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PERTURBATION OF ℓ1-COPIES IN PREDUALS OF

JBW∗-TRIPLES

ANTONIO M. PERALTA AND HERMANN PFITZNER

Abstract. Two normal functionals on a JBW∗-triple are known to be
orthogonal if and only if they are L-orthogonal (meaning that they span
an isometric copy of ℓ1(2)). This is shown to be stable under small
norm perturbations in the following sense: if the linear span of the two
functionals is isometric up to δ > 0 to ℓ1(2), then the functionals are less
far (in norm) than ε > 0 from two orthogonal functionals, where ε → 0
as δ → 0. Analogous statements for finitely and even infinitely many
functionals hold as well. And so does a corresponding statement for
non-normal functionals. Our results have been known for C∗-algebras.

1. Introduction

The starting point of this note consists in two well-known facts. First, two
elements in the predual of a JBW∗-triple are orthogonal if and only if they
span the two-dimensional ℓ1(2) isometrically and second, in preduals of von
Neumann algebras this still makes sense after small norm perturbations,
moreover not only for two but for finitely and, up to subsequences, even
infinitely many elements.

For example, if a sequence (ϕn) in L1([0, 1]) is such that
∑

|αn| ≥ ‖
∑

αnϕn‖ ≥ r
∑

|αn|,

then there are pairwise orthogonal ϕ̃n such that ‖ϕn − ϕ̃n‖ < ε, with ε→ 0
as r → 1 (and, of course, with ‖∑αnϕ̃n‖ =

∑ |αn|), see [16]. Briefly,
in L1 a sequence near to an isometric copy of ℓ1 is near to an orthogonal
sequence. Up to subsequences the same follows from [36, Th. 1.2] for arbi-
trary von Neumann preduals. Analogous non-normal versions hold, too: it
can be deduced from [36, Prop. 1.3] that if a sequence (ϕn) in the dual of
a C∗-algebra A is as above then for any ε > 0 there are pairwise orthog-
onal elements ck ∈ A such that ϕnk

(ck) > (1 − ε)r for some subsequence
(ϕnk

); a similar formulation (reminiscent of Pe lczyński’s property (V ) or
Grothendieck’s criterion of weak compactness in the dual of a C(K)-space)
is that if one accepts to replace r by a worse constant (e.g. r2/2) in the last
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inequality, then the ck’s can be considered to be selfadjoint elements of a
commutative subalgebra of A [36, §6, Lem. 6.3].

In view of the numerous generalizations of geometric (=Banach space the-
oretic) properties from C∗-algebras to JB∗-triples it is natural to conjecture
similar results for JB∗-triples. The aim of this article is to state and prove
them.

Let us describe these results. They divide into two parts, contained in
Sections 3 and 4, respectively, depending on whether the ℓ1-copies are of
finite or infinite dimension. Basic to all this, as already alluded to in the first
paragraph, is the result of Y. Friedman, B. Russo [26, Lem. 2.3], according
to which two functionals are algebraically orthogonal if and only if they
are L-orthogonal where the latter means that the two functionals span an
isometric copy of ℓ1(2) (see Section 2 for definitions).

The main result of Section 3, Theorem 3.6, yields a quantification of
algebraic orthogonality for finitely many arbitrary elements in the dual of a
JB∗-triple E: if functionals ϕ1, . . . , ϕn in E∗ span ℓ1(n) (1−δ)-isomorphically
then they are near to pairwise orthogonal functionals as δ is near to 0 and
moreover they attain their norm up to a given ε > 0 on some pairwise
orthogonal elements in E. A quantification of orthogonality in E is not
possible in general but it is for tripotents, see Proposition 3.10.

Section 4 contains what has been described in the second paragraph.
More specifically, if a bounded sequence (ϕn) in a JBW∗-predual W∗ spans
ℓ1 almost isometrically, then according to Theorem 4.1 there are pairwise
orthogonal ϕ̃k such that ‖ϕnk

− ϕ̃k‖ → 0 for some subsequence ϕnk
. The

non-normal case, treated in Theorem 4.2, can be resumed by saying that
if the ϕn’s span ℓ1 r-isomorphically in the dual of a JB∗-triple E, then E
contains an abelian subtriple such that the restrictions of an appropriate
subsequence of the ϕn to this subtriple still span ℓ1 (1 − ε)-isomorphically
for any given ε > 0. A quantitative version of Theorem 4.2 is already
contained in [22, Th. 2.3] and, what is more, the arguments in [22] and [13]
seem to lend themselves to a quantification that gives our Theorem 4.2. We
refrained from pursuing this approach for it seems more natural to deduce
the infinite dimensional case from the finite dimensional one, all the more
because the latter has an interest in its own.

2. Preliminaries

We shall follow the standard notation employed, for example in [21], [22] or
[10]. For Banach space theory we refer, e.g., to [14, 20, 29].

We recall that a JB∗-triple [30] is a complex Banach space E equipped
with a continuous ternary product {., ., .} symmetric and bilinear in the
outer variables and conjugate linear in the middle one satisfying

(2.1) L(x, y) {a, b, c} = {L(x, y)a, b, c} − {a, L(y, x)b, c} + {a, b, L(x, y)c} ,
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such that ‖L(a, a)‖ = ‖a‖2 and L(a, a) is an hermitian operator on E with
non-negative spectrum, where L(a, b) is given by L(a, b)y = {a, b, y}.

Every C∗-algebra is a JB∗-triple with respect to the triple product given
by {x, y, z} = 1

2(xy∗z + zy∗x). The same triple product equipes the space
B(H,K), of all bounded linear operators between complex Hilbert spaces
H and K, with a structure of JB∗-triples. Among the examples involving
Jordan algebras, we can say that every JB∗-algebra is a JB∗-triple under the
triple product {x, y, z} = (x ◦ y∗) ◦ z + (z ◦ y∗) ◦ x− (x ◦ z) ◦ y∗.

An element u in a JB∗-triple E is said to be a tripotent when it is a fixed
point of the triple product, that is, when u = {u, u, u}. Given a tripotent
u ∈ E, the mappings Pi(u) : E → Ei(u), (i = 0, 1, 2), defined by

P2(u) = L(u, u)(2L(u, u) − idE), P1(u) = 4L(u, u)(idE − L(u, u)),

and P0(u) = (idE − L(u, u))(idE − 2L(u, u)),

are contractive linear projections, called the Peirce projections associated
with u. The range of Pi(u) is the eigenspace Ei(u) of L(u, u) corresponding
to the eigenvalue i

2 , and

E = E2(u) ⊕ E1(u) ⊕ E0(u)

is the Peirce decomposition of E relative to u. Furthermore, the following
Peirce rules are satisfied,

(2.2) {E2(u), E0(u), E} = {E0(u), E2(u), E} = {0},

(2.3) {Ei(u), Ej(u), Ek(u)} ⊆ Ei−j+k(u),

where Ei−j+k(u) = {0} whenever i − j + k /∈ {0, 1, 2} ([24] or [12, Th.
1.2.44]). For x, y, z in a JB∗-triple E we have [25, Cor. 3]

‖{x, y, z}‖ ≤ ‖x‖‖y‖‖z‖.(2.4)

A tripotent u is called complete if E0(u) reduces to {0}.

The Peirce-2 subspace E2(u) is a unital JB∗-algebra with unit u, product
a ◦u b = {a, u, b} and involution a♯u = {u, a, u} (c.f. [7, Theorem 2.2] and
[31, Theorem 3.7]; [12, p. 185]).

A JBW∗-triple is a JB∗-triple which is also a dual Banach space. Every
JBW∗-triple admits a unique isometric predual and its triple product is
separately weak∗-continuous ([5], [28], [12, Th. 3.3.9]). Consequently, the
Peirce projections associated with a tripotent in a JBW∗-triple are weak∗-
continuous. The second dual of a JB∗-triple is a JBW∗-triple such that its
triple product reduces to the original one (cf. [15], [12, Cor. 3.3.5]). The
class of JBW∗-triples includes all von Neumann algebras. Functionals on a
JBW∗-triple W are called normal if they belong to the predual W∗.

JBW∗-triples play, in the category of JB∗-triples, a similar role to that
played by von Neumann algebras in the setting of C∗-algebras. A JB∗-
triple need not have any non-zero tripotent. However, since the complete
tripotents of a JB∗-triple E coincide with the complex and the real extreme
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points of its closed unit ball (cf. [7, Lem. 4.1], [31, Prop. 3.5], [12, Th.
3.2.3]), the Krein-Milman theorem implies that every JBW∗-triple contains
an abundant set of tripotents.

Given elements a, b in a JB∗-triple E, the symbol Q(a, b) will denote the
conjugate linear operator on E defined by Q(a, b)(x) := {a, x, b}. We write
Q(a) instead of Q(a, a). The Bergmann operator B(a, b) : E → E is the
mapping given by B(a, b)(z) = z − 2L(a, b)(z) +Q(a)Q(b)(z), for all z in E
(compare [32] or [39, page 305]). In the particular case of u being a tripotent,
we have P0(u) = B(u, u).

Throughout the paper, given a Banach space X, we consider X as a closed
subspace of X∗∗, via its natural isometric embedding, and for each closed

subspace Y of X we shall identify Y
σ(X∗∗,X∗)

, the weak∗-closure of Y in
X∗∗, with Y ∗∗.

