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Parabolic Morrey spaces and

1 The stupid question.

Our question concerns the search of mild solutions for the Navier-Stokes problem. More precisely, let us consider the following Cauchy initial value problem for the Navier-Stokes equations on the whole space and with no external forces (and with viscosity taken equal to 1) :

     ∂ t u = ∆ u -( u. ∇) u -∇p u(0, x) = u 0 (x) div u = 0 (1) 
When looking for a mild solution, one rewrites the problem as a fixed point problem of an integro-differential transform u = e t∆ u 0 -B( u, u)

where the bilinear transform B is defined as

B( u, v) = t 0
e (t-s)∆ O( u(s, .) ⊗ v(s, .)) ds.

O is the Oseen operator mapping matrix functions F = (F ij ) to vector functions H = (H k ) through the formula

H k = i,j O ijk F ij = i,j (δ j,k ∂ i - 1 ∆ ∂ i ∂ j ∂ k )F i,j (4) 
Mild solutions are then searched through Picard's iterative scheme : starting from U 0 (t, x) = e t∆ u 0 and defining U n+1 = U 0 -B( U n , U n ), check whether the sequence U n converges to a limit u.

Our (stupid) question is then the following one :

Question 1
Which is the largest space X such that u 0 X small enough implies that U n converge to a global mild solution?

To the unaware reader, the question might appear as sensible. However, it is a stupid question nowadays, since the answers has been known for fifteen years (Koch-Tataru theorem (2001) [START_REF] Koch | Well-posedness for the Navier-Stokes equations[END_REF]) :

X = BMO -1 .
If we would like to alleviate the suspicion that we are dealing with some uninteresting problem, one may consider the same problem for the generalized Navier-Stokes problem where we replace the Laplacian operator by a fractional Laplacian operator :

     ∂ t u = -(-∆) α/2 u -( u. ∇) u -∇p u(0, x) = u 0 (x) div u = 0 (5)
where 1 < α

The answer to the question is then : 2 The silly method. Now, in order to try and provide an answer to Question 1, we are going to introduce a method that clearly cannot provide optimal answers (this is why I shall call it a silly method).

• α = 2 : X = BMO -1 [based on integration by parts] • 1 < α < 2 : X = Ḃ1-α ∞,
Let us recall that we have transformed the differential equation ( 1) into an (integro-)differential equation [START_REF] Fabes | The initial value problem for the Navier-Stokes equations with data in l p[END_REF]. Let K(t, x) be the integral kernel of the operator matrix e t∆ O, so that the equation to be solved reads as

u = e t∆ u 0 + t 0 K(t -s, x -y)( u(s, y) ⊗ u(s, y)) dy ds. ( 6 
)
As it is an integral equation, we want to use basic tools of integration such as Fatou's lemma, monotone convergence or dominated convergence. This is much easier when the integrand is nonnegative. Thus, we shall replace the equation ( 6) by a superequation :

U (t, x) = |e t∆ u 0 | + t 0 |K(t -s, x -y)| U 2 (s, y)) dy ds. (7) 
While we gain on simplicity for the integral term to be dealt with, we definitely loose the main tool we have to control the solutions of the Navier-Stokes equations : we destroy any hope to use the dissipation expressed by the Leray energy inequality.

However, nonnegativity of the kernel is good, but we could have better : symmetry. Thus, we shall use a further generalization of the equation, and consider the equation :

U (t, x) = 1 t>0 |e t∆ u 0 | + s=+∞ s=-∞ |K(|t -s|, x -y)| U 2 (s, y)) dy ds. (8)
The last bold step toward simplification will be to replace the kernel K by a simpler kernel. A well-known estimate states that we have

|K(t, x)| ≤ C 0 1 t 2 + |x| 4 (9) 
for some positive constant C 0 . The equation we shall consider is then

U (t, x) = 1 t>0 |e t∆ u 0 | + C 0 R 1 (t -s) 2 + |x -y| 4 U 2 (s, y)) dy ds. (10) More precisely, if W 0 (t, x) is defined on R × R 3 is such that the iterative sequence defined by induction from W 0 through W n+1 (t, x) = W 0 (t, x) + C 0 R 1 (t -s) 2 + |x -y| 4 W 2 n (s, y)) dy ds (11) satisfies sup n∈N W n (t, x) < ∞ a.e. ( 12 
)
on R × R3 then we have the following consequences :

• W (t, x) = sup n∈N W n (t, x
) is a locally integrable function which satisfies

