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Abstract

Poromechanics offers a consistent theoretical framework for describing the mechanical re-
sponse of porous solids fully or partially saturated with a fluid phase. When dealing with
fully saturated microporous materials, which exhibit pores of the nanometer size, effects
due to adsorption and confinement of the fluid molecules in the smallest pores must be
accounted for. From the mechanical point of view, these phenomena result into volumetric
deformations of the porous solid, the so-called “swelling” phenomenon. The present work
investigates how the poromechanical theory may be refined in order to describe such ad-
sorption and confinement induced effects in microporous solids. Poromechanics is revisited
in the context of isotropic microporous materials with generic pore size distributions. The
new formulation introduces an effective pore pressure, defined as a thermodynamic variable
at the representative volume element scale (mesoscale), which is related to the overall me-
chanical work of the confined fluid. Accounting for the thermodynamic equilibrium of the
system, we demonstrate that the effective pore pressure depends on macroscopic variables,
such as the bulk fluid pressure, the temperature and the total and excess adsorbed quantity
of fluid. As an illustrating example, we apply the model to compute strains and variations
of porosity in the case of the methane and carbon dioxide sorption on coal. Agreement with
experimental data found in the literature is observed.

Keywords: poromechanics, microporosity, swelling, adsorption, fluid confinement,
microporous solids, micropores, coal, carbon

1. Introduction

Poromechanics offers a consistent theoretical framework for describing the mechanical
response of porous solids saturated, or partially saturated with a fluid phase. The theory is
based upon the superposition of the solid and liquid phases. In the case of fully saturated
porous solids, it is assumed that the fluid-solid interaction is restricted to the influence of
the pressure on the inner surface of the porous material. In partially saturated porous solids,
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additional forces, i.e. capillary forces are introduced. Many authors have used this modern
theoretical framework, which is thoroughly described in the textbooks by Coussy [1, 2] and
need to be adapted in the case of microporous solids.

As “isotropic microporous” materials, we refer to amorphous solids which contain pores
of size less than 2 nm exclusively, consistent with the IUPAC classification. For instance,
manufactured disordered porous carbons fits that definition. Furthermore, numerous multi-
scale disordered porous materials, such as coal, cement paste or tight rocks, exhibit significant
microporosity. As a consequence, the proper description of the mechanical response of
the microporous part of these materials is of great importance in the context of chemical
engineering processes, building construction, fossil fuels production and geological storage.
Aside from the classical fluid-solid interaction observed in macroporous materials, there
are additional effects that should be considered in the case of micropores filled with a fluid
phase. Two features should be distinguished: adsorption and fluid confinement (or molecular
packing): (i) adsorption takes place at the inner surface of the pores; (ii) the fluid is confined
and a single fluid molecule can interact with all the atoms of the pore surface. As a result,
interactions between molecules of the fluid and the solid are modified, it cannot develop
in the same way as if the fluid would be placed in a large container. This effect includes
fluid-fluid and fluid-solid interactions. From the mechanical point of view, these phenomena
result into volumetric deformations of the porous solid. Swelling is commonly observed
during sorption-desorption of several gases such as carbon dioxide (CO2) or methane (CH4)
in charcoal, see e.g. the papers by Levine [3], Day et al [4, 5] and Ottiger et al [6], although
seminal experimental works of Meehan [7] and Bangham and Fakhroury [8] date back to the
1920s.

CO2 swelling of coal and carbon absorbents has been investigated within the framework
of poromechanics. Vandamme et al [9] extended poromechanics to surface effects adding en-
ergy stored at the solid-fluid interface in the formulation. However, the interaction stresses
are restricted to surface adsorption effects, which is suitable for mesoporous materials only.
Following a comparable approach, Pan and Connell [10] proposed an analytical model to
compute adsorption induced swelling of coal. Assuming a cylindrical pore geometry, they
introduced a surface stress at the the pore walls which is related to a Langmuir adsorption
model. The Langmuir model parameters and the poromechanical properties are then fitted
to adsorption and swelling data respectively. Although the fitted theoretical curves match
well the experimental results, the model requires the adjustment of interstitial fluid prop-
erties, of which consistency remains difficult to assess. Mushrif and Rey [11] followed some
similar reasoning as far as the poromechanics formulation is concerned. They computed
the adsorption-induced strain directly from the chemical potential of the adsorbate, more
specifically from the difference between the chemical potential of the fluid in the strained
and unstrained absorbent. Good agreement with swelling data on activated carbon par-
ticles was observed. Recently, Brochard et al [12, 13] proposed a sound reformulation of
poromechanics to account for adsorption induced strains in saturated microporous solids.
The model derives constitutive equations from the free energy balance of the open system
composed of the solid skeleton and the interstitial fluid, instead of the free energy balance of
the porous skeleton only, as in standard poromechanics. Although the theory is laid down
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in very general perspectives, it requires further assumptions, or alternatively the help of
molecular simulations, for the model to be applicable. The molecular simulations performed
on a model porous carbon agree well with experimental data found in the literature [6].