A normalized sequence (xn) in a Banach space X is said to span ℓ1 r-
isomorphically if ‖∑n αnxn‖ ≥ r

∑
n |αn| for all scalars αn. If there is a se-

quence (δm) such that 0 ≤ δm → 0 and (xn)n≥m spans ℓ1 δm-isomorphically
for all m then (xn) is said to span ℓ1 almost isometrically.

The strong-∗-topology. Given a norm-one element ϕ in the predual W∗
of a JBW∗-triple W , and a norm-one element z in W with ϕ(z) = 1, it
follows from [4, Proposition 1.2] that the assignment

(x, y) 7→ ϕ {x, y, z}
defines a positive sesquilinear form on W. Moreover, for every norm-one
element w in W satisfying ϕ(w) = 1, we have ϕ {x, y, z} = ϕ {x, y, w} ,
for all x, y ∈ W . The mapping x 7→ ‖x‖ϕ := (ϕ {x, x, z})

1
2 , defines a

prehilbertian seminorm on W . The strong∗-topology of W , introduced by
T.J. Barton and Y. Friedman in [4], is the topology on W generated by the
family {‖ · ‖ϕ : ϕ ∈W∗, ‖ϕ‖ = 1}, and will be denoted by s∗(W,W∗). From
[4, page 258] we get |ϕ(x)| ≤ ‖x‖ϕ for any x ∈ W, and it is clear from this
that s∗(W,W∗) is stronger than the weak∗-topology of W .

It is known that the triple product of a JBW∗-triple is jointly strong∗-
continuous on bounded sets ([34, Th. 9], [37, Th., page 103]). Another
interesting property tells us that the strong*-topology of a JBW∗-triple W
is compatible with the duality (W,W∗) (i.e. a linear functional on W is
weak∗-continuous if, and only if, it is strong∗-continuous, see [34, Th. 9]).
The bipolar theorem implies that for convex sets of W , weak∗-closure and
strong∗-closure coincide. It follows that the closed unit ball of a weak∗-dense
JB∗-subtriple E of a JBW∗-triple W is strong∗-dense in the closed unit ball
of W . This result, known as Kaplansky Density theorem for JBW∗-triples,
was established by J.T. Barton and Y. Friedman in [4, Cor. 3.3].

In 2001, L.J. Bunce culminated the description of the fundamental prop-
erties of the strong∗-topology showing that for every JBW∗-subtriple F of
a JBW∗-triple W , the strong∗-topology of F coincides with the restriction
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to F of the strong∗-topology of W , that is, s∗(F,F∗) = s∗(W,W∗)|F [8]. It
is also known that a linear map between JBW∗-triples is strong∗-continuous
if, and only if, it is weak∗-continuous (compare [34, page 621]).

Functional calculus, open and closed tripotents. Let x be an
element in a JB∗-triple E. Throughout the paper, the symbol Ex will stand
for the norm-closed subtriple of E generated by x. It is known that Ex is
JB∗-triple isomorphic to the abelian C∗-algebra C0(L) of all complex-valued
continuous functions on L vanishing at 0, where L is a locally compact
subset of (0, ‖x‖] satisfying that L ∪ {0} is compact. Further, there exists
a JB∗-triple isomorphism Ψ : Ex → C0(L) satisfying Ψ(x)(t) = t, for all
t in L (compare [30, 1.15]). Given a continuous complex-valued function
f : L ∪ {0} → C vanishing at 0, the continuous triple functional calculus
f(x) will have its usual meaning f(x) = Ψ−1(f).

We define x[1] := x and x[2n+1] = {x, x, x[2n−1]} for every n ∈ N. JB∗-
triples are power associative, that is,

{
x[2k−1], x[2l−1], x[2m−1]

}
= x[2(k+l+m)−3],

for every k, l,m ∈ N (cf. [32, §3.3] or [12, Lem. 1.2.10] or simply apply the
Jordan identity).

Suppose now that ‖x‖ = 1 and that E is a subtriple of a JBW∗-triple W ,
for example W = E∗∗. It is known that (x[2n+1]) converges in the strong∗-

topology to the tripotent u(x) = χ{1}(x) ∈ Ex
w∗

⊂ W , which is called the
support tripotent of x ([18, Lem. 3.3]). (By χA we denote the characteristic
function of a set A.) By functional calculus there exist, for each n ∈ N,

unique elements x[
1

2n−1
] in Ex

∼= C0(L) satisfying
(
x[

1
2n−1

]
)[2n−1]

= x. The

latter are strong∗-convergent to the tripotent r(x) = χ(0,1](x) ∈ Ex
w∗

⊂W ,
which is called the range tripotent of x. The tripotent r(x) is the smallest
tripotent e ∈W satisfying that x is positive in the JBW∗-algebra W2(e) (see,
for example, [17, comments before Lemma 3.1] or [9, §2]). The inequalities

u(x) ≤ x[2n+1] ≤ x ≤ r(x)

hold in W2(r(x)) for every norm-one element x ∈ E.

A tripotent u, in a JB∗-triple E, is said to be bounded if there exists a
norm-one element x ∈ E such that L(u, u)x = u. The element x is called
a bound of u and we write u ≤ x. We shall write y ≤ u whenever y is a
positive element in the JB∗-algebra E2(u) (cf. [21, pages 79-80]). A JB∗-
triple E need not have a cone of positive elements and the lacking of order
implies that the symbol x ≤ y makes no sense for general elements x, y ∈ E.
However, it should be remarked that, given x, y ∈ E and tripotents u, v ∈ E
with x ≤ u and u ≤ y ≤ v, we have x ≤ u ≤ y ≤ v with respect to the
natural order of the JB∗-algebra E2(v). Note further, for Lemma 3.3 below,
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that we have u ≤ x in the just mentioned sense if we have u ≤ x in the
JBW∗-algebra E∗∗

2 (r(x)).

Inspired by the notion of open projection in the bidual of a C∗-algebra
introduced and studied by C. Akemann, L. Brown, and G.K. Pedersen (cf.
[1] or [2, 3] or [33, Proposition 3.11.9]), C.M. Edwards and G.T. Rüttimann
develop the notion of open tripotent in the bidual of a JB∗-triple E: we say
that a tripotent e in E∗∗ is open if E∗∗

2 (e)∩E is weak∗-dense in E∗∗
2 (e) (see

[18, page 167]). It is known that the range tripotent of a norm-one element
of E is open (cf. [9, Proposition 2.1]). A tripotent e in E∗∗ is said to be
compact-Gδ (relative to E) if there exists a norm-one element x in E such
that e coincides with u(x), the support tripotent of x. A tripotent e in E∗∗

is said to be compact (relative to E) if there exists a decreasing net (eλ) of
tripotents in E∗∗ which are compact-Gδ with infimum e, or if e is zero (cf.
[18, pages 163-164]). In the terminology of [21], we say that a tripotent u
in E∗∗ is closed if E ∩ E∗∗

0 (u) is weak∗-dense in E∗∗
0 (u). The equivalence

established in [21, Th. 2.6] shows that a tripotent e ∈ E∗∗ is compact if and
only if e is closed and bounded by an element of E.

Small perturbation of a normal functional. Let ϕ ∈ W∗ be a
functional in the predual of a JBW∗-triple W and let e be a tripotent in W .
In [24, Proposition 1], Y. Friedman and B. Russo prove that ‖ϕP2(e)‖ =
‖ϕ‖ if and only if ϕ = ϕP2(e). Using the techniques of ultraproducts of
Banach spaces, J. Becerra-Guerrero and A. Rodŕıguez Palacios obtained
the following quantitative version of the above property which will be used
throughout this article.

Lemma 2.1. [6, Lem. 2.2] Given ε > 0, there exists η = η(ε) > 0 such that,
for every JB∗-triple E, every non-zero tripotent e in E, and every ϕ in E∗

with ‖ϕ‖ ≤ 1 and ‖ϕP2(e)‖ ≥ 1 − η, we have ‖ϕ− ϕP2(e)‖ < ε. �

Orthogonality and geometric M- and L-orthogonality. We recall
that elements a, b in a JB∗-triple E are said to be algebraically orthogonal or
simply orthogonal (written a ⊥ b) if L(a, b) = 0. If we consider a C∗-algebra
as a JB∗-triple then two elements are orthogonal in the C∗-sense if and only
if they are orthogonal in the triple sense. It is known (compare [11, Lem.
1]) that a ⊥ b if and only if one of the following statements holds:

{a, a, b} = 0; a ⊥ r(b); r(a) ⊥ r(b);

E∗∗
2 (r(a)) ⊥ E∗∗

2 (r(b)); r(a) ∈ E∗∗
0 (r(b)); a ∈ E∗∗

0 (r(b));

b ∈ E∗∗
0 (r(a)); Ea ⊥ Eb.

It follows from Peirce rules (2.2) that, for each tripotent u in a JB∗-triple
E, E0(u) ⊥ E2(u).
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For each norm one functional ϕ in the predual of a JBW∗-triple W , the
square of the prehilbertian seminorm ‖·‖ϕ is additive on orthogonal elements:

‖a+ b‖2ϕ = ‖a‖2ϕ + ‖b‖2ϕ, ∀a ⊥ b.

