neighboring and thus aggregated beads. Due to the cut-

off at low-q, aggregation is discussed here in terms of an intensity decrease. 

 

Next, the agreement between the experimental intensities and the calculated ones is 

remarkable. For the lowest chain mass, the low-q increase is correctly reproduced in Figure 

6a, with only a slight mismatch below 0.02 Å-1. This deviation indicates that the NP-NP 

correlation hole is more pronounced in real samples, which is probably due to a denser 

assembly on this scale. The nanocomposite made with PEMA50 has a very similar scattering 

signature, and is thus equally well fitted with the also quite similar Nagg-distribution. For the 

highest mass, the scattered intensity is quite different. It follows the pure bead form factor at 

low q, and this is again quantitatively reproduced by the model in Figure 6c. The overall 
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agreement between the calculated curves and the experimental intensities for the three masses 

is due to three features. At the highest q, the form factor dominates the scattering. At 

intermediate q, the local density and thus coordination number seems to be correctly 

described by the aggregate construction proposed here, and there is only little room for 

improvement. At the lowest q, finally, the increase in intensity is related to the weighted 

average of the mass of aggregates, as one can deduce from the low-q limit of the intra-

aggregate structure factor which is Nagg for monodisperse distributions. To summarize, the 

quantitative agreement observed in Figures 6a to 6c shows that the Nagg-distributions 

extracted from the TEM pictures are trustworthy, and thus that the 160 kg/mol samples are 

significantly less aggregated than the shorter chain mass nanocomposites.       

 

The difference in silica structure between low (20 and 50 kg/mol) and high (160 kg/mol) mass 

nanocomposites cannot be due to the drying stage during which the latex beads keep their 

colloidal character, irrespective of their internal structure and thus chain mass. It is therefore 

conjectured that the differences are due to the different kinetics once the water is evaporated, 

and we will come back to this point in the discussion. It is instructive to compare the 

structures directly after film formation, i.e. before annealing, and after annealing. In Figure 7, 

the 1%v-nanocomposite data for the three masses are compared to their respective intensities 

before annealing.  
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Figure 7: Comparison of reduced experimental scattered intensities I(q)/Φsi for the 1%v-
nanocomposites with and without (‘NA’) annealing for different matrices (20, 50 and 160 kg/mol).  

 

The experimental curves show interesting features at intermediate q as highlighted by the 

dashed box in Figure 7. In this range, all samples have the same structure before annealing, 
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corresponding to individual dispersion of silica beads (single nanoparticle form factor). It 

evolves into a new structure after annealing, which is the same for 20 and 50 kg/mol, as 

already seen in Figures 6a and 6b, and different for PEMA160. For the low masses, the 

structure evolves towards an aggregated state, as seen by the emergence of the correlation 

hole (arrow in Figure 7). On the contrary, there is no structural evolution during annealing of 

the PEMA160, which keeps individual dispersion. The high intensities before annealing at 

low q speak in favor of an initial distribution of NPs around latex beads, introducing 

correlations between NPs without close contact. In this range, some differences between the 

three masses occur. This is probably due to the fact that there is always some annealing at the 

end of the drying process. At high silica volume fractions, as discussed for the 10%v-

nanocomposites in Figure 5b, the evolution with annealing is the same as with increasing 

mass, it tends towards lower mesh sizes corresponding to better dispersion. It is possible that, 

unlike at low concentration, the favorable silica-PEMA interaction 33, 34 explains this 

behavior, see e.g. 9. In conclusion of the effect of annealing, the nanocomposite structure 

starts from some structure directly after drying – one may imagine a few NPs gathered in a 

random way around the latex beads – and evolves differently according to the matrix mass.  

 

As a last point with structural analysis, the experimentally observed compacities κTEM 

determined using eq.(5) are compared to the compacities of the model aggregates generated 

by the simulation. In Figure 8, this comparison is shown as a function of Nagg, where each 

point is an average over aggregates of same Nagg. The experimental values are given as a 

function of Nagg
max; note that choosing Nagg

min would not have changed the shape of the curve, 

as the experimental compacities are more or less independent of aggregation number for Nagg 

larger than a few units. The decrease at very low Nagg is by continuity, as one starts from a 

compacity of one for an individual bead. Altogether, the experimental compacities lie on a 

plateau in the 8 to 12%-range. One may underline that in spite of the scattering of the data 

points, this is a rather precise result. Averages calculated over the functions shown in Figure 8 

yield 8.4%, 11.0%, and 9.4% for chain mass 20, 50 and 160 kg/mol, respectively. This range 

of compacities is not compatible with those calculated using simple scaling laws (κ = Nagg
(Df-