W (t, x) = W 0 (t, x) + C 0 R 1 (t -s) 2 + |x -y| 4 W 2 (s, y) dy ds. (13) • if 1 t>0 |e t∆ u 0 | ≤ W 0 (t, x), U 0 = 1 t>0 e t∆ u 0 and U n+1 = U 0 -1 t>0 B( U n , U n ) then we have | t U n+1 (t, x) -U n (t, x)| ≤ W n+1 (t, x) -W n (t, x) (14) 
so that

| U 0 (t, x)| + n∈N | U n+1 (t, x) -U n (t, x)| ≤ W (t, x) (15) 
so that we find a mild solution u of equation [START_REF] Fabes | The initial value problem for the Navier-Stokes equations with data in l p[END_REF]. Thus, we are lead to study the following questions :

Question 2

For which functions W 0 ≥ 0 can we say that, for ǫ > 0 small enough, we have a solution to the integral equation ( 13) for ǫW 0

W ǫ = ǫW 0 + R R 3 C 0 (t -s) 2 + |x -y| 4 W 2
ǫ (s, y) ds dy?

Question 3

For which spaces of good initial values for the Navier-Stokes equations can we say that W 0 (t, x) = 1 t>0 |e t,∆ u 0 | will satisfy Question 2?

More precisely, how much did we loose by changing Question 1 into Question 2?

We thus look at the general integral equation

f (x) = f 0 (x) + X K(x, y)f 2 (y) dµ(y) ( 16 
)
where µ is a non-negative σ-finite measure on a space X (X = ∪ nN Y n with µ(Y n ) < +∞), and K is a positive measurable function on X ×X : K(x, y) > 0 almost everywhere. We shall make a stronger assumption on K : there exists a sequence X n of measurable subsets of X such that X = ∪ n∈N X n and

Xn Xn dµ(x) dµ(y) K(x, y) < +∞. ( 17 
)
Obviously, if f 0 is non-negative and f is an (almost everywhere finite) nonnegative measurable solution of equation ( 16), then we have 0 ≤ f 0 ≤ f and

X K(x, y)f 2 (y) dµ(y) ≤ f (x) a.e.. Conversely, if 0 ≤ f 0 < 1 4 Ω, with X K(x, y)Ω 2 (y) dµ(y) ≤ Ω(x)
a.e., then there exists an (almost everywhere finite) non-negative measurable solution of equation ( 16).

This gives the space where to search for solutions of equation ( 16) :

Proposition 1 Let E K be the space of measurable functions f on X such that there exists λ ≥ 0 and a measurable non-negative function Ω such that |f (x)| ≤ λΩ almost everywhere and X K(x, y)Ω 2 (y) dµ(y) ≤ Ω(x) a.e.. Then :

• E K is a linear space • f K = inf{λ / ∃Ω ≥ 0 |f | ≤ λΩ and X K(x, y)Ω 2 (y) dµ(y) ≤ Ω(x) a.e.} is a semi-norm on E K • f K = 0 ⇔ f = 0 almost everywhere
• The normed linear space E K (obtained from E K by quotienting with the relationship f ∼ g ⇔ f = g a.e.) is a Banach space.

• If f 0 ∈ E K is non-negative and satisfies f 0 K < 1 4 , then equation ( 16) has a non-negative solution f ∈ E K .

Our first example will be the elliptic non-linear equation on R d (d ≥ 3)

-∆u = (-∆) 1/2 u 2 -∆V
This can be rewritten as

u = V + I 1 (u 2 ) ( 18 
)
where the Riesz potential I 1 is given by

I 1 f (x) = 1 (-∆) 1/2 f (x) = R d C 1 |x -y| d-1 f (y) dy.
The answer to Question 2 for equation ( 18) is well known [START_REF] Maz | Capacitary inequalities for fractional integrals, with applications to partial differential equations and Sobolev multipliers[END_REF] : Theorem 1 (Maz'ya and Verbitsky 1995) Let V ≥ 0. Then the following assertions are equivalent :

1. for ǫ > 0 small enough, we have a solution to the equation

u ǫ = ǫV + I 1 (u 2 ǫ )
2. V satisfies the inequality :

∃C ≥ 0 ∀f ∈ L 2 R d V 2 (x)(I 1 f (x)) 2 dx ≤ C R d f 2 (x) dx 3.
V is a multiplier from the homogeneous Sobolev space Ḣ1 to L 2 :

∃C ≥ 0 ∀f ∈ Ḣ1 R d V 2 (x)f 2 (x) dx ≤ C R d | ∇f (x)| 2 dx
Thus, we can see that the answer to Question 2 is far from being obvious. The maximal functional space where to look for solutions is no classical space, it is the space of singular multipliers V = M( Ḣ1 → L 2 ) from Ḣ1 to L 2 .

