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Parabolic Morrey spaces and mild solutions to

Navier–Stokes equations.

An interesting answer through a silly method to a stupid question.

Pierre Gilles Lemarié–Rieusset∗

Abstract

We present a theory of mild solutions for the Navier–Stokes equa-
tions in a (maximal) lattice Banach space.

Keywords : Morrey spaces; Navier–Stokes equations; mild solu-
tions; non-negative kernels.
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1 The stupid question.

Our question concerns the search of mild solutions for the Navier–Stokes
problem. More precisely, let us consider the following Cauchy initial value
problem for the Navier–Stokes equations on the whole space and with no
external forces (and with viscosity taken equal to 1) :











∂t~u = ∆~u− (~u.~∇)~u− ~∇p

~u(0, x) = ~u0(x)

div~u = 0

(1)

When looking for a mild solution, one rewrites the problem as a fixed
point problem of an integro–differential transform

~u = et∆~u0 − B(~u, ~u) (2)
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where the bilinear transform B is defined as

B(~u,~v) =

∫ t

0

e(t−s)∆
O(~u(s, .)⊗ ~v(s, .)) ds. (3)

O is the Oseen operator mapping matrix functions F = (Fij) to vector func-

tions ~H = (Hk) through the formula

Hk =
∑

i,j

OijkFij =
∑

i,j

(δj,k∂i −
1

∆
∂i∂j∂k)Fi,j (4)

Mild solutions are then searched through Picard’s iterative scheme : start-
ing from ~U0(t, x) = et∆~u0 and defining ~Un+1 = ~U0−B(~Un, ~Un), check whether

the sequence ~Un converges to a limit ~u.
Our (stupid) question is then the following one :

Question 1
Which is the largest space X such that ‖~u0‖X small enough implies that ~Un

converge to a global mild solution?

To the unaware reader, the question might appear as sensible. However,
it is a stupid question nowadays, since the answers has been known for fifteen
years (Koch–Tataru theorem (2001) [6]) :

X = BMO−1.

If we would like to alleviate the suspicion that we are dealing with some
uninteresting problem, one may consider the same problem for the general-
ized Navier–Stokes problem where we replace the Laplacian operator by a
fractional Laplacian operator :











∂t~u = −(−∆)α/2~u− (~u.~∇)~u− ~∇p

~u(0, x) = ~u0(x)

div~u = 0

(5)

where 1 < α
The answer to the question is then :

• α = 2 : X = BMO−1 [based on integration by parts]

• 1 < α < 2 : X = Ḃ1−α
∞,∞ [no need to integrate by parts]

• α > 2 : unknown (at least, to me) [integration by parts does not work]

2



2 The silly method.

Now, in order to try and provide an answer to Question 1, we are going to
introduce a method that clearly cannot provide optimal answers (this is why
I shall call it a silly method).

Let us recall that we have transformed the differential equation (1) into
an (integro-)differential equation (2). Let K(t, x) be the integral kernel of
the operator matrix et∆O, so that the equation to be solved reads as

~u = et∆~u0 +

∫ t

0

∫

K(t− s, x− y)(~u(s, y)⊗ ~u(s, y)) dy ds. (6)

As it is an integral equation, we want to use basic tools of integration such
as Fatou’s lemma, monotone convergence or dominated convergence. This is
much easier when the integrand is nonnegative. Thus, we shall replace the
equation (6) by a superequation :

U(t, x) = |et∆~u0|+

∫ t

0

∫

|K(t− s, x− y)|U2(s, y)) dy ds. (7)

While we gain on simplicity for the integral term to be dealt with, we
definitely loose the main tool we have to control the solutions of the Navier–
Stokes equations : we destroy any hope to use the dissipation expressed by
the Leray energy inequality.

However, nonnegativity of the kernel is good, but we could have better :
symmetry. Thus, we shall use a further generalization of the equation, and
consider the equation :

U(t, x) = 1t>0|e
t∆~u0|+

∫ s=+∞

s=−∞

∫

|K(|t− s|, x− y)|U2(s, y)) dy ds. (8)

The last bold step toward simplification will be to replace the kernel K
by a simpler kernel. A well-known estimate states that we have

|K(t, x)| ≤ C0
1

t2 + |x|4
(9)

for some positive constant C0. The equation we shall consider is then

U(t, x) = 1t>0|e
t∆~u0|+ C0

∫

R

∫

1

(t− s)2 + |x− y|4
U2(s, y)) dy ds. (10)

More precisely, if W0(t, x) is defined on R× R
3 is such that the iterative

sequence defined by induction from W0 through

Wn+1(t, x) = W0(t, x) + C0

∫

R

∫

1

(t− s)2 + |x− y|4
W 2

n(s, y)) dy ds (11)
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satisfies
sup
n∈N