3/Df)), which assumes the same fractal dimension for aggregates of different size, see dotted 

line in Figure 8. This fractal scaling induces an underestimation for high Nagg, whereas for too 

low aggregate sizes it overestimates the compacity. In all cases, the simulation gives much 

more realistic values (e.g., for Nagg = 2, the compacity is 25% by geometrical construction). 
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Incidentally, it is concluded that the experimentally observed fractal dimension (SAXS) is an 

apparent value over the aggregate distribution. 
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Figure 8: Comparison of compacity of simulated aggregates (crosses) with κTEM deduced from TEM 
data following eq.(5), as a function of aggregation number Nagg (given by Nagg

max for the experimental 
values). Dotted line is the calculated compacity following a fractal law (Df = 1.7). 

 

For simulations, the similar trend of decreasing compacity with increasing aggregate mass is 

due to the same mechanism as with experiments. Above aggregation numbers of three, the 

numerical values are slightly lower but in the same range as the experimental ones, between 6 

and 10%. This is surprisingly good as the simulated aggregate compacity is defined a priori 

by the aggregate construction algorithm, as outlined in the methods section. This means that 

real aggregates have a similar structure. It opens the way of constructing aggregates with 

higher local densities. One may also speculate that then the mismatch in the q-region of the 

correlation hole in Figure 6a and 6b could be less pronounced.   

 

3.2 Nanocomposite rheology 

The rheological properties of the silica-latex nanocomposites are a result of matrix properties 

and their modification by the presence of silica filler. It is therefore straightforward to 

measure the matrix first, for the three different matrix chain masses 20, 50, and 160 kg/mol. 

The master curves at 180°C for storage and loss moduli as a function of angular frequency are 

shown in Figure 9. The curves display a power law at low frequencies, ideally given by ω 2 

and ω, for G’ and G”, respectively. For G’ we find an exponent of 1.5±0.2, suggesting the 
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presence of some remaining relaxation processes in the experimental frequency window, 

presumably due to chain polydispersity. G’’ on the other hand, is proportional to ω, the 

prefactor being the viscosity. In the case of the highest masses, the moduli cross at a 

characteristic frequency, which is also the location of a crossover to a plateau-like regime 

(indicated by an arrow in Figure 9). Due to polydispersity in chain mass, G’ does not reach a 

real plateau, but increases continuously. The crossover point is shifted to higher frequencies 

with smaller masses, and for the lowest mass there is no more cross-over in this frequency 

window. The cross-over position gives the typical relaxation time, which also sets the 

viscosity. We have checked in Figure 9b that the viscosity of the system taken from the low-

frequency prefactor of G” is compatible with a power law M3.4 as expected 44.  
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Figure 9: (a) Master curves for G’ (dots) and G” (crosses) as a function of angular frequency at the 
reference temperature of 180°C for PEMA20 (clear blue), PEMA50 (deep blue) and PEMA160 
(black) matrices. (b) Viscosity extracted from the low-frequency behavior of G” for the same matrices.  

 

Note that the reference temperature for the construction of the master curve (180°C) 

corresponds to the annealing temperature of nanocomposites after film formation as described 

in the materials section, and we thus conclude on the impact of the chain mass on the possible 

maturation of the films. Indeed, the characteristic relaxation time at this temperature is 

increased by about three decades as the mass is increased from 20 to 160 kg/mol, causing an 

identical increase in viscosity (Figure 9b), and thus on the capacity of the nanocomposite 

structures to reorganize on the time-scale of the annealing procedure, i.e. a week. Another 

observation of the same change in rheology is that G” is always greater than G’ in the 

frequency domain of observation for the PEMA20 matrix, indicating a liquid behavior in this 

frequency range, whereas the other two matrices possess an elastic behavior in the plateau 
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regime. These results thus suggest that the differences in structure as shown in Figure 1 

between PEMA20, PEMA50 and PEMA160 nanocomposites have a kinetic origin. As already 

stated in the section on structure, our interpretation is that directly after film formation all 

samples start with a similar dispersion reminiscent of the colloidal organization in solution. 

As soon as the water is totally evaporated, the system first relaxes local concentration 

fluctuations, and then tends to evolve to a macroscopic phase separation of the hydrophilic 

silica from the hydrophobic matrix during annealing. This maturation process seems to occur 

in spite of the favorable silica-PEMA interactions 33, 34. It is slowed down by the viscosity of 

the surrounding medium, i.e. the polymer matrix. The result is a succession of quenched silica 

structures, which confer different rheological properties to the final nanocomposites, as we 

will investigate now. 