Apart from the global volumetric expansion, the porosity of the microporous material is
likely to significantly increase upon sorption. Accounting for this effect is important for the
estimation of the quantity of fluid stored in the microporous solid. Furthermore, because
of the influence of pores constrictions[14], the description of the variation of porosity is also
important in the prospect of modeling the fluid transport properties of the material. In the
approaches discussed above, although the predictions of the swelling strains are satisfying,
the direct description of the variation of microporosity upon swelling of the material is left
unspecified. This probably comes from the difficulty of defining the stress exerted by the
interstitial fluid on the solid phase. For the sake of understanding this issue, let us consider
a saturated microporous solid placed in a container filled with a fluid at a bulk pressure
(bulk solution). According to molecular simulations of adsorption in single slit pores, the
pressure inside the pores is different from the bulk pressure as a result of adsorption and
confinement [15]. This difference can amount to one or two orders of magnitude for very
small pores (≤ 1 nm). Furthermore, this difference should depend on the bulk pressure, on
the temperature, and on the pore sizes and geometry. In a solid with a complex microporous
structure, inner stresses are different from one pore to another and different from the bulk
pressure, if the pores are sufficiently small. As a result, the direct upscaling of these effects
from the local pore scale to the macro-scale seems intractable when dealing with isotropic
disordered microporous solids. The proper description of the variation of microporosity
therefore requires some alternative approach.

In this paper, we investigate how the poromechanical theory may be refined to account
for fluid confinement effects in the micropores, without the need of any pore scale modeling.
The new formulation introduces an effective pore pressure as a thermodynamical variable
defined at the representative volume element scale (mesoscale), which accounts for the over-
all mechanical work produced by the confined fluid filling the microporosity. Furthermore,
we refer to the thermodynamic equilibrium condition of the system composed of the micro-
porous skeleton, the interstitial and external bulk reference fluids. By doing so, we derive a
relation between the effective pore pressure and macroscopic quantities such as the temper-
ature, the bulk fluid pressure and the total and excess adsorbed mass of fluid. In isothermal
conditions, the theory predicts an effective pore pressure larger than the external bulk pres-
sure. Assuming a poroelastic behavior of the material, this results into a volumetric dilation
of the porous skeleton consistent with the swelling phenomenon. As an illustrating example,
we calculate the swelling strain and variation of porosity in the case of methane and carbon
dioxide sorption on coals. Comparison with coal swelling data found in the literature is
satisfactory.
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2. Extension of poromechanics to the case of saturated isotropic microporous

solids

In this section, we extend continuum poromechanics to the case of isotropic microporous
solids saturated by a fluid phase. After introducing the general notations, we define an
effective pore pressure that averages the effects of fluid adsorption and confinement in the
micropores to the mesoscale at which continuum modeling becomes relevant. Then, referring
to the principle of thermodynamical equilibrium, we derive a constitutive equation for the
effective pore pressure and discuss its effect on macroscopic volumetric strains.

2.1. Nomenclature and definitions

The porous medium is viewed as an open thermodynamic system, which consists in the
superposition of a porous solid phase, the skeleton, and an interstitial fluid phase which
can exchange fluid mass with an external reference bulk solution. Hence, we use subscripts
s or f to refer to a variable related to the skeleton or the interstitial fluid respectively.
Moreover, the subscript b will be used when referring to the bulk solution. Indeed, because
of adsorption and confinement effects, it is essential to distinguish the interstitial fluid from
the bulk solution. For instance, a quantity Θ, related to the phase π will write Θπ, with
π = f, s, b for the interstitial fluid, the skeleton and the bulk solution respectively.