We recall that a functional φ in the predual of a JBW∗-algebra M is said to
be faithful if for each a ≥ 0 in M , φ(a) = 0 implies a = 0.

Let ϕ be a norm-one functional in the predual of a JBW∗-tripleW . By [24,
Prop. 2], there exists a unique tripotent e = e(ϕ) ∈W satisfying ϕ = ϕP2(e)
and ϕ|W2(e) is a faithful normal state of the JBW∗-algebra W2(e). This
unique tripotent e is called the support tripotent of ϕ, and will be denoted
by e(ϕ). (Note that at the time of the writing of [24] condition [24, (1.13)]
was not yet known to hold for all JBW∗-triples.)

Now, according to [26] and [19], we define two functionals ϕ and ψ in
the predual of a JBW∗-triple W to be algebraically orthogonal or simply
orthogonal, denoted by ϕ ⊥ ψ, if their support tripotents are orthogonal in
W , that is e(ϕ) ⊥ e(ψ).

Elements x, y in a normed space X are said to be L-orthogonal (and we
write x ⊥L y) if ‖x ± y‖ = ‖x‖ + ‖y‖, and are said to be M -orthogonal
(denoted by x ⊥M y) if ‖x± y‖ = max {‖x‖, ‖y‖}.

Given a, b in E, it follows from [24, Lem. 1.3(a)] that a ⊥M b whenever a ⊥
b. In general the reverse implication does not hold, for example (1/2, 1, 0)
and (1/2, 0, 1) in the C∗-algebra l∞(3) are M -orthogonal but not orthogonal.
The following result is borrowed from [26] and [19].

Lemma 2.2. [26, Lem. 2.3] and [19, Theorem 5.4 and Lemma 5.5] Let ϕ
and ψ be two functionals in the predual of a JBW∗-triple W . Then ϕ ⊥ ψ
if, and only if, ϕ ⊥L ψ. Furthermore, given two tripotents e and u in W ,
then e ⊥ u if, and only if, e ⊥M u. �

Note that ϕ ⊥L ψ in the lemma (with ‖ψ‖, ‖ϕ‖ 6= 0) is equivalent to

‖α ϕ

‖ϕ‖ + β
ψ

‖ψ‖‖ = |α| + |β|,

for any α, β ∈ C.

3. Quantitative versions of M- and L-orthogonality in

JBW∗triples and their predual spaces

The main goal of this section is to establish quantitative versions of Lemma
2.2 (see Propositions 3.5, 3.10 and Theorem 3.6 below). The proof will follow
from a series of technical results. The next two lemmas, which are included
here for the sake of completeness, are borrowed from [22].

Lemma 3.1. [22, Lem. 1.2] Let E be a JB∗-triple, e a tripotent in E, and x
a norm-one element in E with e ≤ x. Then B(x, x) is a contractive operator
and B(x, x)(y) belongs to E0(e), for every y in E. �
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Lemma 3.2. [22, Lem. 2.1] Let E be a JB∗-triple, v be a tripotent in E,
and ϕ an element in the closed unit ball of E∗. Then for each y ∈ E2(v)
with ‖y‖ ≤ 1 we have

|ϕ(x −B(y, y)(x))| ≤ 21‖x‖‖v‖ϕ,(3.1)

for every x ∈ E. �

We shall also need an appropriate version of [22, Lem. 2.2], the argument is
taken from the just quoted paper.

Lemma 3.3. Let E be a JB∗-triple, θ > 0, 1 > δ > 0, and let ϕ1, ϕ2 be
two norm-one functionals in E∗. Suppose x is an element in the closed
unit ball of E, satisfying |ϕ1(x)| ≥ 1 − δ and ‖x‖ϕ2 ≤ θ. Then, for every
ε > 0 with 1 − δ ≥ 2ε there exist two elements ã, y in the unit ball of
Ex, and two tripotents u, v in (Ex)∗∗ such that ã ≤ u ≤ y ≤ v = r(y),
1 ≥ |ϕ1(ã)| > 1 − δ − ε, and ‖v‖ϕ2 <

3θ
ε
. We can further find a ∈ E∗∗

2 (u)
such that 1 ≥ ϕ1(a) > 1 − δ − ε.

Proof. Let α > 0 and define fα, gα ∈ C0(L) by

fα =





0, if 0 ≤ t ≤ α
affine, if α ≤ t ≤ 2α
t, if 2α ≤ t ≤ ‖x‖,

gα =





0, if 0 ≤ t ≤ α
2

affine, if α
2 ≤ t ≤ α

1, if α ≤ t ≤ ‖x‖.

Let 2ε/3 < ε′ < ε and define ã = fε′(x) and y = gε′(x) by the functional
calculus recalled in Section 2. Then ‖ã‖ ≤ 1 because 2ε′ ≤ 1 − δ ≤ ‖x‖.
Since ‖x− ã‖ ≤ ε′ and |ϕ1(x)| ≥ 1 − δ it follows that |ϕ1(ã)| > 1 − δ − ε.

We set u = χ[ε′,‖x‖], and v = r(y) = χ
( ε

′

2
,‖x‖] (also in (Ex)∗∗) and get

ã ≤ u ≤ y ≤ v. Let us take α ∈ R such that ϕ1(eiαã) > 0 and define
a = eiαã. Then a ∈ E∗∗

2 (u) because ã ≤ u and we have

1 ≥ ϕ1(a) > 1 − δ − ε.

Since ‖ · ‖ϕ is an order-preserving map on the set of positive elements in
(Ex)∗∗ (cf. [21, Lem. 3.3]), we deduce that

‖v‖ϕ2 ≤
∥∥∥∥

2

ε′
x

∥∥∥∥
ϕ2

≤ 2θ

ε′
<

3θ

ε
.

�

Proposition 3.4. Let E be a JB∗-triple, and let ϕ1 and ϕ2 be two orthogonal
norm-one functionals in E∗. Then for every ε > 0 there exist norm-one
elements a, b in E satisfying a ⊥ b, ϕ1(a) > 1 − ε and ϕ2(b) > 1 − ε.

Proof. Let us fix an arbitrary ε > 0. Take η > 0 satisfying η < min{1
3 ,

ε
2}.

We can also find 0 < δ < εη
66 . We note that η and δ satisfy 2η < 1 − η,

1 − 2η > 1 − ε, and 223
η
δ < ε.

Let ej in E∗∗ be the support tripotent of ϕj , j = 1, 2. Since e1 ⊥ e2, e1+e2
and e1 − e2 are the support tripotents of φ = ϕ1 + ϕ2 and ψ = ϕ1 − ϕ2,
respectively (see [19, Th. 5.4]). In particular, ϕ1(e2) = 0 = ϕ2(e1).
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By the Kaplansky Density theorem for JBW∗-triples [4, Cor. 3.3] (i.e. by
the strong∗-density of the closed unit ball of E in the one of E∗∗), there are
two nets (zλ) and (z̃µ) in the closed unit ball of E converging in the strong∗-
topology of E∗∗ to e1 and e2, respectively. Since s∗(E∗∗, E∗) is stronger than
the weak∗-topology of E∗∗, we deduce that (zλ) → e1 and (z̃µ) → e2 in the
weak∗-topology of E∗∗. In particular,

ϕ1(zλ) → ϕ1(e1) = 1, ϕ1(z̃µ) → ϕ1(e2) = 0,

ϕ2(zλ) → ϕ2(e1) = 0, ϕ2(z̃µ) → ϕ2(e2) = 1,

‖zλ‖ϕ1 → ‖e1‖ϕ1 = 1, ‖z̃µ‖ϕ1 → ‖e2‖ϕ1 = 0,

‖zλ‖ϕ2 → ‖e1‖ϕ2 = 0, and ‖z̃µ‖ϕ2 → ‖e2‖ϕ2 = 1.

Find indices λ0 and µ0 such that

(3.2) |ϕ1(zλ0)| > 1 − η, ‖zλ0‖ϕ2 < δ, |ϕ2(z̃µ0) − 1| < 3

η
δ.

Applying Lemma 3.3 (with δ, η, zλ0 for θ, δ = ε, x) we can find a0, ã, y in
the closed unit ball of Ezλ0

and two tripotents u, v in E∗∗
zλ0

satisfying

ã ≤ u ≤ y ≤ v, 1 ≥ ϕ1(a0) > 1 − 2η > 1 − ε,

‖v‖ϕ2 <
3

η
δ, and a0 ∈ E∗∗

2 (u).

Define a = a0/‖a0‖ ∈ E∗∗
0 (u). Then ϕ1(a) > 1−ε. By Lemma 3.2 we obtain

∣∣∣ϕ2

(
z̃µ0 −B(y, y)(z̃µ0)

)∣∣∣ < 21‖z̃µ0‖‖v‖ϕ2 < 21
3

η
δ,

and by the third inequality in (3.2) we deduce that
∣∣∣ϕ2

(
B(y, y)(z̃µ0)

)
− 1
∣∣∣ < 22

3

η
δ < ε.

Setting b̃ = eiβB(y, y)(z̃µ0) for a suitable β ∈ IR we have ϕ2(̃b) > 1 − ε

and setting b = b̃/‖b̃‖ we still have ϕ2(b) > 1 − ε.

