
HAL Id: hal-00993470
https://hal.science/hal-00993470

Submitted on 20 May 2014

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

On the Performance of a Retransmission-Based
Synchronizer

Thomas Nowak, Matthias Függer, Alexander Kössler

To cite this version:
Thomas Nowak, Matthias Függer, Alexander Kössler. On the Performance of a Retransmission-Based
Synchronizer. Theoretical Computer Science, 2013, 509, pp.25-39. �10.1016/j.tcs.2012.04.035�. �hal-
00993470�

https://hal.science/hal-00993470
https://hal.archives-ouvertes.fr

On the Performance of a Retransmission-based Synchronizer

Thomas Nowaka,∗, Matthias Függerb, Alexander Kößlerb

aLIX, Ecole polytechnique, 91128 Palaiseau CEDEX, France

Tel: +33 1 69 33 41 42

Fax: +33 1 69 33 40 49

Email: nowak@lix.polytechnique.fr
bECS Group, TU Wien, 1040 Vienna, Austria

Abstract

Designing algorithms for distributed systems that provide a round abstraction is often simpler than
designing for those that do not provide such an abstraction. Further, distributed systems need to
tolerate various kinds of failures. The concept of a synchronizer deals with both: It constructs rounds
and allows masking of transmission failures. One simple way of dealing with transmission failures is
to retransmit a message until it is known that the message was successfully received. We calculate the
exact value of the average rate of a retransmission-based synchronizer in environments with probabilistic
message loss, within which the synchronizer shows nontrivial timing behavior. We show how to make
this calculation efficient, and present analytical results on the convergence speed. The theoretic results,
based on Markov theory, are backed up with Monte Carlo simulations.

Keywords: synchronizer, round-based algorithms, probabilistic environment, simulation, Markov
theory

1. Introduction

Analyzing the time-complexity of an algorithm is at the core of computer science. Classically this is
carried out by counting the number of steps executed by a Turing machine. In distributed computing
[1, 2], local computations are typically viewed as being completed in zero time, focusing on communication
delays only. This view is useful for algorithms that communicate heavily, with local operations of
negligible duration between two communications.

In this work we are focusing on the implementation of an important subset of distributed algorithms
where communication and computation are highly structured, namely round-based algorithms [3, 4, 5, 6]:
Each process performs its computations in consecutive rounds. Thereby a single round consists of (1)
the processes exchanging data with each other and (2) each process executing local computations. Call
the number of rounds it takes to complete a task the round-complexity.

We consider repeated instances of a problem, i.e., a problem is repeatedly solved during an infinite
execution. Such problems arise when the distributed system under consideration provides a continuous
service to the top-level application, e.g., repeatedly solves distributed consensus [7] in the context of
state-machine replication [8]. A natural performance measure for these systems is the average number
of problem instances solved per round during an execution. In case a single problem instance has round-
complexity of a constant number R > 1 of rounds, we readily obtain a rate of 1/R.

If we are interested in time-complexity in terms of Newtonian real-time, we can scale the round-
complexity with the duration (bounds) of a round, yielding a real-time rate of 1/RT , if T is the duration
of a single round. Note that the attainable accuracy of the calculated real-time rate thus heavily relies
on the ability to obtain a good measurement of T . In case the data exchange within a single round
comprises each process broadcasting messages and receiving messages from all other processes, T can
be related to message latency and local computation upper and lower bounds, typically yielding precise
bounds for the round duration T . However, there are interesting distributed systems where T cannot
be easily related to message delays: consider, for example, a distributed system that faces the problem
of message loss, and where it might happen that processes have to resend messages several times before
they are correctly received, and the next round can be started. It is exactly these nontrivial systems the
determination of whose round duration T is the scope of this paper.

∗Corresponding author

Preprint submitted to Elsevier May 20, 2014

1.1. Contributions

We claim to make the following contributions in this paper: (1) We give a method to determine
the expected round duration of a general retransmission scheme, thereby generalizing results concern-
ing stochastic max-plus systems by Resing et al. [9]. (2) We present simulation results providing (a)
deeper insights in the convergence behavior of round duration times and indicating that (b) the error
we make when restricting ourselves to having a maximum number of retransmissions is small. (3) We
present nontrivial theoretical bounds on the convergence speed of round durations to the expected round
duration.

1.2. Organization of the Paper

Section 2 introduces the retransmission algorithm in question and the computing system model.
Section 3 introduces a probabilistic environment in which the round duration is investigated, and reduces
the calculation of the expected round duration to the study of a certain random process. Section 4
provides a way to compute the asymptotically expected round duration λ, and also presents theoretical
bounds on the convergence speed of round durations to λ. Section 5 contains simulation results. We give
an overview on related work in Section 6. Conclusions are found in Section 7. The appendix contains
facts about Markov chains that are used in the paper. Table 1 contains a list of the symbolic notation
used in the paper.

A preliminary version of this work was presented at the SIROCCO 2011 conference [10].

2. The Retransmission Scheme

In this section, we formally present the object of study: a general technique to cope with message loss
in distributed systems by retransmissions. Instead of handling message loss directly in the algorithm, it is
often more convenient for the algorithm’s designer to separate concerns into (1) simulating perfect rounds,
i.e., rounds without message loss, on top of a system with message loss, and (2) to run a simpler algorithm
on top of the simulated perfect rounds. Simulations that provide stronger communication directives on
top of a system satisfying weaker communication directives are commonly used in distributed computing
[11, 5]. In this section we present one such simulation—a retransmission scheme—and prove it correct.
Note that the proposed retransmission scheme is a modified version of the α synchronizer [3]. However,
it does not use the acknowledgment message.

2.1. Computational Model

We assume a distributed system comprising a fully connected communication network between pro-
cesses taken from the set Π = {1, 2, . . . , N}. Each process i has a local state si; a global state of the
distributed system is a collection of local states (si)i∈Π. Processes communicate by message passing.

Formally, an algorithm A for the distributed system comprises the following parts:

(A1) For every process i, a set of possible local states Si, a set of possible initial local states S0i , and the
set of possible messages M, not containing ⊥. We assume without loss of generality that the sets
Si are pairwise disjoint.

(A2) A pair of functions (Sendi,Nexti) for every process i: The send function Sendi for every process i,
is from Si to 2M, and maps a local state to a nonempty finite set of messages to send. The next
state function Nexti for every process i, is from Si× 2M×Π to Si, and maps a local state and a set
R ⊆M×Π of received messages, labeled with their respective sender, to the next local state.

Computation at processes is assumed to occur in sequences of steps locally happening at the processes.
In a step, a process atomically (E1) receives a set of messages, (E2) computes its next local state, and (E3)
sends (broadcasts) a nonempty finite set of messages to all other processes. Note that our definition of a
step differs from classic definitions with respect to (E3), potentially allowing an algorithm to broadcast a
set of messages instead of a single message per step. While in distributed systems without transmission
failures, algorithms for both kinds of definitions can be easily reduced to each other by joining all
messages to be sent in a step into a single message, this is not the case for distributed systems that have
to cope with transmission failures, like those we consider in our work. There, the extension allows for
finer grained modeling of benign transmission failures, i.e., failures where contents of messages are not
changed: Instead of the single message, sent in a step, either being received in some other step or not,
an arbitrary subset of messages sent in a step can be received in some other step.