If we want to deal with some more amenable spaces, one can use the Fefferman-Phong inequality [START_REF] Fefferman | The uncertainty principle[END_REF] that relates the multiplier space to Morrey spaces. For 1 < p ≤ q < +∞, let us define the (homogeneous) Morrey space Ṁ p,q in the following way :

f ∈ Ṁ p,q (1 < p ≤ q < +∞) if sup R>0,x∈R d R d( p q -1)
|x-y|<R |f (y)| p dy < +∞. Then we have :

Theorem 2 (Fefferman-Phong 1983) For 2 < p ≤ d, we have Ṁ p,d ⊂ V ⊂ Ṁ 2,d
Maz'ya and Verbitsky(s theorem has been generalized to spaces of homogeneous type by Kalton and Verbitsky [START_REF] Kalton | Nonlinear equations and weighted norm inequalities[END_REF] : Theorem 3 (Kalton and Verbitsky 1999) Let (X, δ, µ) be a space of homogeneous type :

• for all x, y ∈ X, δ(x, y) ≥ 0

• δ(x, y) = δ(y, x) • δ(x, y) = 0 ⇔ x = y
• there is a positive constant κ such that : for all x, y, z ∈ X, δ(x, y) ≤ κ(δ(x, z) + δ(z, y))

• there exists postive A, B and Q which satisfy : for all x ∈ X, for all r > 0,

Ar Q ≤ δ(x,y)<r dµ(y) ≤ Br Q (20) Let K α (x, y) = 1 δ(x, y) Q-α (21) 
(where 0 < α < Q/2) and E Kα the associated Banach space (defined in Proposition 1). Let I α be the Riesz operator asociated K α :

I α f (x) = X K α (x, y)f (y) dµ(y). ( 22 
)
We define two further linear spaces associated to K α :

• the Sobolev space W α defined by

g ∈ W α ⇔ ∃h ∈ L 2 g = I α h (23) 
• the multiplier space V α defined by

f ∈ V α ⇔ f V α = sup h 2 ≤1 X |f (x)| 2 |I α h(x)| 2 dµ(x) 1/2 < +∞ (24)
(so that pointwise multiplication by a function in V α maps boundedly

W α to L 2 ).
Then we have (with equivalence of norms) for 0 < α < Q/2 :

E Kα = V α . ( 25 
)
4 Where we export our parabolic equations to the land of elliptic equations.

Theorem 3 thus gives us the answer to our question 2. Recall that we have tranformed the "parabolic" Navier-Stokes equation ( 2)

u = e t∆ u 0 -B( u, u)
into the "elliptic" equation (13

W (t, x) = W 0 (t, x) + C 0 R 1 (t -s) 2 + |x -y| 4 W 2 (s, y) dy dx.
which we interpret as

W = W 0 + J 1 (W 2 ) ( 26 
)
where J 1 is a generalized Riesz potential on the (parabolic) space of homogeneous type R × R 3 :

• quasi-norm : ρ(t, x) = (t 2 + |x| 4 ) 1/4
• dimension : B((t,x),R) ds dy = cR 5

• Riesz potential :

J 1 f (t, x) = R×R 3
C 0 ρ(t -s, x -y) 5-1 f (s, y) ds dy Answer to Question 2 is then the following one [START_REF] Gilles | Sobolev multipliers, maximal functions and parabolic equations with a quadratic nonlinearity[END_REF] :

Theorem 4 Let W 0 ≥ 0.
Then the following assertions are equivalent :

1. for ǫ > 0 small enough, we have a solution to the equation u ǫ = ǫW 0 + J 1 (u 2 ǫ ) 2. W 0 satisfies the inequality :

R×R 3 W 2 0 (t, x)(J 1 f (t, x)) 2 dt dx ≤ C R×R 3 f 2 (t, x) dt dx 3. W 0 is a multiplier from the Sobolev space Ḣ 1 2 ,1 t,x to L 2 : R×R 3 W 2 0 (t, x)f 2 (t, x) dt dx ≤ C R×R 3 |Λf (t, x)| 2 dt dx where Λ = (-∂ 2 t ) 1/4 + (-∆ x ) 1/2 .
5 Parabolic Morrey spaces and Triebel-Lizorkin-Morrey spaces, and other examples.