By Lemma 3.1, b ∈ B(y, y)(E) ⊆ E∗∗
0 (u). Since, by construction, a lies

in E∗∗
2 (u), it follows that a ⊥ b. �

Remark. Proposition 3.4 remains valid (with practically the same proof)
if the first sentence is replaced by “Let E be a weak∗-dense subtriple of a
JBW∗-triple W and let ϕ1, ϕ2 be two orthogonal norm-one functionals in
W∗.”

We shall require some results in the theory of ultraproducts of Banach
spaces [27]. To this end, we recall some basic facts and definitions. Let U be
an ultrafilter on a non-empty set I, and let {Xi}i∈I be a family of Banach
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spaces. Let ℓ∞(I,Xi) = ℓ∞(Xi) denote the Banach space obtained as the
ℓ∞-sum of the family {Xi}i∈I , and let

c0 (Xi) :=

{
(xi) ∈ ℓ∞(Xi) : lim

U
‖xi‖ = 0

}
.

The ultraproduct of the family {Xi}i∈I relative to the ultrafilter U , denoted
by (Xi)U , is the quotient Banach space ℓ∞(Xi)/c0 (Xi) equipped with the
quotient norm. Let [xi]U be an equivalence class in (Xi)U represented by a
family (xi)i ∈ ℓ∞(Xi). It is known that

‖[xi]U‖ = lim
U

‖xi‖,

independently of the representative of [xi]U . In general, the ultraproduct of
a family of dual Banach spaces is not a dual Banach space (not even in the
case of von Neumann algebras). The ultraproduct (X∗

i )U of the duals can
be identified isometrically with a closed subspace of the dual ((Xi)U )∗ via
the canonical mapping

J : (X∗
i )U → ((Xi)U )∗

J [ϕi]U ([xi]U ) = lim
U
ϕi(xi).

In [15, Cor. 10] S. Dineen establishes that the class of JB∗-triples (analo-
gously to the class of C∗-algebras [27, Prop. 3.1]), is stable under ultraprod-
ucts via the canonical triple product {[ui]U , [vi]U , [wi]U} = [{ui, vi, wi}]U .

Here is a simple argument to prove Dineen’s theorem (cf. also [12, proof of
Cor. 3.3.5]). Let {Ei}i∈I be a family of JB∗-triples. Then the Banach space
ℓ∞(Ei) is a JB∗-triple with pointwise operations ([30, page 523] or [12, Ex.
3.1.4]). Let E be a JB∗-triple. A subtriple I of a JB∗-triple a JB∗-triple E is
said to be an ideal or a triple ideal of E if {E,E,I}+{E,I, E} ⊆ I. It is easy
to see, under the above conditions, that {ℓ∞(Ei), ℓ∞(Ei), c0 (Ei)} ⊆ c0 (Ei)
and {ℓ∞(Ei), c0 (Ei) , ℓ∞(Ei)} ⊆ c0 (Ei) , and hence c0 (Ei) is a closed triple
ideal of ℓ∞(Ei). Since the quotient of a JB∗-triple by a closed triple ideal is a
JB∗-triple ([30] or [12, Cor. 3.1.18]), we deduce that (Ei)U = ℓ∞(Ei)/c0 (Ei)
is a JB∗-triple.

Proposition 3.5. For each ε > 0 there exists δ > 0 such that for every JB∗-
triple E and every pair of functionals ϕ1 and ϕ2 in the closed unit ball of
E∗ with 2 ≥ ‖ϕ1 ±ϕ2‖ ≥ 2(1− δ) there exist orthogonal norm-one elements
a, b in E satisfying ϕ1(a) > 1 − ε and ϕ2(b) > 1 − ε.

Proof. Suppose, to the contrary, that there exists ε0 > 0 such that for each
natural n, we can find a JB∗-triple En and functionals ϕ1,n and ϕ2,n in
the closed unit ball of E∗

n with 2 ≥ ‖ϕ1,n ± ϕ2,n‖ ≥ 2(1 − 1
n

) satisfying
|ϕ1,n(a)| ≤ 1− ε0 and |ϕ2,n(b)| ≤ 1− ε0, whenever a, b are elements of norm
one in En with a ⊥ b.

Take a non-trivial ultrafilter U in N, let 0 < ε1 < ε and let J : (E∗
n)U →

((En)U )∗ be the canonical isometric embedding defined by J [ϕi]U ([xn]U ) =
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limU ϕn(xn). Then J [ϕ1,n]U and J [ϕ2,n]U have norm one and are L-ortho-
gonal in ((En)U )∗ because so are [ϕ1,n]U and [ϕ2,n]U in (E∗

n)U . As explained
above, ((En)U )∗ is a JB∗-triple and Proposition 3.4 applies: there exist norm-
one elements [an]U , [bn]U in (En)U satisfying [an]U ⊥ [bn]U , J [ϕ1,n]U ([an]U ) >
1 − ε1 and J [ϕ2,n]U ([bn]U ) > 1 − ε1.

We note that the elements [an]U , [bn]U are orthogonal in the quotient
(En)U = ℓ∞(En)/c0 (En). Since the quotient mapping π : ℓ∞(En) →
ℓ∞(En)/c0 (En) is a triple homomorphism between JB∗-triples and π((an)n)
= [an]U ⊥ π((bn)n) = [bn]U , by [10, Proposition 4.7] there exist ortho-

gonal elements (ãn)n and (̃bn)n in ℓ∞(En) satisfying π((ãn)n) = [an]U and

π((̃bn)n) = [bn]U . We have limU ‖ãn‖ = limU ‖an‖ = 1 and likewise for (bn)n,

(̃bn)n.

Now, 1−ε1 < J [ϕ1,n]U ([ãn]U ) = limU ϕ1,n(ãn), 1−ε1 < J [ϕ2,n]U ([̃bn]U ) =

limU ϕ2,n(̃bn), and, for every n, ãn ⊥ b̃n. Hence ϕ1,n(ãn/‖ãn‖) > 1 − ε or

ϕ2,n(̃bn/‖b̃n‖) > 1−ε can be achieved for infinitely many n which contradicts
the assumption made in the beginning of the proof. �

We shall establish now an analogous version of Proposition 3.5 for finite sets
of functionals in the dual of a JB∗-triple.

Theorem 3.6. For each ε > 0 and each natural n, there exists δ = δ(n, ε) >
0 with the following property. Let E be a JB∗-triple and let ϕ1, . . . , ϕn be
functionals in E∗ such that

n∑

j=1

|αj | ≥

∥∥∥∥∥∥

n∑

j=1

αjϕj

∥∥∥∥∥∥
≥ (1 − δ(n, ε))

n∑

j=1

|αj | ∀αj ∈ C.(3.3)

Then there exist mutually orthogonal elements a1, . . . , an of norm one in E
and mutually orthogonal functionals ϕ̃1, . . . , ϕ̃n of norm one in E∗ satisfying

ϕj(aj) > 1 − ε and ‖ϕj − ϕ̃j‖ < ε ∀j = 1, . . . , n(3.4)

where ϕ̃j =
ϕjP2(r(aj))

‖ϕjP2(r(aj))‖
.

Proof. We shall proceed by induction over n ≥ 1. For n = 1 there is nothing
to prove. Let us fix ε > 0 and n ∈ IN.

We claim that there is ε′ ∈ (0, ε) such that if an element b in a JB∗-triple
E and ξ ∈ E∗ satisfy

‖b‖ ≤ 1, ‖ξ‖ ≤ 1 and |ξ(b)| > 1 − ε′(3.5)

then
∥∥∥ξ − ξP2(r(b))

‖ξP2(r(b))‖

∥∥∥ < ε In fact, define ε′ ∈ (0, ε/2) by Lemma 2.1 such

that (3.5) entails ‖ξ − ψ‖ < ε/2 where ψ = ξP2(r(b)). Hence, if (3.5) holds
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then |ψ(b)| = |ξ((b)| > 1 − ε/2 and
∥∥∥ξ − ψ

‖ψ‖
∥∥∥ ≤ ‖ξ − ψ‖ +

∥∥∥ψ − ψ

‖ψ‖
∥∥∥ <

ε

2
+

(
1

‖ψ‖ − 1

)
‖ψ‖

=
ε

2
+ 1 − ‖ψ‖ < ε

which proves the claim.

Choose δ(n, ε′) > 0 according to the induction hypothesis, choose η0 =

η( δ(n,ε
′)

2 ) > 0 according to Lemma 2.1 and choose

δ0 = δ

(
min

{
ε′,

1

n
η0

})
> 0

according to Theorem 3.5. Furthermore, let δ(n + 1, ε′) be such that

0 < δ(n + 1, ε′) < min

{
δ(n, ε′)

2
, δ0

}
.

Let E be a JB∗-triple and let ϕ1, . . . , ϕn+1 ∈ E∗ satisfy

n+1∑

j=1

|αj | ≥

∥∥∥∥∥∥

n+1∑

j=1

αjϕj

∥∥∥∥∥∥
≥
(

1 − δ(n + 1, ε′)
) n+1∑

j=1

|αj | ∀αj ∈ C.