The dual nature (fluid or solid) of the continuous medium addressed by poromechanics
implies description in both eulerian and lagrangian frames to account for the interstitial
solution and the solid skeleton respectively [1]. In the present work we limit our study to the
case of small strains at equilibrium, such that no flow of the interstitial fluid is considered and
the strain in the skeleton remains small. Under these circumstances, eulerian and lagrangian
descriptions become equivalent and thermodynamical quantities are therefore rescaled by the
volume of the representative volume element (RVE) of the material at rest.

2.2. Effective pore pressure

Classical poromechanics account separately for the stress related to the skeleton and the
one related to the fluid. In a saturated macroporous solid the stress partition is expressed
as

Σ = (1− φ)Σs + φΣf

= (1− φ)Σs − φPb1 (1)

where Σ is the global stress tensor related to the porous continuum, Σs and Σf are the
skeleton and fluid stress tensors respectively, φ is the porosity accessible to the fluid (ratio of
the total volume of connected pores to the apparent volume of the porous solid) and Pb is the
bulk fluid pressure. Thus, the intrinsic averaged stress within the fluid is addressed through
the spherical tensor −Pb1. This comes down to consider that the fluid applies a pressure on
the pores walls, which equals the bulk pressure. This assumption is valid in the context of
macroporous materials, in which the interstitial fluid pressure is well defined and equal to
the bulk fluid pressure as no confinement effect occur. In the case of microporous materials,
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except very specific ideal pore geometries (such as slit pores [15, 16, 17]), determination of
the fluid pressure in micropores is ambiguous. For instance, this is evidenced by molecular
simulations of fluid adsorption on reconstructed models of microporous materials as diverse
as porous carbons [18], microporous zeolites [19] and Carbide Derived Carbons [20], which
clearly show that only a few number of fluid molecules can fit in the same micropore (as few
as one fluid molecule per pore). Consecutively, at the scale of a single micropore, macroscopic
thermodynamical quantities such as the pore pressure are ill-defined.

In order to tackle the mechanical effect of the interstitial fluid on the isotropic microp-
orous skeleton, we therefore do not to rely on a local nanoscale description of the material.
Instead we consider the material at the RVE mesoscale, at which the number of interstitial
fluid molecules is large enough to define the thermodynamical potentials of the fluid. Let
Gf be the Gibbs free energy (defined per unit RVE volume) of the interstitial fluid obtained
from the thermodynamical identity

Gf = Ψf +Wf (2)

in which Ψf is the Helmholtz free energy of the fluid andWf is the mechanical work generated
by the fluid. To estimate the effective mechanical stress related to the mechanical work
produced by the fluid, we introduce a mesoscale effective pore pressure Pf , defined as the
conjugate thermodynamical variable of the porosity as follows

Wf = φPf . (3)

We therefore assumes that, on average, the confined fluid behaves like a bulk fluid with
a pressure different from that of the external reservoir. In other words, we consider the
reservoir and the interstitial fluids as two distinct bulk fluid phases in equilibrium, with
different pressures and densities. We emphasize that this assumption is not true in general
as it disregards the contribution of the solid/fluid interactions to the energy of the confined
interstitial fluid. As a consequence, we show in the following that the difference between the
bulk pressure and the effective pressure only results from the difference in density between the
two solutions. In a later section of this paper, we discuss the implications of this assumption
as well as the limitations of our approach.