The rheological properties of nanocomposites made with the three matrices PEMA20, 

PEMA50, and PEMA160 and increasing amounts of silica up to 10%v have been measured 

over the same frequency domain as before. The loss moduli show a small increase with silica 

volume fraction below 10%v, and the apparition of a low-frequency plateau at 10%v parallel 

to G’.  Therefore we concentrate here on the storage moduli G’, which are presented in Figure 

10. All three plots show a common dependence of G’ on the silica volume fraction: at low 

frequencies, the curves increase with Φsi, whereas they tend to a common plateau (within 

error bars) at the highest frequencies. In agreement with other studies of acrylate 

reinforcement below percolation 5, the reinforcement of the high frequency modulus is quite 

small and mainly driven by hydrodynamic reinforcement.  Striking features are found for the 

lowest molecular mass (Figure 10a), where the flow behavior of the pure matrix is modified 

progressively at intermediate frequencies as silica is added. The shape of the additional 

contribution suggests a process with fixed characteristic time which is caused by the silica. 

We will study this process in more detail below. Above 5%v of silica, the system is gelled: at 

10%v there is a constant G’ plateau in the low frequency part, followed by a minor increase to 

a second plateau at high ω. This suggests that the silica has percolated through the sample, 

and that the percolation threshold is located between 5 and 10%v. Such values are not 

uncommon for reinforced systems 10 and reflect the existence of aggregates at low chain 

masses. 

This observation is in line with our structural analysis, which showed the formation of thick 

and lengthy (Figure 1) aggregates at 3%v. Such aggregates occupy a large volume as 

compared to their silica content, and quantified by the compacity. Indeed, as shown in Figure 
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8, we have found typically between 8 and 12% for κTEM at 1%v. It is difficult to evaluate this 

quantity for higher volume fractions due to overlap of NPs in the TEM pictures. As the total 

volume fraction of aggregates is given by Φsi/κTEM, aggregates are expected to touch and 

interact at volume fractions below 10%v, and thus the system approaches percolation at small 

silica volume fractions as found by rheology.  
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Figure 10: Master curves for the storage modulus G’ as a function of angular frequency ω at the 
reference temperature of 180°C for (a) PEMA20, (b) PEMA50, and (c) PEMA160 nanocomposites. 
Black dots stand for matrices, blue empty dots for 1%v, green squares for 3%v, red diamonds for 5%v, 
and orange triangles for 10%v-composites. 

 

The rheology of nanocomposites made with PEMA50 and PEMA160 is less rich. In Figure 

10b, one can still observe the onset of the silica contribution at low frequencies as with 

PEMA20: the modulus increases with Φsi, but the process is not resolved neatly any more. 

The obvious explanation is that the signal of the characteristic relaxation of the matrix 

polymer has moved to lower frequencies, and the matrix contribution dominates the signal. 

For PEMA160, which had the longest relaxation time, the total modulus is even more 

dominated by the polymer contribution, and only a minor (but clearly visible) silica 

contribution can be observed at the lowest frequencies. 

 

We now focus on the PEMA20 case shown in Figure 10a where the silica contribution can be 

clearly identified. It appears to be added on top of the matrix contribution, which is why we 

attempt to describe it as the sum of the known matrix contribution G’matrix and the unknown 

silica contribution G’si:  

   ( ) ( ) ( ) ( )ωG' Φ1Φω,G'ωG' matrixsisisi −+=                                (7) 
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We can then solve eq. (7) for the first term on the r-h-s, G’si. This process due to the silica is 

highlighted at low frequencies, and corresponds to a characteristic relaxation time of 

approximately 1/0.05 rad/s = 20 s at 180°C for PEMA20. The shape of the curves for different 

silica volume fractions up to 5%v is the same, and we therefore decompose G’si into a volume 

fraction independent function describing the shape S(ω), and a frequency-independent 

modulus g’si(Φsi) describing the amplitude. The impact of the latter function is also illustrated 

by the arrow in Figure 10a. 