2

symbol meaning first use

Π set of processes Section 2.1
N number of processes Section 2.1
si local state of process i Section 2.1
Si set of possible local states of process i Section 2.1
S0i set of possible initial states of process i Section 2.1
M set of possible messages Section 2.1
Sendi send function of process i Section 2.1
Nexti next state function of process i Section 2.1
E(i) projection of execution E to process i’s states and events Section 2.1
E ↾ B B-projection of execution E Section 2.2
s[X] value of variable X in state s Section 2.2
Ti(r) start of simulated round r at process i Section 3
L(r) maxi Ti(r) Section 3
δi,j(r) effective transmission delay from i to j in round r Section 3
p probability of successful transmission Section 3
M maximum number of tries per round Section 3
λ expected round duration Section 4
PX,Y transition probability from state Y to state X Section 4.1
σz(r) #

{
i | Ti(r)− L(r − 1) = z

}
Section 4.1

Λ(r)
(
σ1(r), . . . , σM (r)

)
Section 4.1

L state space of Markov chain Λ(r) Section 4.1
σ(Λ) max{z | σz 6= 0} Section 4.1
σ(r) σ

(
Λ(r)

)
Section 4.1

Lz set of Λ ∈ L such that σ(Λ) = z Section 4.1
π stationary distribution of Λ(r) Section 4.1
Norm(Λ) normalized state of Λ Section 4.2
P (6 z | Λ) probability that Ti(r + 1)− L(r) 6 z for a fixed i, given Λ(r) = Λ Section 4.2
P (z | Λ) probability that Ti(r + 1)− L(r) = z for a fixed i, given Λ(r) = Λ Section 4.2
P (6 z | Λ, k) probability that Ti(r + 1)− L(r) 6 z for a fixed i, given Λ(r) = Λ

and Ti(r)− L(r − 1) = k Section 4.2
P (z | Λ, k) probability that Ti(r + 1)− L(r) = z for a fixed i, given Λ(r) = Λ

and Ti(r)− L(r − 1) = k Section 4.2
λprob(p,M,N) value of λ for probability space ProbLoss(p,M) with N processes Section 4.3
λdet(p,M,N) value of λ for probability space ProbLoss∗(p,M) with N processes Section 4.3

Table 1: List of notation

3

Formally we define: An event is a tuple (i, R), where i is a process and R is the set of messages,
tagged with their respective senders (i.e., R ⊆ M× Π) that are received by process i in the event. An
execution E of an algorithm A is a sequence of events and local states such that for every process i,
the projection E(i) to process i’s events and states is an alternating sequence of local states and events
E(i) = si(1), ei(2), si(2), . . . , ei(k), si(k), . . . , such that (Ex1) every si(1) is an initial (local) state of i
and (Ex2) for every k > 1 with ei(k) = (i, R), it is si(k) = Nexti

(
si(k − 1), R

)
. In execution E, event e

is before event e′ if e appears before e′ in sequence E. We say that process i receives message m from j
in step k if (m, j) ∈ R where ei(k) = (i, R). We further say that process i sends (broadcasts) message
m in step k, if m ∈ Sendi

(
si(k)

)
.

It remains to specify the relation between message sends and receives that has to hold during an
execution. We do this by means of communication axioms which denote a condition on the distributed
system’s communication behavior: The system can either satisfy an axiom or not. The following are
communication axioms used in the sequel:

NoGen For all processes i and j, if j receives message m from i, then i broadcasted m before.

FairLoss For all processes i and j, if i broadcasts the same message m in infinitely many steps, then j
receives m from i in infinitely many steps.

Further desirable axioms are that of communication closedness CommClosed [5], perfect commu-
nication PerfComm, and perfect communication for self loops, i.e., PerfComm∗. They are defined
by:

CommClosed For all processes i and j, if j receives message m from i in step k > 1, then i broad-
casted m in step k − 1.

PerfComm For all processes i and j, if i broadcasts message m in step k− 1, k > 1, then j receives m
from i in step k.

PerfComm∗ For all processes i, if i broadcasts message m in step k− 1, k > 1, then i itself receives m
from i in step k.

Call an execution admissible if it satisfies NoGen, which is reasonable to assume for benign communi-
cation, and for each process i, E(i) is infinite.

A fair-lossy execution of an algorithm A is an admissible execution that satisfies axiom FairLoss. A
perfect round execution is an admissible execution that satisfies axioms CommClosed and PerfComm.

2.2. Simulating Perfect Round Executions

Our goal is to determine the round duration of a retransmission scheme that simulates a perfect round
execution on top of a fair-lossy execution. We thus proceed by introducing a notion of simulation. Let
B be an algorithm (designed for perfect round executions). We define what it means for an algorithm A
(designed for fair-lossy executions) to simulate algorithm B. The idea is that algorithm A’s local state
includes B’s local state in a special variable Bstate. Further, in each event, algorithm A is allowed to
trigger a local event of algorithm B. It does this by setting a local variable trigger to true, and handing
over a set of received messages to its local instance of B. Algorithm B then makes a step and updates
Bstate.

Formally we define: Let S
(B)
i andM(B) denote the sets of local states and the set of messages of B,

respectively. We demand of algorithm A that its local states contain the variables Bstate, trigger , and

Bevent . Variable Bstate’s type at process i is S
(B)
i , variable trigger is Boolean, and variable Bevent ’s

type is Σ(B), where Σ(B) is the set of events of algorithm B.
Given an execution E of algorithm A, we define the B-projection E ↾ B of E in the following way:

(P1) Let F denote the subsequence of E that arises when (a) deleting all events, and (b) all states in
which trigger = false.

(P2) We define E ↾ B to be the sequence arising from F when replacing each processor’s first state, si(1),
by si(1)[Bstate], and every but each processor’s first state, si(r), by the two elements si(r)[Bevent],
si(r)[Bstate] where s[X] denotes the value of variable X in state s.

Definition 1. We say that algorithm A simulates B in perfect rounds on top of fair-lossy executions if,

(S1) trigger = true in every initial state of A, (S2) for every initial state s
(B)
i (1) of B, there exists an

initial state si(1) of A such that si(1)[Bstate] = s
(B)
i (1), and (S3) for every fair-lossy execution E of A,

execution E ↾ B is a perfect round execution of B.

4

2.3. The Algorithm

We are now ready to formally state a retransmission-based algorithm that simulates perfect round
executions on top of fair-lossy ones, and prove it correct.

For every algorithm B, consider algorithm A = A(B) presented in Figure 1. The idea of the simulation
is simple: Each process steadily broadcasts (B1) its current (simulated) round number Rnd together
with algorithm B’s messages for the current round (Rnd) and, (B2) the previous round number Rnd − 1
together with algorithm B’s messages for the previous round (Rnd − 1). A process waits in round
Rnd until it has received all processes’ round Rnd messages. When it does, it starts (simulated) round
Rnd + 1.

The intuition for a process sending both its current and its previous round messages is the following:
At some point during the execution, the value of any two processes’ Rnd variables may differ by one,
because of transmission failures. That is, while some process i already started simulated round K, and
therefore waits for messages with round number K, another process j may still be in simulated round
K− 1, waiting for messages with round number K− 1. Clearly, process i therefore must still send round
K−1 messages to j, until j, too, starts round K. Messages with round number less than K−1, however,
need not be sent by process i: It can be shown that at any point during the execution, the values of any
two processes’ Rnd variables differ by at most one (cf. proof of Proposition 1).

1: VAR BState ← s
(B)
i (1); trigger ← true; Bevent ←⊥;

2: VAR BStateold ← ⊥; ∀j ∀r: Rcv [j, r]← ⊥; Rnd ← 1;

3: next state function when receiving set of messages R
4: for received message (r,m) ∈ R from process j do
5: Rcv [j, r]← m;
6: end for
7: trigger ← false;
8: if for all j in Π: Rcv [j,Rnd] 6= ⊥ then
9: Bstateold ← Bstate;

10: trigger ← true;
11: R′ ← {(Rcv [j,Rnd], j) | j ∈ Π};
12: Bevent ← (i, R′);

13: Bstate ← Next
(B)
i

(
Bstate, R′

)
;

14: Rnd ← Rnd + 1;
15: end if
16: end next state function

17: send function
18: broadcast

(
Rnd − 1, Send

(B)
i (Bstateold)

)
; broadcast

(
Rnd , Send

(B)
i (Bstate)

)
;

19: end send function

Figure 1: Process i’s code in simulation algorithm A(B)

Proposition 1. In every fair-lossy execution E of A(B) holds: If there exists a process i ∈ Π such that
si(k)[Rnd] 6 K for all k, then sj(k)[Rnd] 6 K + 1 for all k and all j ∈ Π.

Proof. By code line 18, i never sends a message of the form (r,m) with r > K. By NoGen, no process
receives a message of the form (r,m) with r > K from process i. Hence, by lines 4–6, all processes always
have Rcv [i, r] = ⊥ for all r > K, and, by lines 8 and 14, do not set Rnd to a higher value than K+1.

Proposition 2. In every fair-lossy execution E of A(B) holds: If for all i ∈ Π there exists a k such that
si(k)[Rnd] = K, then for all i ∈ Π there exists a k′ such that si(k

′)[Rnd] = K + 1.

Proof. Suppose, by means of contradiction, that there exists some process i such that si(k
′)[Rnd] 6 K

for all k′. Then by Proposition 1, sj(k
′)[Rnd] 6 K + 1 for all k′ and all j ∈ Π. Hence by code line 18

and the facts that every process j ∈ Π has Rnd = K in one of its steps and takes infinitely many steps,
it follows that every process sends a message of the form (r,m) infinitely often where r ∈ {K,K + 1}.
By FairLoss, all of these messages are received at least once. Then, by code line 18 and 4–6, process i
has Rcv [j,K] 6=⊥ for all processes j ∈ Π during some step of the execution. But then, by code line 14,
also Rnd = K + 1. Contradiction.