Wn(t, x) < ∞ a.e. (12)

on R× R
3 then we have the following consequences :

• W (t, x) = supn∈N Wn(t, x) is a locally integrable function which satisfies

W (t, x) = W0(t, x) + C0

∫

R

∫

1

(t− s)2 + |x− y|4
W 2(s, y) dy ds. (13)

• if 1t>0|e
t∆~u0| ≤ W0(t, x), ~U0 = 1t>0e

t∆~u0 and ~Un+1 = ~U0−1t>0B(~Un, ~Un)
then we have

|~t~Un+1(t, x)− ~Un(t, x)| ≤ Wn+1(t, x)−Wn(t, x) (14)

so that

|~U0(t, x)|+
∑

n∈N

|~Un+1(t, x)− ~Un(t, x)| ≤ W (t, x) (15)

so that we find a mild solution ~u of equation (2).
Thus, we are lead to study the following questions :

Question 2
For which functions W0 ≥ 0 can we say that, for ǫ > 0 small enough, we
have a solution to the integral equation (13) for ǫW0

Wǫ = ǫW0 +

∫

R

∫

R3

C0

(t− s)2 + |x− y|4
W 2

ǫ (s, y) ds dy?

Question 3
For which spaces of good initial values for the Navier–Stokes equations can
we say that W0(t, x) = 1t>0|e

t,∆~u0| will satisfy Question 2?

More precisely, how much did we loose by changing Question 1 into Ques-
tion 2?

3 Elliptic intermezzo.

Before considering Question 2, we recall some basic facts involving integral
equations with symmetric non-negative kernels [7].
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We thus look at the general integral equation

f(x) = f0(x) +

∫

X

K(x, y)f 2(y) dµ(y) (16)

where µ is a non-negative σ-finite measure on a space X (X = ∪nNYn with
µ(Yn) < +∞), and K is a positive measurable function on X×X : K(x, y) >
0 almost everywhere. We shall make a stronger assumption on K : there
exists a sequence Xn of measurable subsets of X such that X = ∪n∈NXn and

∫

Xn

∫

Xn

dµ(x) dµ(y)

K(x, y)
< +∞. (17)

Obviously, if f0 is non-negative and f is an (almost everywhere finite) non-
negative measurable solution of equation (16), then we have 0 ≤ f0 ≤ f
and

∫

X

K(x, y)f 2(y) dµ(y) ≤ f(x) a.e..

Conversely, if 0 ≤ f0 < 1
4
Ω, with

∫

X
K(x, y)Ω2(y) dµ(y) ≤ Ω(x) a.e., then

there exists an (almost everywhere finite) non-negative measurable solution
of equation (16).

This gives the space where to search for solutions of equation (16) :

Proposition 1
Let EK be the space of measurable functions f on X such that there exists
λ ≥ 0 and a measurable non-negative function Ω such that |f(x)| ≤ λΩ
almost everywhere and

∫

X
K(x, y)Ω2(y) dµ(y) ≤ Ω(x) a.e.. Then :

• EK is a linear space

• ‖f‖K = inf{λ / ∃Ω ≥ 0 |f | ≤ λΩ and
∫

X
K(x, y)Ω2(y) dµ(y) ≤

Ω(x) a.e.} is a semi-norm on EK

• ‖f‖K = 0 ⇔ f = 0 almost everywhere

• The normed linear space EK (obtained from EK by quotienting with the
relationship f ∼ g ⇔ f = g a.e.) is a Banach space.

• If f0 ∈ EK is non-negative and satisfies ‖f0‖K < 1
4
, then equation (16)

has a non-negative solution f ∈ EK.

Our first example will be the elliptic non-linear equation on R
d (d ≥ 3)

−∆u = (−∆)1/2u2 −∆V
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This can be rewritten as
u = V + I1(u

2) (18)

where the Riesz potential I1 is given by

I1f(x) =
1

(−∆)1/2
f(x) =

∫

Rd

C1

|x− y|d−1
f(y) dy.