     ( ) ( ) ( )sisisisi g'  ωSΦω,G' Φ=                                  (8) 

where S(ω) is set to one at ω = 0.001 ωm. The reference frequency ωm is indicated in Figure 

10. It has been set to the characteristic relaxation time of each family of nanocomposites, and 

depends thus on the polymer mass. The amplitude function g’si(Φsi) is reported in Figure 11, 

for both PEMA20 and PEMA50. For the highest mass, it is not possible any more to extract 

this amplitude unambiguously. In the inset of Figure 11 the shape function S(ω) is found to 

superimpose nicely in the low-frequency part, suggesting that it is the same process for all 

low silica volume fractions.  
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Figure 11: Evolution of the amplitude g’si(Φsi) of the filler contribution for PEMA20 (circles) and 
PEMA50 (squares) nanocomposites. The inset shows the shape superposition of filler moduli S(ω) for 
the three lower volume fractions of PEMA20.   

 

The amplitude function g’si (Φsi) in Figure 11 follows two different regimes. Up to about 

5%v, it follows a power law with exponent 1.6±0.1, followed by a much stronger increase 
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compatible with an exponent between 9 and 10. The crossover from one to the other regime is 

naturally identified with the mechanical percolation of the hard silica filler in the 

nanocomposites. Its exact position between 5 and 10%v is unknown, however, given the 

strong second slope, it is probably close to 5%v. Below this threshold, aggregates are 

individually dispersed, and do not form a percolating hard path across the sample. The 

reinforcement in this regime can be understood as hydrodynamic reinforcement due to 

aggregates, the volume fraction of which is given by Φsi/κ. A possible scenario is 

‘Einsteinian’ reinforcement of the form 1 + 2.5 Φsi/κ  45. In this view, the average aggregate 

compacity has to decrease to produce the total increase proportional to Φsi
1.6. As the fractal 

dimension is found to increase with Φsi (corresponding to denser aggregates at constant size), 

this can only be fulfilled if the aggregate size increases in this concentration range. This is 

compatible with the observation of TEM pictures at 1 and 3%v (Figure 1). An alternative 

scenario would include higher order terms (~ Φsi
2), but our measurements lack the precision 

to distinguish between them. 

After the percolation threshold, it is instructing to compare the high exponent to those 

predicted for colloidal gels 46 in the regime of strong links between aggregates. These models 

apply to space-filling assemblies of fractal aggregates, predicting a variation of the modulus 

proportional to Φsi
(3+x)/(3-Df), where x is the fractal dimension of the load-carrying aggregate 

backbone, and Df is the fractal dimension of the entire aggregates. The backbone being part of 

the fractal, one expects x to be smaller than Df. Moreover, for dense fractals (i.e., Df between 

2 and 3), one may postulate that x also approaches Df, i.e. strongly exceeds the limiting 

connectivity given by Shih et al (x > 1). Using the fractal dimension estimated from SAXS 

(Df = 2.5±0.05, Fig.5a at 10%v), it is thus easily conceivable that x values are in the range of 

2 to 2.5, making the prediction compatible with the experimentally measured exponent. In 

conclusion, the crowding of silica aggregates of fractal dimension observed in our structural 

investigation is compatible with the increase of the silica contribution to the modulus. The 

latter follows a power law with exponent 1.6 below the percolation threshold of ca. 5%v, and 

a second power law with a much greater exponent between 9 and 10, in agreement with the 

prediction by Shih et al 46.  
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4. DISCUSSION: IS STRUCTURE GOVERNED BY RHEOLOGICAL PROPERTIES, 

OR VICE VERSA?  
 

We have seen in the preceding sections that the filler structure of the nanocomposites is 

governed by the mass of the polymer matrix chains. This dependency was traced back to the 

different viscosities of the matrices, which vary by about three orders of magnitude. The 

structure is thus governed by the rheology of the system during film formation and annealing. 

We now propose a closer look on the possibilities of spatial rearrangement of filler particles in 

their respective environment.   

 

In Figure 12a, the square-root of the average mean square displacement <r2> = 6Dt of 

nanoparticles is plotted as a function of time t expressed as the number of days the sample is 

annealed. The diffusion constant D is estimated with the Stokes-Einstein equation (see e.g. 27), 

and depends on the matrix viscosity given in Figure 9b. √<r2> thus defines a characteristic 

diffusion length on the timescale of the annealing procedure. It needs to be compared to the 

displacement typically needed to rearrange NPs, which is at least the first neighbor distance. 

In a perfectly dispersed nanocomposite, this distance can be estimated using a simple cubic 

cell model for individual NPs, and its value is given for 1%v-nanocomposites in Figure 12a. 