Let us define φ =
n∑

j=1

1

n
ϕj . Clearly,

2 ≥ ‖φ± ϕn+1‖ ≥
(

1 − δ(n + 1, ε′)
)

(n
1

n
+ 1) > 2(1 − δ0).

Thus, by the choice of δ0 (see Theorem 3.5) there exist a ⊥ an+1 of norm
one in E satisfying

ϕn+1(an+1) > 1 − min

{
ε′,

1

n
η0

}
> 1 − ε′,(3.6)

φ(a) > 1 − min

{
ε′,

1

n
η0

}
> 1 − 1

n
η0.

Since
∑n

j=1 ϕj(a) = nφ(a) > n− η0 and ‖ϕj‖ ≤ 1 we have

|ϕj(a)| > n− η0 − (n− 1) = 1 − η0 ∀j = 1, . . . , n.

Thus, |ϕjP2(r(a))(a)| = |ϕj(a)| > 1 − η0 and by the choice of η0 we deduce

‖ϕj − ϕjP2(r(a))‖ < δ(n, ε′)
2

∀j = 1, . . . , n.

Therefore we have

n∑

j=1

|αj| ≥

∥∥∥∥∥∥

n∑

j=1

αjϕjP2(r(a))

∥∥∥∥∥∥
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≥

∥∥∥∥∥∥

n∑

j=1

αjϕj

∥∥∥∥∥∥
−

∥∥∥∥∥∥

n∑

j=1

αj

(
ϕj − ϕjP2(r(a))

)
∥∥∥∥∥∥

≥
(

1 − δ(n + 1, ε′)
) n∑

j=1

|αj | −
δ(n, ε′)

2

n∑

j=1

|αj | ≥
(

1 − δ(n, ε′)
) n∑

j=1

|αj |

for all scalars αj . Recall that r(a) is an open tripotent which means that
the subtriple F := E ∩ E∗∗

2 (r(a)) is weak∗-dense in E∗∗
2 (r(a)). Set ψj =

ϕjP2(r(a))|F for j ≤ n. Then

n∑

j=1

|αj | ≥

∥∥∥∥∥∥

n∑

j=1

αjψj

∥∥∥∥∥∥
=

∥∥∥∥∥∥

n∑

j=1

αjϕjP2(r(a))

∥∥∥∥∥∥
≥
(

1 − δ(n, ε′)
) n∑

j=1

|αj |,

for all αj ∈ C, and by the induction hypothesis, applied to F , there exist
mutually orthogonal norm-one elements a1, . . . , an ∈ F satisfying ψj(aj) =
ϕj(aj) > 1− ε′, for every j = 1, . . . , n. They are orthogonal to an+1 because
a is. Together with (3.6) this shows the first half of (3.4) (for n+1) because
1 − ε′ > 1 − ε. The second half follows from the claim. This ends the
induction and the proof. �

In passing we note an obvious reformulation of the conclusion of Theorem
3.6: There exists an abelian subtriple C of E such that if we set ψj = ϕj |C
then (ψj)

n
j=1 spans ℓ1(n) (1 − ε)-isomorphically in C∗.

For the proofs of Theorems 4.1 and 4.2 we need the following technical
strengthening of Theorem 3.6.

Lemma 3.7. In Theorem 3.6 the aj can be constructed such that addition-
ally there are mutually orthogonal compact tripotents u1, . . . , un in E∗∗ such
that aj ∈ E∗∗

2 (uj) for j = 1, . . . , n.

Proof. We claim that if a JB∗-triple E, a ∈ E, ϕ ∈ E∗, and ε′ > 0 are given
such that

‖ϕ‖ ≤ 1, ‖a‖ ≤ 1, ϕ(a) > 1 − ε′(3.7)

then there exist a compact tripotent u ∈ E∗∗
a ⊂ E∗∗

2 (e) and b ∈ Ea ∩E∗∗
2 (u)

such that ‖b‖ = 1 and ϕ(b) > 1 − ε′.

In order to show the claim suppose (3.7) holds. Define zm = fα(a) ∈ Ea

for α = ‖bj‖/m where fα is as in the proof of Lemma 3.3. Since ‖zm−a‖ → 0

there is m0 such that ϕ(eiθzm0) > 1 − ε′ for an appropriate θ ∈ IR. Also
‖zm0‖ ≤ 1. It remains to set b = eiθzm0/‖zm0‖ and u = χ

[‖bj‖/2m0,‖bj‖]∩L
and

the claim is proved.

Now we apply the claim n times to pairwise orthogonal aj and note that
uj ∈ E∗∗

aj
⊥ E∗∗

ak
∋ uk if j 6= k. The claim in the proof of Theorem 3.6 shows

that it is enough to replace aj by bj in (3.4) in order to finish the proof. �
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Recalling that Peirce projections associated with a tripotent in a JBW∗-
triple are weak∗-continuous, and the fact that the range tripotent of an
element in a JBW∗-triple always lies in the JBW∗-triple, the arguments
given above show:

Corollary 3.8. For each ε > 0 and each natural n, there exists a posi-
tive δ = δ(n, ε) such that for every JBW∗-triple W, and every finite set of
functionals ϕ1, . . . , ϕn in W∗ satisfying (3.3) there exist orthogonal norm
one elements a1, . . . , an ∈W and orthogonal functionals ϕ̃1, . . . , ϕ̃n ∈W∗ of
norm one such that (3.4) holds.

The following corollary will not be needed in the sequel but could perhaps
be useful elsewhere. The argument leading to part (a) has already been used
in the proof of Theorem 3.6.

Corollary 3.9. For each ε > 0 and each natural n, there exists a positive
δ = δ(n, ε) with the following properties.

(a) Let E be a JB∗-triple, e ∈ E∗∗ an open tripotent and let ϕ1, . . . , ϕn

be functionals in the closed unit ball of E∗. If

n∑

j=1

|αj | ≥

∥∥∥∥∥∥

n∑

j=1

αjϕjP2(e)

∥∥∥∥∥∥
≥ (1 − δ(n, ε))

n∑

j=1

|αj |, ∀αj ∈ C(3.8)

then there exist orthogonal norm-one elements a1, . . . , an in E ∩
E∗∗

2 (e) and mutually orthogonal norm-one functionals ϕ̃1, . . . , ϕ̃n

in E∗ satisfying (3.4).
(b) Let W be a JBW∗-triple, e ∈ E∗∗ an arbitrary tripotent and let

ϕ1, . . . , ϕn be functionals in the closed unit ball of W∗ satisfying
(3.8). Then there exist mutually orthogonal elements a1, . . . , an of
norm one in W2(e) and mutually orthogonal norm-one functionals
ϕ̃1, . . . , ϕ̃n in W∗ satisfying (3.4).

Proof. (a) Set F = E ∩ E∗∗
2 (e) and ψj = ϕjP2(e)|F . Then F

w∗

= E∗∗
2 (e)

because e is open. The ψj satisfy (3.3) and it is enough to apply Theorem
3.6 to F . Similarly, for part (b) identify ϕjP2(e) with ϕ|W2(e) ∈ (W2(e))∗
and apply Corollary 3.8 to W2(e). �

We can now establish the promised quantitative version of the last statement
in Lemma 2.2.

Proposition 3.10. Given ε > 0 there exits δ = δ(ε) satisfying that for
every JB∗-triple E and every couple of tripotents u, v in E with

1 − δ < ‖u± v‖ < 1 + δ,

we have ‖u− P0(v)(u)‖ < ε and ‖v − P0(u)(v)‖ < ε.

Proof. Let us note that the statement is true whenever the set of tripotents
in a JB∗-triple E reduces to the zero element. Suppose, contrary to our
claim, that there exists ε0 > 0 such that for each natural n, we can find a



PERTURBATION OF ℓ1-COPIES IN PREDUALS OF JBW∗-TRIPLES 15

JB∗-triple En and tripotents un and vn with 1 − 1
n
< ‖un ± vn‖ < 1 + 1

n
satisfying ‖un − P0(vn)(un)‖ ≥ ε0 or ‖vn − P0(un)(vn)‖ ≥ ε0.

Take a non-trivial ultrafilter U in N. The elements [un]U and [vn]U are non-
zero tripotents in (En)U with ‖[un]U ± [vn]U‖ = 1, that is, [un]U ⊥M [vn]U
in (En)U . The final statement in Lemma 2.2 implies that [un]U ⊥ [vn]U in
(En)U . In particular

[P0(un)(vn)]U = P0([un]U )([vn]U ) = [vn]U

(because P0([un]U ) = [P0(un)]U ) and

[P0(vn)(un)]U = P0([vn]U )([un]U ) = [un]U ,

which implies that lim
U

‖P0(un)(vn)−vn‖ = 0 and lim
U

‖P0(vn)(un)−un‖ = 0,

contradicting our assumptions. �

4. Infinite dimensional copies of ℓ1 in preduals of JBW∗-triples

Theorem 4.1. Let W be a JBW∗-triple and let (ϕm) be a bounded sequence
in its predual W∗. If (ϕm) spans ℓ1 almost isometrically then there are
a subsequence (ϕmn) of (ϕm) and a sequence (ϕ̃n) of pairwise orthogonal
functionals in W∗ such that ‖ϕmn − ϕ̃n‖ → 0 when l → ∞.