5

Proposition 3. In every fair-lossy execution E of A(B), for every process i ∈ Π, the sequence si(k)[Rnd]
is unbounded as k →∞.

Proof. This is an immediate consequence of Proposition 2.

From Propositions 1–3 we immediately obtain the correctness of the retransmission scheme:

Theorem 1. For every algorithm B, algorithm A(B) simulates B in perfect rounds on top of fair-lossy
executions.

Proof. It remains to show that (S3a) E ↾ B is an execution of B and (S3b) E ↾ B is perfect whenever E
is fair-lossy. Property (S3a) follows from code lines 7, 10, and 11–13. Property (S3b) follows from code
line 8 and Proposition 3.

3. Round Durations under Probabilistic Message Loss

We have presented a simple algorithm to simulate perfect rounds on top of fair-lossy executions. In
the rest of this paper, we analyze the performance of this solution.

In a fair-lossy execution E of algorithm A(B), we define the start of simulated round r at process i,
denoted by Ti(r), to be the number of the step in E(i) in which the state change from Rnd = r − 1 to
Rnd = r was triggered; formally, Ti(r) = k if E(i) = si(1), ei(2), si(2), . . . and k is the smallest index
such that si(k)[Rnd] = r. L(r) is the number of the step where the last process starts its simulated
round r, i.e., L(r) = maxi Ti(r). The duration of (simulated) round r at process i is Ti(r + 1) − Ti(r),
that is, we measure the round duration in the number of local process steps.

Define the effective transmission delay δj,i(r) to be the number of tries until process j’s simulated
round r message is successfully received by i. Formally, for any two processes i and j, let δj,i(r)− 1 be
the smallest number ℓ > 0 such that (D1) process j sends a message m in its (Tj(r)+ ℓ)th step and (D2)
process i receives m from j in its (Tj(r)+ ℓ+1)th step. We thus obtain the following proposition relating
the starts of simulated rounds:

Proposition 4. Let E be a fair-lossy execution of A(B). For each process i: Ti(1) = 1, and for each
r > 1:

Ti(r + 1) = max
16j6N

(
Tj(r) + δj,i(r)

)
(1)

3 t

2 t

1 t

L(r − 1) L(r) L(r + 1)

T1(r − 1)

T2(r − 1)

T3(r − 1)

T1(r)

T2(r)

T3(r)

T1(r + 1)

T2(r + 1)

T3(r + 1)

δ1,2(r)

δ1,3(r)

Figure 2: Fair-lossy execution of A(B)

Figure 2 depicts part of a fair-lossy execution of algorithm A(B).
To allow for a quantitative assessment of the durations of the simulated rounds, besides the trivial

bounds of (0,∞), we extend the modeling of the environment with a probability space: We introduce
probability spaces ProbLoss and ProbLoss∗, for which we exemplarily calculate the expected average
simulated round duration.

For all processes i and j, if process i sends message m in its (k − 1)th step, k > 1, then process j
receives m from i in its kth step with probability p, where 0 < p 6 1, is called the probability of successful
transmission.1

Formally, let ProbLoss(p) be the probability distribution on the set of fair-lossy executions defined
by: The random variables δj,i(r) are pairwise independent, and for any two processes i, j, the probability
that δj,i(r) = z is (1− p)z−1 · p.

1In systems in which the probability of successful transmission is bounded from below by some p > 0, axiom FairLoss

holds with probability 1.

6

For computational purposes we also introduce the probability distribution ProbLoss(p,M), where
M ∈ N ∪ {∞}, which is obtained from ProbLoss(p) by modifying the distribution of the δj,i(r): In
contrast toProbLoss(p) we bound the number of tries per simulated round message until it is successfully
received by M . Call M the maximum number of tries per round. Variable δj,i(r) can take values in the
set {z ∈ N | 1 6 z 6M}. For any two processes i, j, and for integers z with 1 6 z < M , the probability
that δj,i(r) = z is (1− p)z−1 · p. In the remaining cases, i.e., with probability (1 − p)M−1, δj,i(r) = M .
If M =∞, this case vanishes. In particular, ProbLoss(p,∞) = ProbLoss(p).

In order to describe systems satisfying the realistic assumptionPerfComm∗, we defineProbLoss∗(p)
and ProbLoss∗(p,M) in the same way as ProbLoss(p) and ProbLoss(p,M), except that always
δi,i(r) = 1 for all r and processes i.

We will see in Sections 4.3 and 5, that the error we make when calculating the expected duration
of the simulated rounds in ProbLoss(p,M) with finite M instead of ProbLoss(p) is small, even for
small values of M . It is further shown in these sections that for M > 4, ProbLoss(p,M) is a good
approximation of ProbLoss∗(p,M).

Since for each process i and r > 1, it holds that Ti(r) 6 L(r) 6 Ti(r+ 1), we obtain the equivalence:

Proposition 5. If Ti(r)/r converges, then lim
r→∞

Ti(r)/r = lim
r→∞

L(r)/r.

We can thus reduce the study of the processes’ average round durations to the study of the sequence
L(r)/r as r →∞.

4. Calculating the Expected Round Duration

The expected round duration of the retransmission algorithm, in the case of fair-lossy executions
distributed according to ProbLoss(p,M) or ProbLoss∗(p,M), is determined by introducing an appro-
priate Markov chain, and analyzing its steady state. To this end, we define a Markov chain Λ(r), for
an arbitrary round r > 1, that (1) captures enough of the dynamics of round construction to determine
the round durations and (2) is simple enough to allow efficient computation of each of the process i’s
expected round duration λi, defined by λi = E limr→∞ Ti(r)/r. Because of Proposition 5, for any two
processes i, j it holds that λi = λj = λ, where λ = E limr→∞ L(r)/r.

The section is structured as follows: Section 4.1 provides the definition of the Markov chain Λ(r).
Section 4.2 develops a method to compute the expected round duration using Λ(r). Section 4.3 shows
the use of Λ(r) by giving several examples. Section 4.4 presents lower bounds of the convergence speed of
the round durations. A certain familiarity with basic notions of probability theory is assumed; however,
no advanced knowledge is necessary for the comprehension of this section. Supplemental facts and
definitions about Markov chains can be found in Appendix A.

4.1. Round Durations as a Markov Chain

A Markov chain is a discrete-time stochastic process X(r) in which the probability distribution for
X(r+1) only depends on the value of X(r). We denote the transition probability from state Y to state
X by PX,Y .

A Markov chain that, by definition, fully captures the dynamics of the round durations is T (r), where
T (r) is defined to be the collection of local round finishing times Ti(r) from Equation (1). However,
directly using Markov chain T (r) for the calculation of λ is impossible since Ti(r), for each process i,
grows without bound in r, and thereby its state space is infinite. For this reason we introduce Markov
chain Λ(r) which optimizes T (r) in two ways and which we use to compute λ: One can achieve a finite
state space by considering differences of T (r), instead of T (r); for a process executing algorithm A(B)
decides to increment its variable Rnd in step k based only on the round numbers it receives in step k and
the value of its variable Rnd in step k−1. Thus the probability that T (r) = X given that T (r−1) = Y is
equal to the probability that T (r) = X−c given that T (r−1) = Y −c, if c ∈ N0. Choosing c = L(r−1),
and observing that Ti(r)−L(r− 1) is upper bounded by M , this yields a finite state space for finite M ,
which enabled us to calculate the expected round duration.

Also, we do not record the local round finishing times (resp. the difference of local round finishing
times) for every of the N processes, but only record the number of processes that are associated a given
value. This is feasible because the system is invariant under permutation of processes: The probability
that T (r) = X given that T (r−1) = Y is equal to the probability that T (r) = X ′ given that T (r−1) = Y ′,
where X ′

i = Xφ(i) and Y
′
i = Yφ(i) for an arbitrary permutation φ of Π. This optimization further reduces

the size of the state space from MN to
(
N+M−1
M−1

)
, which is polynomial in N ; in practical situations,

7

it suffices to use modest values of M as will be shown in Section 5. We show in Theorem 2 that
the information recorded in the states of Markov chain Λ(r) suffices to determine the expected round
duration λ.