Obviously, we have a formal answer to our Question 3 : the good space for initial value should be the space of (divergence-free) vector fields such that

1 t>0 |e t,∆ u 0 | is a multiplier from the Sobolev space Ḣ 1 2 ,1 t,x to L 2 .
The problem is that this space is clearly not a classical space of functional analysis, so that, in a way, our answer is tautological : an initial value is good if it is a good initial value, whatever it actually means . . .

If we want to get a better insight into what would be a good initial value, we may use a variant of the Fefferman-Phong inequality. We are thus going to compare our space of singular multipliers

W = M( Ḣ 1 2 ,1 t,x → L 2 )
to parabolic Morrey spaces Ṁ p,q (R × R 3 ) (1 < p ≤ q < +∞) :

f ∈ Ṁ p,q (R × R 3 ) ⇔ sup R>0,(t,x)∈R×R 3 R 5( p q -1) ρ(t-s,x-y)<R
|f (s, y)| p ds dy < +∞ Theorem 5 For 2 < p ≤ 5, we have

Ṁ p,5 (R × R 3 ) ⊂ W ⊂ Ṁ 2,5 (R × R 3 )
Then, a better (but partial) answer to our Question 3 would be to find a Banach space Y of measurable functions on R × R 3 such that Y ⊂ W and to characterize the associated (maximal) Banach space X such that

1 t>0 |e t,∆ u 0 | Y ≤ C u 0 X
We may state some classical results in Navier-Stokes theory and check how we may easily show that they obey to our formalism :

• the solutions of Fabes, Jones and Rivière [START_REF] Fabes | The initial value problem for the Navier-Stokes equations with data in l p[END_REF] belong to the space Y = L p t L q x with 2 p + 3 q = 1 and 3 ≤ q < +∞; we have Y ⊂ Ṁ min(p,q),5 (R × R 3 ) ⊂ W; the associated space is the Besov space X = Ḃ-2 p q,p • let us consider the limit case p = +∞ and q = 3 : the solutions of Kato [START_REF] Kato | Strong L p solutions of the Navier-Stokes equations in R m with applications to weak solutions[END_REF] belong to the space Y = L ∞ t L 3

x ; we have Y ⊂ Ṁ 3,5 (R × R 3 ) ⊂ W and the associated space is X = L 3

• we may change the order of integration with respect to time and space.

The space Y = L q x L p t with 2 p + 3 q = 1 and 3 ≤ q < +∞ will satisfy Y ⊂ Ṁ min(p,q),5 (R × R 3 ) ⊂ W and the associated space is the Triebel-Lizorkin space X = Ḟ -2 p q,p

• in the limit case p = +∞ and q = 3, we find the solutions of Calderón [START_REF] Calderón | Initial values of Navier-Stokes equations[END_REF] that belong to the space Y = L 3 x L ∞ t ; we have L 3

x L ∞ t ⊂ Ṁ 3,5 (R × R 3 ) ⊂ W and the associated space is X = L 3 Further examples are discussed in [START_REF] Gilles | Sobolev multipliers, maximal functions and parabolic equations with a quadratic nonlinearity[END_REF] and [START_REF] Gilles | The Navier-Stokes equations in the XXIst century[END_REF]. Of course, one should be interested to understand as much as possible which space X corresponds to the (strange) space Y = W. A close approach should be the investigation of the parabolic Morrey spaces. In this case, one recover some already known spaces : p,p with 2 p + 3 q = 1. It might be the first "natural" setting where those spaces appear.

• We have W ⊂ Ṁ 2,5 (R × R

• 2 p , 1 p - 1 q

 21 3 ). It is worth noticing that the associated Banach space to Y = Ṁ 2,5 (R × R 3 ) is just the Koch and Tararu space X = BM O -1[START_REF] Koch | Well-posedness for the Navier-Stokes equations[END_REF]. On the other hand, we have Ṁ p,5 (R × R 3 ) ⊂ W when 2 < p ≤ 5. The associated Banach space to Y = Ṁ p,5 (R × R 3 ) (2 < p ≤ 5) belongs to the scale of Triebel-Lizorkin-Morrey spaces studied by Sickel, Yang and Yuan[START_REF] Sickel | Morrey and Campanato meet Besov, Lizorkin and Triebel[END_REF] : X = Ḟ -

Elliptic intermezzo.Before considering Question 2, we recall some basic facts involving integral equations with symmetric non-negative kernels[START_REF] Gilles | Sobolev multipliers, maximal functions and parabolic equations with a quadratic nonlinearity[END_REF].