Proof. We can assume that ‖ϕm‖ = 1, for every m. Let (νn) be a sequence
of strictly positive numbers such that

∑∞
n=1 νn < ∞. We shall prove, by

induction over n, the existence of mn ∈ N, and φ
(n)
m1 , . . . , φ

(n)
mn in W∗ satisfying

mn−1 < mn, and for each natural n

φ(n)mk
⊥ φ(n)ml

∀k 6= l ∈ {1, . . . , n},
‖φ(n)mk

‖ = 1, ∀k ≤ n,

‖φ(n)mk
− φ(n−1)

mk
‖ < νn, ∀k = 1, . . . , n− 1 if n ≥ 2,

and ‖φ(n)mn − ϕmn‖ < νn .

When n = 1 we set m1 = 1, φ
(1)
1 = ϕ1 and the statement is clear.

Suppose that m1 < m2 < . . . < mn, {φ(1)m1}, {φ(2)m1 , φ
(2)
m2}, ..., {φ(n)m1 , . . . , φ

(n)
mn}

have been defined satisfying the above properties.

By Corollary 3.8, there exists δ1 = min{δ(n, νn+1/2), νn+1/2} > 0. Choose
a natural j satisfying 21√

j
< δ1. We use Corollary 3.8 again in order to choose

δ0 = δ(nj, νn+1) > 0. Since (ϕm) spans ℓ1 almost isometrically there exists
m0 > mn satisfying

(1 − δ0)

∞∑

m=m0

|αm| ≤
∥∥∥∥∥

∞∑

m=m0

αmϕm

∥∥∥∥∥ ∀αm ∈ C.

Set N = {m0 + 1, . . . ,m0 + nj} ⊆ N. Since

(1 − δ(nj, νn+1))

m0+nj∑

m=m0+1

|αm| ≤
∥∥∥∥∥

m0+nj∑

m=m0+1

αmϕm

∥∥∥∥∥ ∀αm ∈ C,
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Corollary 3.8 implies the existence of mutually orthogonal elements a1, . . . , anj
in the closed unit ball of W such that

(4.1)
∥∥∥ϕm − ϕmP2(r(am))

‖ϕmP2(r(am))‖
∥∥∥ < νn+1 ∀m ∈ N.

On the other hand, it is clear, by orthogonality, that

0 ≤
∑

m∈N

n∑

k=1

‖r(am)‖2
φ
(n)
mk

=

n∑

k=1

∑

m∈N
‖r(am)‖2

φ
(n)
mk

=

n∑

k=1

∥∥∥∥∥
∑

m∈N
r(am)

∥∥∥∥∥

2

φ
(n)
mk

≤ n.

Thus, there exists mn+1 ∈ N satisfying

∥∥r(amn+1)
∥∥2
φ
(n)
mk

≤ 1

j
∀k = 1, . . . , n

hence, by Lemma 3.2,

(4.2) ‖φ(n)mk
− φ(n)mk

P0(r(amn+1))‖ ≤ 21
1√
j

∀k = 1, . . . , n.

We define φ̃
(n+1)
mk = φ

(n)
mkP0(r(amn+1)), for k = 1, . . . , n and

φ(n+1)
mn+1

=
ϕmn+1P2(r(amn+1))

‖ϕmn+1P2(r(amn+1))‖ .

By (4.1),
∥∥∥ϕmn+1 − φ

(n+1)
mn+1

∥∥∥ < νn+1, and by (4.2)

(4.3) ‖φ(n)mk
− φ̃(n+1)

mk
‖ ≤ 21

1√
j
< δ1 ≤

νn+1

2
∀k = 1, . . . , n.

Therefore we have

n∑

k=1

|αk| ≥
∥∥∥∥∥

n∑

k=1

αkφ̃
(n+1)
mk

∥∥∥∥∥ ≥
∥∥∥∥∥

n∑

k=1

αkφ
(n)
mk

∥∥∥∥∥−
∥∥∥∥∥

n∑

k=1

αk(φ̃(n+1)
mk

− φ(n)mk
)

∥∥∥∥∥

≥
∥∥∥∥∥

n∑

k=1

αkφ
(n)
mk

∥∥∥∥∥− δ1

n∑

k=1

|αk| =

n∑

k=1

|αk| − δ1

n∑

k=1

|αk|

≥ (1 − δ(n, νn+1/2))

n∑

k=1

|αk| ∀αm ∈ C.

By Corollary 3.8, applied to the JBW∗-triple W0(r(amn+1)) and the func-

tionals {φ̃(n+1)
m1 , . . . , φ̃

(n+1)
mn } ⊂

(
W0(r(amn+1))

)
∗, we can find mutually ortho-

gonal elements b1, . . . , bn in the closed unit ball of W0(r(amn+1)) such that

(4.4)
∥∥∥φ̃(n+1)

mk
− φ̃

(n+1)
mk P2(r(bj))

‖φ̃(n+1)
mk P2(r(bj))‖

∥∥∥ <
νn+1

2
∀k = 1, . . . , n.
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We define φ
(n+1)
mk :=

φ̃
(n+1)
mk

P2(r(bj ))

‖φ̃(n+1)
mk

P2(r(bj ))‖
for k = 1, . . . , n. The inequalities (4.3)

and (4.4) show ‖φ(n)mk − φ
(n+1)
mk ‖ < νn (k = 1, . . . , n), which finishes the

induction argument.

Fix a natural k and consider the sequence (φ
(n)
mk )n≥k. The inequalities

‖φ(n)mk − φ
(n−1)
mk ‖ < νn and

‖φ(n)mk
− φ(i)mk

‖ <
n∑

j=i+1

νj → 0 if n > i→ ∞

show that (φ
(n)
mk )n≥k is a Cauchy sequence which converges to some ϕ̃k ∈W∗.

By construction φ
(n)
mk ⊥ φ

(n)
mj for every k 6= j, and every n ≥ max{j, k},

therefore

‖ϕ̃k ± ϕ̃j‖ = lim
n→∞

‖φ(n)mk
± φ(n)mj

‖ = 2

for every k 6= j in N. This implies ϕ̃k ⊥ ϕ̃j for every j 6= k (cf. Lemma 2.2).
Finally, the inequality

‖ϕmn − ϕ̃n‖ ≤ ‖φ(n)mn
− ϕmn‖ + ‖φ(n)mn

− ϕ̃n‖

= ‖φ(n)mn
− ϕmn‖ + ‖φ(n)mn

− lim
k→∞

φ(k)mn
‖ < νn +

∞∑

k=n+1

νk,

gives the desired statement lim
n→∞

‖ϕmn − ϕ̃n‖ = 0. �

The study of isomorphic copies in the dual space of a JB∗-triple requires
an extra effort. It should be remarked here that the next proposition can
be considered as a quantitative version of [35, Theorem 1] and [22, Theorem
2.3].

Theorem 4.2. Let E be a JB∗-triple and let (ϕm) be a normalized sequence
in E∗ spanning ℓ1 r-isomorphically (with 0 < r ≤ 1). Then for each ε > 0
there exist a subsequence (ϕmn) of (ϕm) and a sequence (cn) of mutually
orthogonal elements of norm one in E such that

ϕmn(cn) > r(1 − ε), ∀n ∈ N,(4.5)

and such that the restrictions ϕmn |C span ℓ1 (r(1− ε))-isomorphically where

C is the abelian subtriple of E generated by the cn’s and isometric to a
commutative C∗-algebra.

Proof. We may assume that 1 ≥ ε > 0, we consider a series
∑

n≥1

εn with

εn > 0 and

∞∑

n=1

εn =
ε

2
. By induction on n we shall define a strictly monotone

sequence (mn) in N, a strictly decreasing sequence (Nn) of infinite subsets
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of N (i.e. Nn ) Nn+1), a sequence (an) of mutually orthogonal norm-
one elements in E, and a sequence (un) of mutually orthogonal compact
tripotents in E∗∗ satisfying, for all n ∈ IN,

(4.6) mn < minNn,

(4.7) an ∈ E∗∗
2 (un),

(4.8) ‖un‖ϕm
< r

εn
63

∀m ∈ Nn,

(4.9) |ϕmn(an)| >
(

1 − r

n−1∑

i=1

εi
3

)
r

(
1 −

n∑

i=1

εi

)

(where
∑0

i=1 = 0) and, for vn = u1 + . . . + un,

(4.10)

∥∥∥∥∥
∑

m∈Nn

αm
ϕmP0(vn)

‖ϕmP0(vn)‖

∥∥∥∥∥ ≥ r

(
1 −

n∑

i=1

εi

)
∑

m∈Nn

|αm| ∀αm ∈ C.

Let us note that since
(

1 − r
n−1∑

i=1

εi
3

)
r

(
1 −

n∑

i=1

εi

)
> r

(
1 − 2

n∑

i=1

εi

)

> r

(
1 − 2

∞∑

i=1

εi

)
= r (1 − ε) ,

the inequality in (4.9) proves |ϕmn(an)| > r (1 − ε), for every n ∈ N. The
statement of the proposition will follow for cn = eiθnan for a suitable choice
of θn ∈ R such that ϕmn(cn) = |ϕmn(an)| for every natural n.