We are now ready to formally define Λ(r). Its state space L is defined to be the set of M -tuples

(σ1, . . . , σM) of nonnegative integers such that
∑M
z=1 σz = N . The M -tuples in L are related to T (r) as

follows: Let #X be the cardinality of the set X, and set

σz(r) = #
{
i | Ti(r)− L(r − 1) = z

}
(2)

for r > 1, where we set L(0) = 0 to make the case r = 1 in (2) well-defined. Note that Ti(r)− L(r − 1)
is always greater than 0, because δj,i(r) in Equation (1) is greater than 0. Finally, set

Λ(r) =
(
σ1(r), . . . , σM (r)

)
. (3)

The intuition for Λ(r) is as follows: For each z, σz(r) captures the number of processes that start
simulated round r, z steps after the last process started the last simulated round, namely r − 1. For
example, in case of the execution depicted in Figure 2, σ1(r) = 0, σ2(r) = 1 and σ3(r) = 2. Since
algorithm A(B) always waits for the last simulated round message received, and the maximum number
of tries until the message is correctly received is bounded by M , we obtain that σz(r) = 0 for z < 1
and z > M . Knowing σz(r), for each z with 1 6 z 6 M , thus provides sufficient information (1) on the
processes’ states in order to calculate the probability of the next state Λ(r + 1) = (σ1, . . . , σM), and (2)
to determine L(r + 1) − L(r) and by this the simulated round duration for the last process. We first
obtain:

Proposition 6. Λ(r) is a Markov chain.

Proof. On the set of collections (xi) of numbers indexed by Π = {1, 2, . . . , N}, we introduce equivalence
relation ∼ by defining (xi) ∼ (yi) if and only if there exists a bijection φ : Π → Π such that xi = yφ(i)
for every i ∈ Π. We have (xi) ∼ (yi) if and only if the multisets {xi | i ∈ Π} and {yi | i ∈ Π} are equal.
Denote by

[
(xi)

]
the equivalence class of collection (xi). Every state Λ ∈ L naturally corresponds to

such an equivalence class.
Let r > 0 and Λ1,Λ2, . . . ,Λr−1 ∈ L. We need to show that the conditional distribution for Λ(r),

given Λ(1) = Λ1, . . . , Λ(r − 1) = Λr−1, is the same as the conditional distribution for Λ(r), given only
Λ(r − 1) = Λr−1. By Equations (3) and (2), it suffices to show that the conditional distributions for
A(r) =

[(
Ai(r)

)]
where Ai(r) = Ti(r)− L(r − 1), are equal.

We claim that the distribution of A(r) only depends on B(r) =
[(
Bi(r)

)]
where Bi(r) = Ti(r − 1)−

L(r − 1). From Equation (1) it follows that Ai(r) = maxj
(
Bj(r) + δj,i(r − 1)

)
. Let B̃(r) ∈ B(r), i.e.,

B̃i(r) = Bφ(i)(r) for a bijection φ : Π→ Π and define Ãi(r) = maxj
(
B̃j(r) + δj,i(r − 1)

)
. We show that

there exists a bijection ψ : Π→ Π such that the distributions for Ai(r) and Ãψ(i)(r) are equal. It suffices

to set ψ = φ−1. Then, Ãψ(i)(r) = maxj
(
Bφ(j)(r) + δj,ψ(i)(r − 1)

)
= maxj

(
Bj(r) + δψ(j),ψ(i)(r − 1)

)
.

Since (j, i) 7→
(
ψ(j), ψ(i)

)
is a permutation of Π2, and δψ(j),ψ(i)(r − 1) and δj,i(r − 1) are identically

distributed for all (j, i) ∈ Π2, the claim follows.
Equivalence class B(r), in turn, is completely determined by Λr−1 because of the identity Bi(r) =

Ai(r − 1)−maxj Aj(r − 1). This concludes the proof.

In fact, Proposition 6 holds for a wider class of delay distributions δj,i(r), namely those invariant
under permutation of processes. Likewise, many results in the remainder of this section are applicable
to a wider class of delay distributions: For example, we might drop the independence assumption on
the δj,i(r) for fixed r and assume strong correlation between the delays, i.e., for each process j and each
round r, δj,i(r) = δj,i′(r) for any two processes i, i′.2

LetX(r) be a Markov chain with countable state space X and transition probabilities P . A probability
distribution π on X is a stationary distribution for X(r) if π(X) =

∑
Y ∈X π(Y) · PX,Y for all X ∈ X .

Intuitively, π(X) is the asymptotic relative amount of time in which Markov chain X(r) is in state X.

Definition 2. Call a Markov chain good if it is aperiodic, irreducible, Harris recurrent, and has a unique
stationary distribution.3

2This is the case of “negligible transmission delays” considered by Rajsbaum and Sidi [6].
3The notions “aperiodic”, “irreducible”, and “Harris recurrent” are standard in Markov theory and are recalled in the

appendix.

8

Proposition 7. Λ(r) is a good Markov chain.

Proof. Λ(r) is aperiodic because every state can be reached from every other in two and in three steps
with nonzero probability: The transition probability from every state to state (N, 0, . . . , 0) is nonzero,
for this transition occurs if all messages arrive on their first try. Also, the transition probability from
state (N, 0, . . . , 0) to every other state is nonzero.

Harris recurrence follows from the fact that every state can be reached in two steps with nonzero
probability, together with the fact that the state space is finite.

Existence and uniqueness of the stationary distribution follows from recurrence [12, Theorem 10.0.1].

Denote by π the unique stationary distribution of Λ(r), which exists because of Proposition 7. Define
the function σ : L → R by setting σ(Λ) = max{z | σz 6= 0} where Λ = (σ1, . . . , σM) ∈ L. By
abuse of notation, we write σ(r) instead of σ

(
Λ(r)

)
. From the next proposition it follows that σ(r) =

L(r)− L(r − 1), i.e., knowing σ(1) to σ(r) suffices to determine L(r). For example, σ(r + 1) = 5 in the
execution in Figure 2.

Proposition 8. L(r) =
∑r
k=1 σ(k)

Proof. The proof is by induction on r. The case r = 1 is trivial. We are done if we show L(r) =
L(r− 1)+σ(r) for all r > 1. By definition, we have L(r− 1)+σ(r) = L(r− 1)+maxi

(
Ti(r)−L(r− 1)

)
.

Noting the rule A+maxiBi = maxi(A+Bi) concludes the proof.

The following theorem is key for calculating the expected simulated round duration λ. We will use the
theorem for the computation of λ starting in Section 4.2. The theorem states that the simulated round
duration averages L(r)/r up to some round r converge to a finite λ almost surely as r goes to infinity.
This holds even for M = ∞, that is, if no bound is assumed on the number of tries until successful
reception of a message. The theorem further relates λ to the steady state of Λ(r). Let Lz ⊆ L denote
the set of states Λ such that σ(Λ) = z. Then:

Theorem 2. L(r)/r converges to λ with probability 1. Furthermore, λ =
∑M
z=1 z · π(Lz) <∞.

Proof. We use Theorem A.1 in the appendix and prove that its hypothesis holds by showing
∑
z>1 z ·

π(Lz) 6 2N
2

p−2.

As a first step, we show π(Lz) 6 2N
2

(1− p)z−1. Because P
(
σ(r) = z

)
converges to π(Lz) as r →∞

(Theorem A.2 in the appendix), it suffices to prove this inequality for P
(
σ(r) = z

)
. The event σ(r) = z

implies the event ∃i, j : δi,j(r) > z, i.e., the complement of the event ∀i, j : δi,j(r) 6 z − 1. The events
δi,j(r) 6 z − 1 each have probability 1− (1− p)z−1. Hence

P
(
σ(r) = z

)
6 1−

(
1− (1− p)z−1

)N2

(4)

for all r > 1.
We now manipulate the right-hand side of Equation (4) with operations that preserve the inequality.

We invoke the binomial theorem and the triangle inequality, arriving at
∑N2

k=0

(
N2

k

)
(1−p)k(z−1). Finally,

we substitute k(z − 1) by z − 1 and use the identity
∑
k

(
n
k

)
= 2n to prove the claimed inequality

π(Lz) 6 2N
2

(1− p)z−1.
Using the derivative of the geometric sum formula, we calculate

∑∞
z=0 z(1 − p)z−1 = 1/p2. This

concludes the proof.