The stress partition is thus modified to account for the effective pore pressure

Σ = (1− φ)Σs − φPf1. (4)

The choice of a simple spherical tensor for the effective pore pressure is supported by nu-
merous studies, which demonstrate that the sorption induced strains in microporous solids
are isotropic as long as the material structure is isotropic [3, 5, 6, 12]. At the local pore
scale, molecular simulations performed with simple pore shapes also show that no deviatoric
contribution to the local pressure tensor should be expected [21]. In the following, we show
how to relate this effective pore pressure to the relevant parameters of the problem.
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2.3. Thermodynamical equilibrium condition of the fluid phase

Let us now consider a microporous solid immersed in an adiabatic and infinitely rigid
container filled with a mass m of fluid. In such conditions, the system {skeleton; inter-
stitial fluid; bulk fluid} is an isolated thermodynamic system. In the limit of reversible
transformations, the incremental Helmholtz free energy (per unit RVE volume) of the open
thermodynamic system {skeleton; interstitial fluid} reads [e.g. 1, Ch. 3]

dΨ = Σ : d∆+ µfdmf − SdT. (5)

where ∆ is the strain tensor, µf is the specific chemical potential of the interstitial fluid, mf

is the mass of interstitial fluid, T is the temperature, S and Ψ are the global entropy and
global Helmholtz free energy of the porous medium {skeleton; interstitial fluid} respectively.
The right hand terms in equation (5) identify the three different ways to exchange energy
with the system: mechanical stress, fluid transport or heat transfer. This expression of the
skeleton free energy variation is identical to the one encountered in standard poromechanics.
Nevertheless, in the case of the microporous solid, the difference with standard porome-
chanics lies in the expression of the chemical potential, which differs from that of the bulk
fluid:

µf =
Gf

mf

= ψf +
Pf

ρf
(6)

in which ψf = Ψf/mf and ρf = mf/φ are the specific Helmholtz free energy and the average
density of the interstitial fluid respectively. The differential of the Helmholtz free energy of
the bulk fluid writes as

dΨb = −Pbdφb + µbdmb − SbdT (7)

in which φb is the ratio of the volume occupied by the bulk fluid (i.e the volume of the
container minus the apparent volume of the porous solid) to the volume of the container.
In addition, µb, mb and Sb are the chemical potential, the mass and the entropy of the bulk
fluid respectively. The conservation of the total fluid mass mt = mf + mb in the isolated
system implies dmf = −dmb. Therefore, (7) may be rearranged as

dΨb = −Pbdφb − µbdmf − SbdT. (8)

The isolated system reaches thermodynamical equilibrium when the global Helmholtz free
energy of the system, Ψt = Ψ+Ψb is minimal, which implies

∂Ψt

∂mf

=
∂Ψ

∂mf

+
∂Ψb

∂mf

= 0. (9)

Using the relations (5) and (8), we can express the thermodynamical equilibrium condition
that must be satisfied by the fluid phase:

µf = µb. (10)

Therefore, we recover the classical thermodynamical equilibrium condition, that is the bulk
solution is in chemical equilibrium with the interstitial fluid.
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2.4. Constitutive equation of the effective pore pressure

The Gibbs-Duhem equation applied to the bulk and interstitial fluids gives

dµb =
dPb

ρb
− sbdT (11)

dµf =
dPf

ρf
− sfdT (12)

where sb and sf are the specific entropy of the bulk fluid and interstitial fluid respectively.
Now, let mex be the excess mass of intersitital fluid defined as follows

mex = mf − ρbφ . (13)

Thus mex is defined as the difference between the total mass of interstitial fluid and the mass
of fluid that would fit in the porous space if the interstitial fluid had the same density as
the bulk. Recalling that mf = ρfφ, we obtain

ρb
ρf

= 1− χ , (14)

in which the parameter χ = mex/mf is referred to as the confinement degree of the interstitial
fluid. The confinement degree equals zero if the interstitial and bulk fluids have identical
density and approaches the value 1 if the density of the bulk solution is negligible compared
to that of the interstitial fluid. Using the above definition we can rearrange the expression
of the incremental chemical potential of the interstitial solution in terms of the confinement
degree:

dµf = (1− χ)
dPf

ρb
− sfdT . (15)

Accounting for the thermodynamical equilibrium condition and therefore equating equations
(11) and (15), we find the constitutive equation of the effective pore pressure and interaction
entropy in its incremental form

dPf −

(

1

1− χ

)

dPb −

(

ρb∆s

1− χ

)

dT = 0. (16)

where ∆s = sf − sb is the specific entropy jump between the interstitial and bulk fluids.
Relation (16) relates the quantities resulting from adsorption and confinement of the fluid
molecules, (Pf ; ∆s), to macroscopic quantities (Pb ; T ; φ ; χ). In the limit of isothermal
transformations, the incremental constitutive equation reduces to

dPf =
dPb

1− χ
. (17)