We deal first with the case n = 1. Set N0 = N. Let us take a natural
number j1 such that 3 21√

j1
< rε1. Let δ1 = δ̃(j1, ε1/2) > 0 be given by

Lemma 3.7. By James’ distortion theorem there exist mutually disjoint

finite subsets G
(1)
k ⊂ N0, finite sequences (λ

(1)
m )

m∈F (1)
k

⊂ C such that

(4.11)
∑

m∈G(1)
k

|λ(1)m | ≤ 1

r
, for every k ∈ N,

and the functionals φ
(1)
k =

∑

m∈G(1)
k

λ(1)m ϕm satisfy

(4.12)
∑

k∈N0

|αk| ≥

∥∥∥∥∥∥

∑

k∈N0

αkφ
(1)
k

∥∥∥∥∥∥
≥ (1 − δ1)

∑

k∈N0

|αk| ∀αk ∈ C.
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By Lemma 3.7 and the choice of δ1, we find mutually orthogonal elements

a
(1)
1 , . . . , a

(1)
j1

of norm one in E and mutually orthogonal compact tripotents

u
(1)
1 , . . . , u

(1)
j1

in E∗∗ satisfying a
(1)
k ∈ E∗∗

2 (u
(1)
k ),

∥∥∥φ(1)k − φ
(1)
k P2(r(a

(1)
k ))

‖φ(1)k P2(r(a
(1)
k ))‖

∥∥∥ <
ε1
2
, and φ

(1)
k (a

(1)
k ) > 1 − ε1/2,

for every k = 1, . . . , j1. Keeping in mind that u
(1)
1 , . . . , u

(1)
j1

are mutually
orthogonal we deduce that

0 ≤
j1∑

k=1

‖u(1)k ‖2ϕm
=

∥∥∥∥∥

j1∑

k=1

u
(1)
k

∥∥∥∥∥

2

ϕm

≤ 1 ∀m ∈ N0.

It follows that there exist k1 ≤ j1 in N0 and an infinite subset N1 ⊂ N0 such

that k1 /∈ N1, maxG
(1)
k < minN1, for every k = 1, . . . , j1, and

(4.13) ‖u(1)k1
‖2ϕm

≤ 1

j1
∀m ∈ N1.

Lemma 3.2 implies that

(4.14)
∥∥∥ϕm − ϕmP0(u

(1)
k1

)
∥∥∥ ≤ 21√

j1
∀m ∈ N1.

Define a1 = a
(1)
k1

and u1 = u
(1)
k1

. By (4.13) and the choice of j1 we obtain

(4.8) for n = 1.

We claim that there exists m1 ∈ G
(1)
k1

satisfying |ϕm1(a1)| > r(1 − ε1).

Otherwise, |ϕm(a1)| ≤ r(1 − ε1), for every m ∈ G
(1)
k1

. Recalling that

φ
(1)
k1

(a1) > 1 − ε1
2 , we have

1 − ε1
2
< φ

(1)
k1

(a1) =

∣∣∣∣∣∣∣

∑

m∈G(1)
k1

λ(1)m ϕm(a1)

∣∣∣∣∣∣∣
≤ r(1 − ε1)

∑

m∈G(1)
k1

|λ(1)m | ≤ 1 − ε1,

which is impossible. This defines m1 /∈ N1 as in (4.6) and (4.9) for n = 1.

Now, we set ϕ̃
(1)
m := ϕmP0(u1). By (4.14) we have

∥∥∥ϕm − ϕ̃
(1)
m

∥∥∥ ≤ 21√
j1
<

ε1/3 < 1/3, for every m ∈ N1. The inequalities

1 = ‖ϕm‖ ≥ ‖ϕ̃(1)
m ‖ and 0 ≤ 1 − ‖ϕ̃(1)

m ‖ ≤ ‖ϕm − ϕ̃(1)
m ‖ < 21√

j1

imply that ‖ϕ̃(1)
m ‖ ≥ 1 − 21√

j1
> 1 − 1

3 >
1
2 . Therefore,

∥∥∥∥∥ϕ̃
(1)
m − ϕ̃

(1)
m

‖ϕ̃(1)
m ‖

∥∥∥∥∥ = ‖ϕ̃(1)
m ‖

∣∣∣∣∣1 − 1

‖ϕ̃(1)
m ‖

∣∣∣∣∣ ≤
1

‖ϕ̃(1)
m ‖

− 1
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=
1

‖ϕ̃(1)
m ‖

(1 − ‖ϕ̃(1)
m ‖) < 2

21√
j1
,

which shows that
∥∥∥∥ϕm − ϕmP0(u1)

‖ϕmP0(u1)‖

∥∥∥∥ =

∥∥∥∥∥ϕm − ϕ̃
(1)
m

‖ϕ̃(1)
m ‖

∥∥∥∥∥

≤
∥∥∥ϕm − ϕ̃(1)

m

∥∥∥+

∥∥∥∥∥ϕ̃
(1)
m − ϕ̃

(1)
m

‖ϕ̃(1)
m ‖

∥∥∥∥∥ < 3
21√
j1
< rε1.

By hypothesis, (ϕm) is a normalized sequence in E∗ spanning ℓ1 r-isomorphically,
hence
∥∥∥∥∥∥

∑

m∈N1

αm
ϕmP0(u1)

‖ϕmP0(u1)‖

∥∥∥∥∥∥
≥

∥∥∥∥∥∥

∑

m∈N1

αmϕm

∥∥∥∥∥∥
−

∥∥∥∥∥∥

∑

m∈N1

αm

(
ϕm − ϕ̃

(1)
m

‖ϕ̃(1)
m ‖

)∥∥∥∥∥∥

≥ r
∑

m∈N1

|αm| − rε1
∑

m∈N1

|αm| = r (1 − ε1)
∑

m∈N1

|αm| ∀αm ∈ C.

This proves (4.10) for n = 1, which concludes the first induction step.

Suppose now, by the induction hypothesis, that mk, Nk, ak, and uk have
been defined for k ≤ n according to (4.6) – (4.10). By [23, Theorem 3.9]

the element vn =

n∑

k=1

uk is a compact tripotent in E∗∗, therefore Fn :=

E ∩ E∗∗
0 (vn) is a weak∗-dense subtriple of E∗∗

0 (vn) whose second dual, F ∗∗
n ,

identifies with E∗∗
0 (vn).

To simplify notation, we write ψ(n)
m =

ϕmP0(vn)

‖ϕmP0(vn)‖ (m ∈ Nn), and we

regard (ψ
(n)
m ) as a normalized sequence in F ∗

n . By (4.10)

∑

m∈Nn

|αm| ≥
∥∥∥∥∥
∑

m∈Nn

αmψ
(n)
m

∥∥∥∥∥ ≥ r

(
1 −

n∑

i=1

εi

)
∑

m∈Nn

|αm| ∀αm ∈ C

that is, (ψ
(n)
m ) is a normalized basis spanning ℓ1 (r (1 −∑n

i=1 εi))-isomorphically.

Let us take a natural number jn+1 such that 3 21√
jn+1

< rεn+1. Let

δn+1 = δ̃(jn+1, εn+1/2) > 0 given by Lemma 3.7. By James’ distortion

theorem there exist mutually disjoint finite subsets G
(n)
k ⊂ Nn (k ∈ N),

finite sequences (λ
(n)
m )

m∈G(n)
k

⊂ C such that

(4.15)
∑

m∈G(n)
k

|λ(n)m | ≤ 1

r

(
1 −

n∑

i=1

εi

) for all k ∈ N,
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and the functionals φ
(n)
k =

∑

m∈G(n)
k

λ(n)m ψ(n)
m satisfy

(4.16)
∑

k∈Nn

|αk| ≥

∥∥∥∥∥∥

∑

k∈Nn

αkφ
(n)
k

∥∥∥∥∥∥
≥ (1 − δn+1)

∑

k∈Nn

|αk| ∀αm ∈ C.

By Lemma 3.7 and the choice of δn+1, we find mutually orthogonal el-

ements a
(n)
1 , . . . , a

(n)
jn+1

of norm one in Fn = E ∩ E∗∗
0 (vn) and mutually

orthogonal compact tripotents u
(n)
1 , . . . , u

(n)
jn+1

in F ∗∗
n

∼= E∗∗
0 (vn) satisfying

a
(n)
k ∈ E∗∗

2 (u
(n)
k ), and

∥∥∥φ(n)k − φ
(n)
k P2(r(a

(n)
k ))

‖φ(n)k P2(r(a
(n)
k ))‖

∥∥∥ <
εn+1

2
, and φ

(n)
k (a

(n)
k ) > 1 − εn+1

2
,

for every k = 1, . . . , jn+1. We remark that vn ⊥ u
(n)
k , for every k =

1, . . . , jn+1 because u
(n)
k ∈ E∗∗

0 (vn).

Keeping in mind that u
(n)
1 , . . . , u

(n)
jn+1

are mutually orthogonal we deduce

that

0 ≤
jn+1∑

k=1

‖u(n)k ‖2ϕm
=

∥∥∥∥∥∥

kn+1∑

k=1

u
(n)
k

∥∥∥∥∥∥

2

ϕm

≤ 1 ∀m ∈ Nn.