4.2. Using Λ(r) to Compute λ

We now state a method that, given parameters M 6=∞, N , and p, computes the expected simulated
round duration λ (see Theorem 2). In its core is a standard procedure to compute the stationary
distribution of a Markov chain, in form of a matrix inversion. In order to utilize this standard procedure,
we need to explicitly state the transition probability distributions PX,Y , from each state Y to each state
X, which we regard as a matrix P . We will do this using two different assumptions on the communication
system: (i) for the simpler case ProbLoss(p,M) of a system with probabilistic loop-back links, i.e.,
where we do not assume that PerfComm∗ holds, and (ii) for a system ProbLoss∗(p,M) with the
(more realistic) assumption of PerfComm∗.

9

A first observation, that is valid for both systems, yields that matrix P bears some symmetry, and thus
some of the matrix’ entries can be reduced to others. In fact we first consider the transition probability
from normalized Λ states only, that is, Λ = (σ1, . . . , σM) with σM 6= 0.

In a second step we observe that a non-normalized state Λ can be transformed to a normalized state
Λ′ = Norm(Λ) without changing its outgoing transition probabilities, i.e., for any state X in L, it holds
that PX,Λ = PX,Λ′ : Thereby Norm is the function L → L defined by:

Norm(σ1, . . . , σM) =

{
(σ1, . . . , σM) if σM 6= 0

Norm(0, σ1, . . . , σM−1) otherwise

For example, assuming that M = 5, and considering the execution in Figure 2, it holds that
Λ(r) = (0, 1, 2, 0, 0). Normalization, that is, right alignment of the last processes, yields Norm(Λ(r)) =
(0, 0, 0, 1, 2).

(i) Probabilistic loop-back links ProbLoss. For any Λ = (σ1, . . . , σM) in L with σM 6= 0, and any
1 6 z 6 M , let P (6 z | Λ) be the conditional probability that a specific process i is in the set
{i | Ti(r + 1)− L(r) 6 z}, given that Λ(r) = Λ, i.e.,

P (6 z | Λ) = P(Ti(r + 1)− L(r) 6 z | Λ(r) = Λ) . (5)

Since the right-hand side is independent of i and r, P (6 z | Λ) is well-defined. We easily observe that
Ti(r + 1)− L(r) 6 z, given that Λ(r) = Λ, if and only if all the following M conditions are fulfilled: For
each u, 1 6 u 6 M : for all processes j for which Tj(r) − L(r − 1) = u (this holds for σu(r) many) it
holds that δj,i(r) 6 z +M − u. Therefore we obtain:

P (6 z | Λ(r)) =
∏

16u6M

P(δ 6 z +M − u)σu(r) , (6)

for all z, 1 6 z 6 M . Let P (z | Λ) be the conditional probability that a specific process is in the set
{i | Ti(r + 1)− L(r) = z}, given that Λ(r) = Λ, i.e.,

P (z | Λ(r)) = P(Ti(r + 1)− L(r) = z | Λ(r) = Λ) . (7)

From Equations (5) and (7), we immediately obtain:

P (1 | Λ) = P (6 1 | Λ) and,

P (z | Λ) = P (6 z | Λ)− P (6 z − 1 | Λ) , (8)

for all z, 1 < z 6M . We may finally state the transition matrix P : for eachX,Y ∈ L, the probability that
the system makes a transition from state Y = Λ(r) = (σ1, . . . , σM) to stateX = Λ(r+1) = (σ′

1, . . . , σ
′
M) is

given by the probability that of the N processes, there are σ′
1 processes in the set {i | Ti(r+1)−L(r) = 1},

of the N−σ′
1 remaining processes, there are σ′

2 processes in the set {i | Ti(r+1)−L(r) = 2}, etc. Finally,

the remaining σ′
M = N −

∑M−1
z=1 σ′

z processes are in the set {i | Ti(r + 1)− L(r) =M}. This yields,

PX,Y =

(
N

σ′
1, σ

′
2, . . . , σ

′
M

) ∏

16z6M

P (z | Norm(Y))σ
′
z , (9)

where for any finite sequence a1, . . . , am with m > 1 and elements from N0, the multinomial coefficient(∑m
ℓ=1

ai
a1,a2,...,am

)
is equal to

∏
16ℓ6m

(∑ℓ
k=1

ak
aℓ

)
, i.e., the number of possibilities to distribute

∑m
ℓ=1 ai processes

into m bins of sizes a1, . . . , am.

(ii) Deterministic loop-back links ProbLoss∗. Note that for a system where PerfComm∗ holds, in
Equation (6), one has the account for the fact that a process i definitely receives its own message after 1
step. In order to specify a transition probability analogous to Equation (6), it is thus necessary to know
to which of the σk(r) in Λ(r), process i did count for, that is, for which k, Ti(r)−L(r−1) = k holds. We
then replace σk(r) by σk(r)− 1, and keep σu(r) for u 6= k. Formally, let P (6 z | Λ, k), with 1 6 k 6M ,
be the conditional probability that process i is in the set {j | Tj(r+1)−L(r) 6 z}, given that Λ(r) = Λ,
as well as Ti(r)− L(r − 1) = k. Then:

P (6 z | Λ(r), k) =
∏

16u6M

P (δ 6 z +M − u)σu(r)−1{k}(u)

10

where 1{k}(u) is the indicator function, having value 1 for u = k and 0 otherwise. Equation (8) can be
generalized in a straightforward manner to obtain expressions for P (z | Λ, k), i.e., for the conditional
probability that process i is in the set {i | Ti(r + 1) − L(r) = z}, given that Λ(r) = Λ, as well as
Ti(r)− L(r − 1) = k.

When stating a formula for PX,Y analogous to Equation (9), one has to account for the dependency
of P (z | Λ, k) on k. For that purpose let PX,Y (Q), where Q is an M ×M matrix with elements from N0,
be the transition probability from state Y = Λ(r) with Norm(Y) = (σ1, . . . , σM) to state X = Λ(r+1) =
(σ′

1, . . . , σ
′
M), provided that Qz,k is the number of processes which are in both {i | Ti(r+ 1)−L(r) = z}

and {i | Ti(r)−L(r−1) = k}. By definition, PX,Y (Q) is nonzero only if
∑M
z=1Qz,k = σk, for 1 6 k 6M ,

and
∑M
k=1Qz,k = σ′

z, for 1 6 z 6M . We readily obtain,

PX,Y (Q) =
∏

16k6M



(

σk
Q1,k, Q2,k, . . . , QM,k

) ∏

16z6M

P (z | Norm(Y), k)Qz,k


 . (10)

To calculate PX,Y one has to account for all possible choices ofQ, each of which occurs with probability

PX,Y (Q). With Q being the set ofM×M matrices with elements from N0 for which
∑M
z=1

∑M
k=1Qz,k =

N , we finally obtain

PX,Y =
∑

Q∈Q

PX,Y (Q) . (11)

While the calculation of the transition probabilities PX,Y depends on the specific communication
assumptions made, the method to obtain λ from the expressions for PX,Y is independent from all these
assumptions. It is presented in the following. Let Λ1,Λ2, . . . ,Λn be any enumeration of states in L. We
write Pi,j = PΛi,Λj

and πi = π(Λi) to view P as an n× n matrix and π as a row vector. By definition,
the unique stationary distribution π satisfies (1) π = π · P , (2)

∑
i πi = 1, and (3) πi > 0. It is an

elementary linear algebraic fact that these properties suffice to characterize π by the following formula:

π = e ·
(
P (n→1) − I(n→0)

)−1
(12)

where e = (0, . . . , 0, 1), P (n→1) is matrix P with its entries in the nth column set to 1, and I(n→0) is the
identity matrix with its entries in the nth column set to 0.

After calculating π, we can use Theorem 2 to finally determine the expected simulated round du-
ration λ. The time complexity of this approach is determined by (T1) building transition matrix
P , and (T2) the matrix inversion of P . For both probability spaces (i) ProbLoss(p,M) and (ii)
ProbLoss∗(p,M), matrix P is of the same size n × n, where n =

(
N+M−1
M−1

)
is the number of states

in the Markov chain Λ(r). Thus the time complexity of (T2) is within O(n3), which is polynomial in N .
With respect to (T1) a näıve implementation of the procedure presented in (ii) has time-complexity at

least #Q =
(
N+M2−1
M2−1

)
, which outweighs (T2), in contrast to the method presented in (i).

In Sections 4.4 and 5 we show that already small values of M yield good approximations of λ, that
quickly converge with growing M . This leads to a tractable time complexity of the proposed method.