The answer to Question 2 for equation (18) is well known [9] :

Theorem 1 (Maz’ya and Verbitsky 1995)
Let V ≥ 0. Then the following assertions are equivalent :

1. for ǫ > 0 small enough, we have a solution to the equation uǫ = ǫV +
I1(u

2
ǫ)

2. V satisfies the inequality :

∃C ≥ 0 ∀f ∈ L2

∫

Rd

V 2(x)(I1f(x))
2 dx ≤ C

∫

Rd

f 2(x) dx

3. V is a multiplier from the homogeneous Sobolev space Ḣ1 to L2 :

∃C ≥ 0 ∀f ∈ Ḣ1

∫

Rd

V 2(x)f 2(x) dx ≤ C

∫

Rd

|~∇f(x)|2 dx

Thus, we can see that the answer to Question 2 is far from being obvious.
The maximal functional space where to look for solutions is no classical space,
it is the space of singular multipliers V = M(Ḣ1 7→ L2) from Ḣ1 to L2.

If we want to deal with some more amenable spaces, one can use the
Fefferman–Phong inequality [3] that relates the multiplier space to Morrey
spaces. For 1 < p ≤ q < +∞, let us define the (homogeneous) Mor-
rey space Ṁp,q in the following way : f ∈ Ṁp,q (1 < p ≤ q < +∞) if

supR>0,x∈Rd R
d( p

q
−1)

∫

|x−y|<R
|f(y)|p dy < +∞. Then we have :

Theorem 2 (Fefferman–Phong 1983)
For 2 < p ≤ d, we have

Ṁp,d ⊂ V ⊂ Ṁ2,d

Maz’ya and Verbitsky(s theorem has been generalized to spaces of homo-
geneous type by Kalton and Verbitsky [4] :
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Theorem 3 (Kalton and Verbitsky 1999)
Let (X, δ, µ) be a space of homogeneous type :

• for all x, y ∈ X, δ(x, y) ≥ 0

• δ(x, y) = δ(y, x)

• δ(x, y) = 0 ⇔ x = y

• there is a positive constant κ such that :

for all x, y, z ∈ X, δ(x, y) ≤ κ(δ(x, z) + δ(z, y)) (19)

• there exists postive A, B and Q which satisfy :

for all x ∈ X, for all r > 0, ArQ ≤

∫

δ(x,y)<r

dµ(y) ≤ BrQ (20)

Let

Kα(x, y) =
1

δ(x, y)Q−α
(21)

(where 0 < α < Q/2) and EKα
the associated Banach space (defined in

Proposition 1). Let Iα be the Riesz operator asociated Kα :

Iαf(x) =

∫

X

Kα(x, y)f(y) dµ(y). (22)

We define two further linear spaces associated to Kα :

• the Sobolev space W α defined by

g ∈ Wα ⇔ ∃h ∈ L2 g = Iαh (23)

• the multiplier space Vα defined by

f ∈ Vα ⇔ ‖f‖Vα =
(

sup
‖h‖2≤1

∫

X

|f(x)|2|Iαh(x)|
2 dµ(x)

)1/2
< +∞ (24)

(so that pointwise multiplication by a function in Vα maps boundedly
Wα to L2).

Then we have (with equivalence of norms) for 0 < α < Q/2 :

EKα
= Vα. (25)
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4 Where we export our parabolic equations

to the land of elliptic equations.

Theorem 3 thus gives us the answer to our question 2. Recall that we have
tranformed the “parabolic” Navier-Stokes equation (2)

~u = et∆~u0 − B(~u, ~u)

into the “elliptic” equation (13

W (t, x) = W0(t, x) + C0

∫

R

∫

1

(t− s)2 + |x− y|4
W 2(s, y) dy dx.

which we interpret as
W = W0 + J1(W

2) (26)

where J1 is a generalized Riesz potential on the (parabolic) space of homo-
geneous type R× R

3 :

• quasi-norm : ρ(t, x) = (t2 + |x|4)1/4

• dimension :
∫∫

B((t,x),R)
ds dy = cR5

• Riesz potential :

J1f(t, x) =

∫∫

R×R3

C0

ρ(t− s, x− y)5−1
f(s, y) ds dy

Answer to Question 2 is then the following one [7] :

Theorem 4
Let W0 ≥ 0. Then the following assertions are equivalent :

1. for ǫ > 0 small enough, we have a solution to the equation uǫ = ǫW0 +
J1(u

2
ǫ)

2. W0 satisfies the inequality :
∫∫

R×R3

W 2
0 (t, x)(J1f(t, x))

2 dt dx ≤ C

∫∫

R×R3

f 2(t, x) dt dx

3. W0 is a multiplier from the Sobolev space Ḣ
1

2
,1

t,x to L2 :
∫∫

R×R3

W 2
0 (t, x)f

2(t, x) dt dx ≤ C

∫∫

R×R3

|Λf(t, x)|2 dt dx

where Λ = (−∂2
t )

1/4 + (−∆x)
1/2.
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5 Parabolic Morrey spaces and Triebel–Lizorkin-

Morrey spaces, and other examples.