The ratio 1/(1−χ) is greater than unity if the confinement degree is larger than zero. Con-
secutively, the more the interstitial fluid is confined, the higher the effective pore pressure.
Intuitively, this prediction is consistent with the experimental observation of the adsorption
induced swelling of isotropic microporous materials. Indeed, the swelling should result from
an effective pore pressure larger than the bulk fluid pressure.
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2.5. Effect on the volumetric strain

In reversible and isothermal conditions, the differential of the Helmholtz free energy of
the microporous skeleton is

dΨs = Σ : d∆+ Pfdφ. (18)

Classically, in the limit of a linear poroelastic (reversible) behavior, the constitutive equations
read [e.g. 1, Ch. 4]

Σij =
∂Ψs

∂∆ij

=
{

(K + b2N)ǫ− bN(φ− φo)
}

δij + 2Geij (19)

Pf =
∂Ψs

∂φ
= −bNǫ+N(φ− φo) (20)

where ∆ij = eij + (ǫ/3) δij, φo is the porosity of the material at rest, K is the apparent
bulk modulus, G the shear modulus, b and N the Biot coefficient and modulus respectively.
Consider now that the microporous solid is placed in a container filled with a fluid at bulk
pressure Pb. As a result, the stress tensor Σ reduces to the hydrostatic bulk pressure acting
on the skeleton:

Σ = −Pb1. (21)

Moreover, by considering the solid matrix to be homogeneous, the Biot coefficient and Biot
modulus are related to the apparent bulk modulus K, to the bulk modulus of the material
composing the skeleton matrix Ks, and to the porosity at rest φo as follows:

b = 1−
K

Ks

(22)

N =
Ks

1− K
Ks

− φo

(23)

By using the above relations and the constitutive equation of the effective pore pressure
(17), equations (19) and (20), in their incremental forms, yield the volumetric deformation
and porosity increments, denoted as dǫ and dφ respectively, as functions of the increment of
bulk pressure:

dǫ =

{(

1−
K

Ks

)

(1− χ)−1 − 1

}

dPb

K
(24)

dφ =

(

1−
K

Ks

− φo

)

(1− χ)−1dPb

Ks

+

(

1−
K

Ks

)

dǫ. (25)

The swelling strain ǫ is obtained by summation of dǫ between Pb0 and Pb:

ǫ− ǫ0 =

∫ Pb

Pb0

dPb

K

{(

1−
K

Ks

)

(1− χ)−1 − 1

}

(26)

The microporous material swells for positive values of dǫ, which leads to the following swelling
condition:

χ >
K

Ks

. (27)
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Figure 1: Sketch of the fluid density profile in a micropore. The gray colored area stands for the total number
of interstitial fluid nt present in the pore. The dotted area stands for the excess quantity of interstitial fluid
which corresponds to the excess number of moles nex of the Gibbs adsorption isotherm.

Thus, according to our model, the microporous medium should swell all the more so as the
interstitial fluid is highly confined and the porous skeleton exhibits low K/Ks ratios. On
the other hand, due to the compression of the skeleton matrix, shrinkage should occur if

χ <
K

Ks

. (28)

This might be the case for materials exhibiting a high K/Ks ratio (materials with a high
proportion of occluded porosity) along with negligible fluid confinement.

3. Adsorption induced swelling of saturated isotropic microporous materials

In this section, we show how the effective pore pressure and the swelling strains may
be deduced from adsorption measurements. Since coal is a multi-scale porous material, our
model is only relevant to the microporous part of this material. However, several experiments
performed on centimeter-wide microporous coal specimen can be found in the literature, in
which the samples do not exhibit any meso/macroporosity that would result from natural
cracks [4, 5, 6]. We therefore compare the theoretical predictions of the model with these
specific sets of experimental data.