4.3. Results

The presented method allows to obtain analytic expressions for λ for fixed M and N in terms of
probability p. Denote by λprob(p,M,N) respectively λdet(p,M,N) the value of λ for probability space
ProbLoss(p,M) respectively ProbLoss∗(p,M) with N processes. Figure 3 contains λdet(p,M,N) for
M = 2 and N equal to 2 and 3. For largerM and N , the expressions already become significantly longer.

Clearly for all p, M and N , λdet(p,M,N) is less or equal to λprob(p,M,N), since ProbLoss differs
from ProbLoss∗ only by restricting δi,i(r) to attain the minimum value of 1 for each process i in each
simulated round r. So if one is interested in nontrivial upper bounds of deterministic loop-back systems,

λdet(p,2,2)=
6−6p+p2

3−2p

λdet(p,2,3)=
2−8p+18p2−16p3+12p4+24p5−64p6+22p7+30p8−22p9+3p10

1−4p+9p2−8p3+6p4+12p5−27p6+6p7+12p8−6p9

Figure 3: Expressions for λdet(p,M,N) with M = 2 and N = 2, 3

11

probabilistic loop-back systems are a good choice. Figures 4(a)–4(d) even suggest that λprob(p,M,N) is
a good approximation for λdet(p,M,N) for N > 4: Figures 4(a) and 4(b) show solutions of λprob(p,M, 2)
and λdet(p,M, 2) while Figures 4(c) and 4(d) show solutions for λprob(p,M, 4) and λdet(p,M, 4) respec-
tively.

We further observe that for high values of the probability of successful communication p, systems
with different M have approximately the same slope. Since real distributed systems typically have a
high p value, we may approximate λdet(p,M,N) as well as λprob(p,M,N) for higher M values with that
of significantly lower M values. The effect is further investigated in Section 5 by means of Monte Carlo
simulation.

0 0.2 0.4 0.6 0.8 1
1

1.5

2

2.5

3

3.5

4

4.5

5

5.5

6

 p

av
er

ag
e

ro
un

d
du

ra
tio

n

M=6
M=5
M=4
M=3
M=2

(a) N = 2, probabilistic loop-backs

0 0.2 0.4 0.6 0.8 1
1

1.5

2

2.5

3

3.5

4

4.5

5

5.5

6

 p

av
er

ag
e

ro
un

d
du

ra
tio

n

M=6
M=5
M=4
M=3
M=2

(b) N = 2, deterministic loop-backs

0 0.2 0.4 0.6 0.8 1
1

1.5

2

2.5

3

3.5

4

4.5

5

5.5

6

 p

av
er

ag
e

ro
un

d
du

ra
tio

n

M=6
M=5
M=4
M=3
M=2

(c) N = 4, probabilistic loop-backs

0 0.2 0.4 0.6 0.8 1
1

1.5

2

2.5

3

3.5

4

4.5

5

5.5

6

 p

av
er

ag
e

ro
un

d
du

ra
tio

n

M=6
M=5
M=4
M=3
M=2

(d) N = 4, deterministic loop-backs

Figure 4: λprob(p,M,N) and λdet(p,M,N) versus p for N = 2, 4 and M 6 6

4.4. Rate of Convergence

We know from Theorem 2 that L(r)/r converges to λ. The purpose of this section is to establish
results on the rate of this convergence. As a particular result, we will see that also σ(r) converges to λ.
Our main result of this section will be a lower bound on the probability for the event |L(r)/r − λ| < A
(Theorem 3). We assume M <∞ in this section.

The first proposition shows exponential convergence of σ(r)’s expected value to λ. It is the conse-
quence of a standard result in Markov theory.

Proposition 9. There exists some ρ, 0 < ρ < 1, such that Eσ(r) = λ+O (ρr) as r →∞.

12

Proof. By definition of the expected value, Eσ(r) =
∑M
z=1 z · P

(
Λ(r) ∈ Lz

)
. By Theorem A.2, it is

P
(
Λ(r) ∈ Lz

)
= π(Lz) +O(ρr) for some ρ, 0 < ρ < 1. Combining the two equations yields the claimed

formula by Theorem 2.

Having established the rate of convergence of σ(r), we may conclude something about the rate of
convergence of L(r)/r, i.e., its averages. However, we do not arrive at exponential convergence of L(r)/r
towards λ, but only O(r−1). This can be seen as a consequence of the tendency of averages to even
out drastic changes. The mathematical reason for it is that the sum

∑r
k=1 ρ

k does not tend to zero as
r →∞.

Proposition 10. EL(r)/r = λ+O(1/r) as r →∞.

Proof. By Proposition 8, we have EL(r)/r = 1/r
∑r
k=1 Eσ(k). Now, using Proposition 9 and noting

that
∑r
k=1 ρ

k = O(1) as r →∞ concludes the proof.

Next, we investigate the variance of σ(r).

Proposition 11. There exists some ρ, 0 < ρ < 1, such that Var
(
σ(r)

)
= β − λ2 + O(ρr) as r → ∞,

where β =
∑M
z=1 z

2 · π(Lz).

Proof. The proposition follows by the same means as Proposition 9 after using the formula Var(X) =
EX2 − (EX)2.

The next proposition provides two insights: (1) As r tends to infinity, the variance of L(r)/r tends to
zero; in contrast, the variance of σ(r) tends to β − λ2 (Proposition 11). This is a common phenomenon
when considering averages of random variables (cf. Law of Large Numbers). (2) We show a rate of
convergence of O(1/r) for the variance of L(r)/r. This is an improvement over standard Markov theoretic
results, which are able to show that the variance is O(log log r/r) [12, Theorem 17.0.1(iv)-LIL].

Proposition 12. Var
(
L(r)/r

)
= O(1/r) as r →∞.

Proof. We subdivide the proof into a sequence of claims, which we prove separately.

Claim 1. Eσ(k) · σ(ℓ) = λ2 +O
(
ρmin(k,ℓ−k)

)
uniformly for all k < ℓ.

By definition of the expected value, Eσ(k) · σ(ℓ) is equal to

M∑

z=1

M∑

u=1

z · u · P
(
Λ(k) ∈ Lz ∧ Λ(ℓ) ∈ Lu

)
. (13)

But P
(
Λ(k) ∈ Lz ∧ Λ(ℓ) ∈ Lu

)
is equal to

∑

Λ∈Lz

P
(
Λ(k) = Λ

)
· P

(
Λ(ℓ) ∈ Lu | Λ(k) = Λ

)
. (14)

Theorem A.2 states that there exists a ρ, 0 < ρ < 1 such that P
(
Λ(k) = Λ

)
= π(Λ) + O(ρk) and

P
(
Λ(ℓ) ∈ Lu | Λ(k) = Λ

)
= π(Lu) +O(ρℓ−k).

Substituting this last equality into (14), together with π(Lz) =
∑

Λ∈Lz
π(Λ) and Theorem 2, yields

that (13) is equal to λ2 +O
(
ρmin(k,ℓ−k)

)
. We have thus proved Claim 1.

Claim 2. Cov
(
σ(k), σ(ℓ)

)
= O

(
ρmin(k,ℓ−k)

)
uniformly for all k < ℓ.

This claim follows from the formula Cov(X,Y) = E(X · Y) − EX · EY , together with Claim 1 and
Proposition 9.

Claim 3.
∑

16k<ℓ6r

ρmin(k,ℓ−k) = O(r)

Define a(k, ℓ) = ρmin(k,ℓ−k). Denote by A(r) the set of pairs (k, ℓ) such that 1 6 k < ℓ 6 r. Further
define B(r) to be the set of pairs (k, ℓ) in A(r) that satisfy 2k < ℓ and C(r) to be the set of pairs (k, ℓ)
in A(r) that satisfy 2k > ℓ. It is A(r) = B(r) ∪ C(r). For (k, ℓ) ∈ B(r), we have a(k, ℓ) = ρk and for
(k, ℓ) ∈ C(r), we have a(k, ℓ) = ρℓ−k.

13

Hence,
∑

(k,ℓ)∈B(r)

a(k, ℓ) 6

r∑

ℓ=1

r∑

k=1

ρk. (15)

We calculate
∑r
k=1 ρ

k = (ρ− ρr+2)/(1− ρ) = O(1), which implies that the right-hand side of (15) is
O(r).

Similarly,
∑

(k,ℓ)∈C(r)

a(k, ℓ) 6

r∑

k=1

2k∑

ℓ=k+1

ρℓ−k =

r∑

k=1

k∑

ℓ=1

ρℓ 6

r∑

k=1

r∑

ℓ=1

ρℓ (16)

is also O(r). This proves Claim 3.