It follows that there exist kn+1 ≤ jn+1 in Nn, and an infinite subset Nn+1 ⊂
Nn such that kn+1 /∈ Nn+1, maxG

(n)
k < minNn+1, for k = 1, . . . , jn+1, and

(4.17) ‖u(n)kn+1
‖2ϕm

≤ 1

jn+1
, for all m ∈ Nn+1.

Lemma 3.2 implies that

(4.18)
∥∥∥ϕm − ϕmP0(u

(n)
kn+1

)
∥∥∥ ≤ 21√

jn+1
∀m ∈ Nn+1.

Define an+1 = a
(n)
kn+1

and un+1 = u
(n)
kn+1

. By (4.17) and the choice of jn+1

we obtain (4.8) for n+ 1. Since an+1 ∈ Fn = E ∩E∗∗
0 (vn), and a1, . . . , an ∈

E∗∗
2 (vn), it follows that an+1 ⊥ ak, for k = 1, . . . , n. Therefore, a1, . . . , an+1

are mutually orthogonal elements in the closed unit ball of E.

We claim that there exists mn+1 ∈ G
(n)
kn+1

satisfying

(4.19)
1

‖ϕmn+1P0(vn)‖|ϕmn+1(an+1)| > r

(
1 −

n+1∑

i=1

εi

)
.

Otherwise,
1

‖ϕmP0(vn)‖|ϕm(an+1)| ≤ r

(
1 −

n+1∑

i=1

εi

)
, for all m ∈ G

(n)
kn+1

.

Recalling that φ
(n)
kn+1

(an+1) > 1 − εn+1

2 , and an+1 ∈ Fn = E ∩ E∗∗
0 (vn), we
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have

ψ(n)
m (an+1) =

ϕmP0(vn)

‖ϕmP0(vn)‖(an+1) =
1

‖ϕmP0(vn)‖ϕm(an+1),

which gives

1 − εn+1

2
< φ

(n)
kn+1

(an+1) =

∣∣∣∣∣∣∣∣

∑

m∈G(n)
kn+1

λ(n)m ψ(n)
m (an+1)

∣∣∣∣∣∣∣∣

≤ r

(
1 −

n+1∑

i=1

εi

)
∑

m∈G(n)
kn+1

|λ(n)m | ≤ r

(
1 −

n+1∑

i=1

εi

)
1

r

(
1 −

n∑

i=1

εi

)

= 1 − εn+1(
1 −

n∑

i=1

εi

) < 1 − εn+1

2

which is impossible. This proves the claim in (4.19).

By (4.8) for i ≤ n, we have

‖vn‖ϕm =

∥∥∥∥∥

n∑

i=1

ui

∥∥∥∥∥
ϕm

≤
n∑

i=1

‖ui‖ϕm < r

n∑

i=1

εi
63

∀m ∈ Nn+1.

Now, since 1 =
∥∥ϕmn+1

∥∥ ≥
∥∥ϕmn+1P0(vn)

∥∥ we deduce via Lemma 3.2 that

0 ≤ 1 −
∥∥ϕmn+1P0(vn)

∥∥ ≤
∥∥ϕmn+1 − ϕmn+1P0(vn)

∥∥ < 21r

n∑

i=1

εi
63

which implies that

1 − r

n∑

i=1

εi
3
<
∥∥ϕmn+1P0(vn)

∥∥

hence

|ϕmn+1(an+1)| >
(

1 − r

n∑

i=1

εi
3

)
r

(
1 −

n+1∑

i=1

εi

)

by (4.19). We have thus defined mn+1 /∈ Nn+1 such that mn < mn+1 and
such that (4.9) holds for n+ 1.

Finally we show (4.10) for n+ 1. Since (4.8) holds for i ≤ n+ 1 we get

(4.20) ‖vn+1‖ϕm =

∥∥∥∥∥

n+1∑

i=1

ui

∥∥∥∥∥
ϕm

≤
n+1∑

i=1

‖ui‖ϕm
< r

n+1∑

i=1

εi
63

∀m ∈ Nn+1.
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To simplify notation, let us denote ϕ̃
(n+1)
m := ϕmP0(vn+1), m ∈ Nn+1.

Lemma 3.2 and (4.20) imply that

∥∥∥ϕm − ϕ̃(n+1)
m

∥∥∥ < 21r
n+1∑

i=1

εi
63

= r
n+1∑

i=1

εi
3
< r

ε

6
<

1

6
∀m ∈ Nn+1.

The inequalities

1 = ‖ϕm‖ ≥ ‖ϕ̃(n+1)
m ‖ and 0 ≤ 1 − ‖ϕ̃(n+1)

m ‖ ≤ ‖ϕm − ϕ̃(n+1)
m ‖ < r

n+1∑

i=1

εi
3
,

imply that ‖ϕ̃(n+1)
m ‖ ≥ 1 − r

n+1∑

i=1

εi
3
> 1 − 1

6
>

1

2
. Therefore,

∥∥∥∥∥ϕ̃
(n+1)
m − ϕ̃

(n+1)
m

‖ϕ̃(n+1)
m ‖

∥∥∥∥∥ = ‖ϕ̃(n+1)
m ‖

∣∣∣∣∣1 − 1

‖ϕ̃(n+1)
m ‖

∣∣∣∣∣ ≤
1

‖ϕ̃(n+1)
m ‖

− 1

=
1

‖ϕ̃(n+1)
m ‖

(1 − ‖ϕ̃(n+1)
m ‖) < 2r

n+1∑

i=1

εi
3

which shows that
∥∥∥∥ϕm − ϕmP0(vn+1)

‖ϕmP0(vn+1)‖

∥∥∥∥ =

∥∥∥∥∥ϕm − ϕ̃
(n+1)
m

‖ϕ̃(n+1)
m ‖

∥∥∥∥∥

≤
∥∥∥ϕm − ϕ̃(n+1)

m

∥∥∥+

∥∥∥∥∥ϕ̃
(n+1)
m − ϕ̃

(n+1)
m

‖ϕ̃(n+1)
m ‖

∥∥∥∥∥ < 3r
n+1∑

i=1

εi
3

= r
n+1∑

i=1

εi,

for all m ∈ Nn+1. By hypothesis, (ϕm) is a normalized sequence in E∗

spanning ℓ1 r-isomorphically, hence
∥∥∥∥∥∥

∑

m∈Nn+1

αm
ϕmP0(vn+1)

‖ϕmP0(vn+1)‖

∥∥∥∥∥∥
≥

∥∥∥∥∥∥

∑

m∈Nn+1

αmϕm

∥∥∥∥∥∥
−

∥∥∥∥∥∥

∑

m∈Nn+1

αm

(
ϕm − ϕmP0(vn+1)

‖ϕmP0(vn+1)‖

)∥∥∥∥∥∥

≥ r
∑

m∈Nn+1

|αm| − r

(
n+1∑

i=1

εi

)
∑

m∈Nn+1

|αm| = r

(
1 −

n+1∑

i=1

εi

)
∑

m∈Nn+1

|αm|

for all αm ∈ C. This proves (4.10) for n+ 1 and shows (4.5).

By an extraction lemma of Simons [38] we may (after passing to appro-
priate subsequences of (ϕmn) and (cn) which we still denote by (ϕmn) and

(cn)) suppose that
∑

k 6=n

|ϕmn(ck)| < ε′ for all n where ε′ > 0 is such that

r(1 − ε) − ε′ > r(1 − 2ε). That the subtriple C generated by the cn is iso-
metric to a commutative C∗-algebra can be seen as in [22, Th. 2.3b) ⇒ b′)].
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Fix (αn) ∈ ℓ1, choose θn ∈ C such that θnαn = |αn| and set c =
∑

k≥1

θkck.

Then ‖c‖ ≤ 1 and
∥∥∥∥∥∥

∑

n≥1

αnϕmn |C

∥∥∥∥∥∥
≥

∣∣∣∣∣∣

∑

n≥1

αnϕmn(c)

∣∣∣∣∣∣

=

∣∣∣∣∣∣

∑

n

|αn|ϕmn(cn) +
∑

n

αn



∑

k 6=n

ϕmn(θkck)




∣∣∣∣∣∣

≥ r(1 − ε)
∑

n

|αn| −
∑

n

|αn|



∑

k 6=n

|ϕmn(ck)|




≥ (r(1 − ε) − ε′)
∑

n

|αn| ≥ r(1 − 2ε)
∑

n

|αn|.

Up to an adjustment of ε this ends the proof. �

References

[1] C.A. Akemann. The general Stone-Weierstrass problem. J. Funct. Anal., 4:277–294,
1969.

[2] Charles A. Akemann and Gert K. Pedersen. Complications of semicontinuity in C∗-
algebra theory. Duke Math. J., 40:785–795, 1973.

[3] Charles A. Akemann and Gert K. Pedersen. Facial structure in operator algebra
theory. Proc. Lond. Math. Soc. (3), 64(2):418–448, 1992.

[4] T. Barton and Y. Friedman. Bounded derivations of JB∗-triples. Q. J. Math., Oxf.
II. Ser., 41(163):255–268, 1990.

[5] T. Barton and Richard M. Timoney. Weak∗-continuity of Jordan triple products and
its applications. Math. Scand., 59:177–191, 1986.
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