The result of this comparison can be read of the figure: for low masses, even one day of 

annealing (which may already take place during the initial film formation once all water is 

evaporated) is largely sufficient to induce reorganization. For PEMA160, however, even the 

full week is hardly sufficient to allow for aggregation on larger scales if low collision 

probabilities are taken into account. In this context, it is interesting to discuss the contribution 

by Jia et al 17. They have followed aggregation as a function of polymer mass and 

temperature, and propose a similar analysis based on the critical diffusion time for onset of 

aggregation by collision (see also 25). Differently from our experimental situation, their 

system possesses two competing interactions, debonding and collisions, which makes its 

evolution more complex.  
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Figure 12: (a) Characteristic distance covered by silica particles by diffusion in the different polymer 
matrices during the annealing procedure as function of time. The horizontal dashed line indicates the 
typical distance between filler particles in perfectly dispersed 1%v-nanocomposites (cubic lattice). (b) 
Evolution of G’10% at 0.016 ωm as function of the silica mesh size d* found by SAXS for 10%v-
nanocomposites.  

 

To summarize, Figure 12a supports our interpretation that the matrix rheology triggers the 

filler structure for the resulting nanocomposite. In turn, the rheology of the final 

nanocomposites depends on structure.  For the 10%v-nanocomposites, this is evidenced by 

the plot in Figure 12b of the storage modulus G’10% as a function of the silica mesh size d* 

given in Figure 5b. For the sake of comparison between the different matrices, we have again 

based our evaluation on the typical relaxation frequency ωm in Figure 10, and compared 

moduli at 0.016 ωm, which corresponds to the lowest frequency available for PEMA160.  

The three samples contain 10%v of silica and are percolated.  In spite of this similarity, the 

modulus is found to depend strongly on mesh size, the power law exponent being close to 7. 

Note that looking at the reduced modulus (i.e., divided by the corresponding matrix modulus), 

gives the same power-law exponent. One may add that the range in d* is rather small, the 

exact value of the exponent is thus subject to discussion. There is no doubt, however, on the 

strong dependence shown in Figure 12b. As a last comparison, it is interesting to confront it to 

the prediction by Shih et al 46, according to which the modulus should decrease with 

increasing d* due to the formation of weaker (because less dense) fractals, which is exactly 

opposite to our evolution. Adapting their framework to the present situation of constant 

volume fraction is beyond the scope of this article. An obvious contribution, different from 

the picture by Shih et al, comes from the thickness of the fractal branches due to volume 

conservation. Also, in our case there are more individual NPs in Figure 1 at high mass (small 
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d*), which do not contribute to the branches. Thus the modulus of branches increases with d*, 

and so does the modulus of the percolated aggregates, as observed in Figure 12b.  

 

5. CONCLUSION 

We have studied the structure and rheology of silica NPs in PEMA-nanolatex matrices of 

different chain mass. For all volume fractions in the range from 1 to 10%v, the dispersion was 

found to be best for the highest chain mass, which we trace back to the slowed-down kinetics 

of spatial reorganization of silica in matrices of higher masses. While this is known in 

solvent-cast systems, we have shown here that this structure-determining parameter works 

also for silica-latex systems. For the lowest Φsi, the structure was quantified by image analysis 

of TEM pictures in terms of Nagg-distribution functions. With the same technique, the 

compacity of aggregates as a function of aggregate mass was also determined, and found to 

lie in the range from 8 to 12%, i.e., with a rather high degree of precision. Using Monte Carlo 

simulations of aggregate structure, it could be shown that the distribution functions are fully 

compatible with experimentally measured scattered small-angle intensities. Coupling SAXS 

with TEM and simulations thus validates the distribution functions of aggregation numbers. 

The simulations also predict similar compacities, between 6 and 10%, with a weak size 

dependence for Nagg > 5. Moreover, SAXS was used to follow the crowding of aggregates 

with silica volume fraction, up to 10%v, where network structures – which are difficult to 

disentangle in TEM – are found. Again, the highest mass leads to the smallest and lightest 

networks, which has also the lowest modulus. The rheology of the nanocomposites shows an 

interesting feature at low frequencies. We have identified the shape function (in the frequency 

domain) of the silica contribution, and analyzed the evolution of the corresponding amplitude 

with volume fraction. Below a percolation threshold of ca. 5%v, the modulus increases with ~ 

Φsi
1.6, and much stronger ~ Φsi

9-10 above it, in agreement with the prediction by Shih et al 46.  

To conclude, a detailed structural and rheological analysis of a silica-latex nanocomposite 

system is proposed, as a function of a parameter up to now not used in such systems, the 

matrix chain mass. It is believed that both the results offering a new control parameter, and 

the coupling of techniques presented here will contribute to the understanding of the 

reinforcement effect in nanocomposites. 
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