Claim 4. Var
(
L(r)/r

)
= O(1/r)

We use the formulas Var
(∑

iXi

)
=

∑
iVar(Xi) + 2

∑
i<j Cov(Xi, Xj) and Var(aX) = a2 · Var(X),

which, together with Proposition 11 and Claims 2 and 3, implies Claim 4. This concludes the proof.

We can utilize the acquired knowledge about expected value and variance of L(r)/r to explicitly
state an asymptotic lower bound on the probability that L(r)/r has distance at most α to the expected
value λ. This is a standard procedure and uses Chebyshev’s inequality, which can be stated as

P
(
|X − EX| > A

)
6 (VarX)2/A2 . (17)

In our case, however, we do not have one random variable, but countably many. Thus, we do not
limit ourselves to considering a single constant A, but we allow a sequence αr instead of A. The case of
a constant is a particular case.

Theorem 3. If M <∞ and αr · r →∞ as r →∞, then

P (|L(r)/r − λ| > αr) = O
(
1/r2α2

r

)

as r →∞.

Proof. Let EL(r)/r = λ + gr. Then, by Proposition 10, we have gr = O(1/r). The condition
|L(r)/r − λ| > αr is equivalent to |L(r)/r − λ| − |gr| > αr−|gr|, which, by the triangle inequality,
implies |L(r)/r − (λ+ gr)| > αr − |gr|.

Hence, P
(
|L(r)/r − λ| > αr

)
is less or equal to P

(
|L(r)/r − (λ+ gr)| > αr − |gr|

)
, which, by

Chebyshev’s inequality (17), yields

P (|L(r)/r − λ| > αr) 6
Var(L(r)/r)2

(αr − |gr|)2
,

which is O
(
1/r2α2

r

)
. Here we used Proposition 12 and the fact that αr − |gr| = Ω(αr), which follows

from gr = O(1/r) and αr · r →∞.

Corollary 1. For all A > 0, the probability that |L(r)/r − λ| > A is O
(
r−2

)
.

5. Simulations

The method presented in Section 4.2 allows to calculate λprob(p,M,N) and λdet(p,M,N) if M <∞.
Therefore, the question arises whether the solutions for finite M yield good approximations for M =∞.
In this section, we study the behavior of the random process T (r)/r for increasing r, for different M ,
with Monte Carlo simulations carried out in Matlab.

In Figure 5 we considered the behavior of deterministic loop-back systems with N = 5 processes, for
different parameters M and p. The results of the simulation are plotted in Figures 5(a)–5(c). Each of
them includes: (1) The expected round duration λdet, computed by the method presented in Section 4.2
for a deterministic loop-back system with M = 4, drawn as a constant function. (2) The simulation
results of sequence T1(r)/r, that is process 1’s average round duration, normalized to the calculated
λdet, for rounds 1 6 r 6 150, for two systems: one with parameter M = 4, the other with parameter
M =∞, both averaged over 1000 runs. Considering λprob instead of λdet resulted in similar graphs.

14

1 20 40 60 80 100 120 140
0

0.5

1

1.5

rounds r

av
er

ag
e

ro
un

d
du

ra
tio

n
no

rm
al

iz
ed

 to
 λ

de
t(0

.5
0,

4,
5)

Sim: p=0.50 M=4
Sim: p=0.50 M=∞
Calc: p=0.50 M=4

(a) p = 0.5

1 20 40 60 80 100 120 140
0

0.5

1

1.5

rounds r

av
er

ag
e

ro
un

d
du

ra
tio

n
no

rm
al

iz
ed

 to
 λ

de
t(0

.7
5,

4,
5)

Sim: p=0.75 M=4
Sim: p=0.75 M=∞
Calc: p=0.75 M=4

(b) p = 0.75

1 20 40 60 80 100 120 140
0

0.5

1

1.5

rounds r

av
er

ag
e

ro
un

d
du

ra
tio

n
no

rm
al

iz
ed

 to
 λ

de
t(0

.9
9,

4,
5)

Sim: p=0.99 M=4
Sim: p=0.99 M=∞
Calc: p=0.99 M=4

(c) p = 0.99

Figure 5: Simulated T1(r)/r versus r for N = 5 and M = 4,∞ in deterministic loop-back systems with p = 0.5, 0.75, 0.99,
normalized to λdet(p, 4, 5)

1

2

3

4

5

6

7

2 3 4 5 6 7 8 9
number of nodes N

av
er

ag
e

ro
un

d
du

ra
tio

n

Sim: p=0.50 M=∞ det
Calc: p=0.50 M=4 det
Calc: p=0.50 M=3 det
Calc: p=0.50 M=2 det
Calc: p=0.50 M=4 prob
Calc: p=0.50 M=3 prob
Calc: p=0.50 M=2 prob

(a) p = 0.5

1

1.5

2

2.5

3

3.5

4

2 3 4 5 6 7 8 9
number of nodes N

av
er

ag
e

ro
un

d
du

ra
tio

n

Sim: p=0.75 M=∞ det
Calc: p=0.75 M=4 det
Calc: p=0.75 M=3 det
Calc: p=0.75 M=2 det
Calc: p=0.75 M=4 prob
Calc: p=0.75 M=3 prob
Calc: p=0.75 M=2 prob

(b) p = 0.75

1

1.05

1.1

1.15

1.2

1.25

1.3

1.35

1.4

1.45

1.5

2 3 4 5 6 7 8 9
number of nodes N

av
er

ag
e

ro
un

d
du

ra
tio

n

Sim: p=0.99 M=∞ det
Calc: p=0.99 M=4 det
Calc: p=0.99 M=3 det
Calc: p=0.99 M=2 det
Calc: p=0.99 M=4 prob
Calc: p=0.99 M=3 prob
Calc: p=0.99 M=2 prob

(c) p = 0.99

Figure 6: λprob, λdet for M 6 4 and simulations (deterministic loop-backs, M = ∞) versus N for p = 0.5, 0.75, 0.99

In all three cases, it can be observed that the simulated sequence with parameter M = 4 rapidly
approximates the theoretically predicted rate for M = 4. From the figures we further conclude that
calculation of the expected simulated round duration λ for a system with finite, and even small, M
already yields good approximations of the expected rate of a system with M = ∞ for p > 0.75, while
for practically relevant p > 0.99 one cannot distinguish the finite from the infinite case.

In Figure 6 we compared the calculated values λprob(p,M,N) and λdet(p,M,N) for p = 0.5, 0.75, 0.99,
N 6 9, and M 6 4 to simulated values of T1(1000)/1000 obtained from 100 Monte Carlo simulations of
a deterministic loop-back system with M =∞. The results of the simulation are depicted as box-plots.
Note that for p = 0.75 the discrepancy between the analytic results for λdet(p, 4, N) and the simulation
results for M = ∞ is already small, and for p = 0.99 the analytic results for all choices of M are
in-between the lower quartile and the upper quartile of the simulation results.

15

6. Related work

The notion of simulating a stronger system on top of a weaker one is common in the field of distributed
computing [2, Part II]. For instance, Neiger and Toueg [13] provide an automatic translation technique
that turns a synchronous algorithm B that tolerates benign failures into an algorithm A(B) that tolerate
more severe failures. Dwork, Lynch, and Stockmeyer [11] use the simulation of a round structure on top
of a partially synchronous system, and Charron-Bost and Schiper [5] systematically study simulations of
stronger communication axioms in the context of round-based models.