3.1. Relating the effective pore pressure to adsorption data

Most experimental studies of gas sorption on porous materials focus on the measurement
of the Gibbs adsorption isotherm [22]. As shown in Figure 1, the Gibbs adsorption isotherm
stands as a measurement of the number nex of adsorbate moles that exceeds the number of
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fluid moles at bulk conditions. Let nt be the total number of moles of interstitial fluid (see
Figure 1). Then the confinement degree of the interstitial fluid may be expressed as

χ = nex/nt . (29)

However, adsorption experiments do not provide the total number of moles of interstitial
fluid contained in the porous adsorbent during sorption. From the experimental point of view
the excess number of moles adsorbed is indeed the only measurable quantity. Nevertheless,
the total number of interstitial fluid moles can still be estimated from the excess number of
moles by assuming that the model correctly predicts the evolution of the porosity. Hence
the following relation

nt = nex +
ρbVφ
M

nt = nex +

(

φ

1− φ

)

ms

M

ρb
ρs

(30)

where Vφ is the connected porous volume of the material, M the molar mass of the adsorbed
gas, ms the adsorbent sample mass and ρs the density of the material composing the solid
matrix of the porous adsorbent. It is obvious, from equation (30), that the confinement
degree and the porosity of the material are coupled. Consecutively, we use the incremental
equations (24) and (25), coupled with (30), to compute the total number of interstitial fluid
moles from excess adsorption isotherm data. For a given set of parameters K, Ks and φo,
we performed the calculation of the volumetric strain and porosity as follows:

• We used the experimental excess adsorption isotherm (Pb , nex) as input. The number
of data points was increased by linear interpolation.

• At Pb = 0MPa, the initial strain, porosity and confinement degree were set to ǫ(0) = 0,
φ(0) = φo and χ(0) = 0 respectively.

• At step i, the confinement degree was defined as χ(i) = nex(i)/nt(i), where nt(i) was
obtained from equation (30) with φ = φ(i).

• The strain and porosity of step i + 1 were obtained as ǫ(i + 1) = ǫ(i) + dǫ(i) and
φ(i + 1) = φ(i) + dφ(i) respectively. We used equations (24) and (25) with χ = χ(i)
to compute the strain and porosity increments respectively.

3.2. Comparison with experimental data

3.2.1. Comparison with data from Day et al

Day et al performed adsorption experiments and swelling measurements on several Aus-
tralian bituminous coals [4, 5] . More specifically, they used digital cameras and a pressure
cell equipped with sight windows to measure the swelling strain of a Bowen basin coal sam-
ple during sorption of CO2, at T = 55◦C and up to Pb = 15MPa [4]. In addition, they
performed CO2 adsorption isotherms measurements on other Bowen basin coal samples at
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Figure 2: (a) Adsorption isotherm of CO
2
on a Bowen basin coal. White circles stand for the excess

adsorption isotherm measured by Day et al [5]. Black squares stand for the total number of moles of
interstitial fluid, computed from equation (30) with an initial porosity of φo = 0.148. The lines are guides
for the eye. (b) Evolution of the swelling strain and porosity with the bulk pressure. White circles stand for
the swelling measured by Day et al [4]. The black squares represent the fit of the model prediction with the
apparent bulk modulus as the adjustable parameter. The black triangles are the model predictions for the
relative variation of porosity. Results read K = 3.48GPa. The lines are guides for the eye.

T = 53◦C and up to Pb = 16MPa with a gravimetric technique [5]. To compare the theo-
retical model predictions with the swelling data from [4], we use the adsorption data from
[5] corresponding to the Bowen basin coal sample referred to as “Qld 5”, whose porosity
φo = 0.148 was measured by helium pycnometry. In order to limit the number of degrees of
freedom of the fitting procedure to only one adjustable parameter, we set the solid matrix
bulk modulus to Ks = 7.6GPa. This value is consistent with mechanical tests coupled to
helium injection performed by Hol and Spiers [23], which are, to our knowledge, the only
measurements of the bulk modulus of bituminous coals’ solid phase reported in the litera-
ture. The volumetric strain is then computed and fitted to the swelling measurements from

Data source Gas type ms (g) ρs (kg.m
−3) φo K (GPa) Ks (GPa)

Day et al CO2 4.1 1358 0.148 3.48∗ 7.60a

Ottiger et al CO2 40.81 1265 0.085∗ 2.65a 7.60a

Ottiger et al CH4 40.81 1265 0.106∗ 2.65a 7.60a

∗ Adjusted. a Assumed.