Obviously, we have a formal answer to our Question 3 : the good space for
initial value should be the space of (divergence-free) vector fields such that

1t>0|e
t,∆~u0| is a multiplier from the Sobolev space Ḣ

1

2
,1

t,x to L2. The problem
is that this space is clearly not a classical space of functional analysis, so
that, in a way, our answer is tautological : an initial value is good if it is a
good initial value, whatever it actually means . . .

If we want to get a better insight into what would be a good initial value,
we may use a variant of the Fefferman–Phong inequality. We are thus going
to compare our space of singular multipliers

W = M(Ḣ
1

2
,1

t,x 7→ L2)

to parabolic Morrey spaces Ṁp,q(R× R
3) (1 < p ≤ q < +∞) :

f ∈ Ṁp,q(R×R
3) ⇔ sup

R>0,(t,x)∈R×R3

R5( p
q
−1)

∫

ρ(t−s,x−y)<R

|f(s, y)|p ds dy < +∞

Theorem 5
For 2 < p ≤ 5, we have

Ṁp,5(R× R
3) ⊂ W ⊂ Ṁ2,5(R× R

3)

Then, a better (but partial) answer to our Question 3 would be to find
a Banach space Y of measurable functions on R × R

3 such that Y ⊂ W
and to characterize the associated (maximal) Banach space X such that
‖1t>0|e

t,∆~u0|‖Y ≤ C‖~u0‖X
We may state some classical results in Navier–Stokes theory and check

how we may easily show that they obey to our formalism :

• the solutions of Fabes, Jones and Rivière [2] belong to the space Y =
Lp
tL

q
x with 2

p
+ 3

q
= 1 and 3 ≤ q < +∞; we have Y ⊂ Ṁmin(p,q),5(R ×

R
3) ⊂ W ; the associated space is the Besov space X = Ḃ

− 2

p
q,p

• let us consider the limit case p = +∞ and q = 3 : the solutions of Kato
[5] belong to the space Y = L∞

t L3
x; we have Y ⊂ Ṁ3,5(R × R

3) ⊂ W
and the associated space is X = L3
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• we may change the order of integration with respect to time and space.
The space Y = Lq

xL
p
t with 2

p
+ 3

q
= 1 and 3 ≤ q < +∞ will satisfy

Y ⊂ Ṁmin(p,q),5(R× R
3) ⊂ W and the associated space is the Triebel–

Lizorkin space X = Ḟ
− 2

p
q,p

• in the limit case p = +∞ and q = 3, we find the solutions of Calderón [1]
that belong to the space Y = L3

xL
∞
t ; we have L3

xL
∞
t ⊂ Ṁ3,5(R×R

3) ⊂
W and the associated space is X = L3

Further examples are discussed in [7] and [8]. Of course, one should be
interested to understand as much as possible which space X corresponds to
the (strange) space Y = W . A close approach should be the investigation of
the parabolic Morrey spaces. In this case, one recover some already known
spaces :

• We have W ⊂ Ṁ2,5(R × R
3). It is worth noticing that the associated

Banach space to Y = Ṁ2,5(R×R
3) is just the Koch and Tararu space

X = BMO−1 [6].

• On the other hand, we have Ṁp,5(R× R
3) ⊂ W when 2 < p ≤ 5. The

associated Banach space to Y = Ṁp,5(R × R
3) (2 < p ≤ 5) belongs

to the scale of Triebel–Lizorkin–Morrey spaces studied by Sickel, Yang

and Yuan [10] : X = Ḟ
− 2

p
, 1
p
− 1

q
p,p with 2

p
+ 3

q
= 1. It might be the first

“natural” setting where those spaces appear.

References

[1] Calixto Calderón. Initial values of Navier–Stokes equations. Proc.
A.M.S., 117:761–766., 1993.

[2] Eugene Fabes, B. Frank Jones, and Nestor Rivière. The initial value
problem for the Navier–Stokes equations with data in lp. Arch. Rat.
Mech. Anal., 45:222–240, 1972.

[3] Charles Fefferman. The uncertainty principle. Bull. Amer. Math. Soc.,
9:129–206, 1983.

[4] Nigel Kalton and Igor Verbitsky. Nonlinear equations and weighted
norm inequalities. Trans. Amer. Math. Soc., 351:3441–3497, 1999.

[5] Tosio Kato. Strong Lp solutions of the Navier–Stokes equations in R
m

with applications to weak solutions. Math. Zeit., 187:471–480, 1984.

10



[6] Herbert Koch and Daniel Tataru. Well-posedness for the Navier–Stokes
equations. Advances in Math., 157:22–35, 2001.
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