In contrast to randomized algorithms, like Ben-Or’s consensus algorithm [14], the notion of a proba-
bilistic environment , as we use it, is less common in distributed computing: One of the few exceptions
is Bakr and Keidar [4] who provide practical performance results on distributed algorithms running on
the Internet. On the theoretical side, Bracha and Toueg [15] consider the Consensus Problem in an
environment, for which they assume a nonzero lower bound on the probability that a message m sent
from process i to j in round r is correctly received, and that the correct reception of m is independent
from the correct reception of a message from i to some process j′ 6= j in the same round r. While we,
too, assume independence of correct receptions, we additionally assume a constant probability p > 0 of
correct transmission, allowing us to derive exact values for the expected round durations of the presented
retransmission scheme, which was shown to provide perfect rounds on top of fair-lossy executions. The
presented retransmission scheme is based on the α-synchronizer introduced by Awerbuch [3] together
with correctness proofs for asynchronous (non-faulty) communication networks of arbitrary structure.
However, since Awerbuch did not assume a probability distribution on the message receptions, only
trivial bounds on the performance could be stated. Rajsbaum and Sidi [6] extended Awerbuch’s analysis
by assuming message delays to be negligible, and a process i’s processing time to be distributed. They
consider (1) the general case as well as (2) exponential distribution, and derive performance bounds for
(1) and exact values for (2). In terms of our model their assumption translates to assuming maximum
positive correlation between message delays: For each (sender) process j and round r, δj,i(r) = δj,i′(r)
for any two (receiver) processes i, i′. They then generalize their approach to the case where δj,i(r) com-
prises a dependent (the processing time) and an independent part (the message delay), and show how to
adapt the performance bounds for this case. However, only bounds and no exact performance values are
derived for this case. Rajsbaum [16] presented bounds for the case of identical exponential distribution
of transmission delays and processing times. Bertsekas and Tsitsiklis [17] state bounds for the case of
constant processing times and independently, exponentially distributed message delays. However, again,
no exact performance values were derived.

Our model comprises negligible processing times and transmission faults, which result in a discrete
distribution of the effective transmission delays δj,i(r). Interestingly, with one sole exception [9] which
considers the case of a 2-processor system only, we did not find any published results on exact values of
the expected round durations in this case. The nontriviality of this problem is indicated by the fact that
finding the expected round duration is equivalent to finding the exact value of the Lyapunov exponent
of a nontrivial stochastic max-plus system [18], which is known to be a hard problem (e.g., [19]). In
particular, our results can be translated into novel results on stochastic max-plus systems.

7. Conclusion

In this paper, we considered a retransmission-based algorithm that simulates a perfect round structure
on top of a system with probabilistic message loss: Every message has probability p to arrive at its
destination.

We devised a method, based on Markov theory, for calculating the exact value of a process i’s expected
round duration λ = E limr→∞ Ti(r)/r, which was only known for a distributed system of size N = 2 until
now. The running time of our method is polynomial in N , the number of processes. We further showed
that Ti(r)/r converges to λ with probability 1 and presented analytical bounds on the convergence speed.

While this approach is applicable to finite M only, simulations suggest that distributed systems with
small values ofM already yield very good approximations (with respect to the expected round duration)
of the distributed system in which the number of retransmissions until a message is correctly received is
not bounded.

A direct application of our results is that the computed expected round durations correspond to
a lower bound on the expected rate of time-optimal algorithms that solve state-machine replication
[20, 21, 22, 8] in the probabilistic systems under consideration; for a single perfect round of A(B) suffices
to solve distributed consensus.

16

Acknowledgments

The authors would like to thank Martin Biely, Ulrich Schmid, and Martin Zeiner for helpful discus-
sions.

References

[1] N.A. Lynch, Distributed Algorithms, Morgan Kaufmann, San Francisco, 1996.

[2] H. Attiya, J. Welch, Distributed Computing: Fundamentals, Simulations, and Advanced Topics,
second ed., John Wiley & Sons, Chichester, 2004.

[3] B. Awerbuch, Complexity of network synchronization, J. ACM 32 (1985) 804–823.

[4] O. Bakr, I. Keidar, Evaluating the running time of a communication round over the Internet, in:
21st Annual ACM Symposium on Principles of Distributed Computing (PODC), ACM, New York,
2002.

[5] B. Charron-Bost, A. Schiper, The heard-of model: computing in distributed systems with benign
faults, Distrib. Comput. 22 (2009) 49–71.

[6] S. Rajsbaum, M. Sidi, On the performance of synchronized programs in distributed networks with
random processing times and transmission delays, IEEE T. Parall. Distr. 5 (1994) 939–950.

[7] L. Lamport, R. Shostak, M. Pease, The Byzantine generals problem, ACM T. Progr. Lang. Sys. 4
(1982) 382–401.

[8] F.B. Schneider, Implementing fault-tolerant services using the state machine approach: a tutorial,
ACM Comput. Surv. 22 (1990) 299–319.

[9] J.A.C. Resing, R.E. de Vries, G. Hooghiemstra, M.S. Keane, G.J. Olsder, Asymptotic behavior of
random discrete event systems, Stochastic Process. Appl. 36 (1990) 195–216.

[10] T. Nowak, M. Függer, A. Kößler, On the performance of a retransmission-based synchronizer, in:
A. Kosowski, M. Yamashita (Eds.), 18th International Colloquium on Structural Information and
Communication Complexity (SIROCCO), LNCS 6796, Springer, Heidelberg, 2011, pp. 234–245.

[11] C. Dwork, N. Lynch, L. Stockmeyer, Consensus in the presence of partial synchrony, J. ACM 35
(1988) 288–323.

[12] S. Meyn, R.L. Tweedie, Markov Chains and Stochastic Stability, Springer, Heidelberg, 1993.

[13] G. Neiger, S. Toueg, Automatically increasing the fault-tolerance of distributed algorithms, J. Al-
gorithm. 11 (1990) 374–419.

[14] M. Ben-Or, Another advantage of free choice: completely asynchronous agreement protocols, in:
2nd Annual ACM Symposium on Principles of Distributed Computing (PODC), ACM, New York,
1983.

[15] G. Bracha, S. Toueg, Asynchronous consensus and broadcast protocols, J. ACM 32 (1985) 824–840.

[16] S. Rajsbaum, Upper and lower bounds for stochastic marked graphs, Inform. Process. Lett. 49
(1994) 291–295.

[17] D.P. Bertsekas, J.N. Tsitsiklis, Parallel and Distributed Computation: Numerical Methods, Prentice
Hall, Englewood Cliffs, 1989.

[18] B. Heidergott, Max-Plus Linear Stochastic Systems and Perturbation Analysis, Springer, Heidelberg,
2006.

[19] F. Baccelli, D. Hong, Analytic expansions of max-plus Lyapunov exponents, Ann. Appl. Probab. 10
(2000) 779–827.

[20] B. Charron-Bost, F. Pedone, A. Schiper (Eds.), Replication: Theory and Practice, LNCS 5959,
Springer, Heidelberg, 2010.

17

[21] L. Lamport, The implementation of reliable distributed multiprocess systems, Comput. Netw. 2
(1978) 95–114.

[22] B.W. Lampson, How to build a highly available system using consensus, in: Ö. Babaoglu,
K. Marzullo (Eds.), 10th International Workshop on Distributed Algorithms (WDAG), LNCS 1151,
Springer, Heidelberg, 1996, pp. 1–17.

Appendix A. Markov Chain Facts

A Markov chain is a stochastic process, i.e., a sequence
(
X(r)

)
r>0

of random variables, such that

the value of X(r) does not depend on the value of the full history
(
X(0), X(1), . . . , X(r − 1)

)
, but only

on the value of X(r − 1); more formally, X(r)’s conditional probability distribution for fixed values of(
X(0), . . . , X(r− 1)

)
is the same as for the sole fixed value X(r− 1). Given the set X of possible values

for X(r) (its state space) and a distribution for X(0), the Markov chain
(
X(r)

)
is fully determined once

we fix a transition probability distribution P , i.e., a collection (PX)X∈X of probability distributions on
X .

Let X(r) be a Markov chain with state space X . We say that X(r) is aperiodic if, for every X ∈ X ,
the integers in the set

{
r : P

(
X(r) = X | X(0) = X

)
> 0

}
are relatively prime. We say that X(r) is

irreducible if for all X,Y ∈ X , there exists an r such that P
(
X(r) = Y | X(0) = X

)
> 0. We say that

X(r) is Harris recurrent if, for every X ∈ X , we have P
(
X(r) = X for infinitely many r

)
= 1.

Theorem A.1. Let X(r) be good Markov chain with state space X and stationary distribution π. Fur-
ther, let g : X → R be a function such that

∑
X∈X |g(X)| · π(X) <∞. Then,

lim
r→∞

1

r

r∑

k=1

g
(
X(k)

)
=

∑

X∈X

g(X) · π(X)

with probability 1 for every initial distribution.

Proof. [12, Theorem 17.0.1(i)]

Theorem A.2. Let X(r) be a good Markov chain with finite state space X and stationary distribution
π. Then there exists some ρ, 0 < ρ < 1, such that for all X ∈ X :

P
(
X(r) = X

)
= π(X) +O (ρr)

as r →∞.

Proof. [12, Theorem 13.0.1(i)], [12, Theorem 16.0.2(iii)]

18