Table 1: Summary of model parameters for coal swelling
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Figure 3: (a)Adsorption isotherm of CO
2
on a Sulcis province coal White circles stand for the excess

adsorption isotherm measured by Ottiger et al [6]. Black squares stand for the total number of moles of
interstitial fluid, computed from equation (30) with an initial porosity of φo = 0.0850. The lines are guides
for the eye. (b) Evolution of the swelling strain and porosity with the bulk pressure. White circles stand
for the swelling measured by Ottiger et al [6]. The black squares represent the fit of the model prediction
with the initial porosity as the adjustable parameter. The black triangles are the model predictions for the
relative variation of porosity. Results read φo = 0.0850. The lines are guides for the eye.

[4] with K as the only adjustable parameter. Table 1 summarizes the model parameters
used in the calculations. Figure 2(a) shows the measured excess adsorption isotherm nex of
CO2 on the Qld 5 sample as well as the quantity nt deduced from equation (30). Figure 2(b)
superposes the experimental strain with the fitting curve obtained for K = 3.48GPa. This
fitted value falls in the range of the apparent bulk modulus of coals[24, 25] and we observe a
good agreement between the swelling strain predicted by the model and experimental data.
Moreover, figure 2(b) reports the relative variation of the porosity with bulk pressure. The
porosity follows the same trend as the volumetric strain, but with a final increase of almost
11%.

3.2.2. Comparison with data from Ottiger et al

Ottiger et al performed adsorption isotherm measurements of pure CO2, pure CH4 and
(CO2, CH4) mixtures on bituminous coal samples from the Sulcis Province (Italy) at T =
45◦C and up to Pb = 19MPa, coupling manometric and gravimetric techniques [6]. In
addition, they used a pressure cell equipped with sight windows and a digital camera to
measure the swelling strain during sorption. In their paper, Ottiger et al do not report
any measurement of the coal samples’ porosity. In the following we hence fit the model
predictions to the swelling data with the initial porosity φo as the only adjustable parameter
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Figure 4: (a)Adsorption isotherm of CH
4
on a Sulcis province coal White circles stand for the excess

adsorption isotherm measured by Ottiger et al [6]. Black squares stand for the total number of moles of
interstitial fluid, computed from equation (30) with an initial porosity of φo = 0.1056. The lines are guides
for the eye. (b) Evolution of the swelling strain and porosity with the bulk pressure. White circles stand
for the swelling measured by Ottiger et al [6]. The black squares represent the fit of the model prediction
with the initial porosity as the adjustable parameter. The black triangles are the model predictions for the
relative variation of porosity. Results read φo = 0.1056. The lines are guides for the eye.

(cf. table 1). We set the apparent bulk modulus to K = 2.65GPa. This value of the
apparent bulk modulus, consistent with experimental data found in the literature [24, 25], is
the same as Brochard et al obtained by fitting their poromechanical model to Ottiger et al
data. We emphasize that we use this specific value in order to directly compare our model
to that of Brochard et al in a later section of this paper. The bulk modulus of the solid
phase is set to Ks = 7.60GPa, as previously. Figures 4 and 3 report the results for pure CO2

and pure CH4 respectively. The fitted porosity reads φo = 0.0850 in the case of the sorption
of pure CO2, and φo = 0.1056 in the case of the sorption of pure CH4. In both cases, we
observe a good agreement between the theoretical predictions and the experimental data.
The fitted porosities of φo = 0.1056 and φo = 0.850 are consistent with the typical values
observed for bituminous coals, ranging from 0.04 to 0.18 according to helium pycnometry
measurements performed by Day et al [5]. Furthermore, as previously observed, the relative
variation of the porosity predicted by the model follows the same trend as the volumetric
strain. However, the range of the increase in porosity is one order of magnitude higher than
the swelling strain. In particular, the increase in porosity can exceed 45% in the case of CO2

injection. While the coal sample used in CH4 and CO2 swelling experiments is the same,
the porosity obtained for CH4 differs from that obtained for CO2 by 19%. Ottiger et al did
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not perform the adsorption measurements on the same coal sample as the one they used for
the swelling measurements. Other studies point out that the adsorption isotherms of CH4

and CO2 on two different coal samples may substantially differ, even if these samples belong
to the same coal bed [3, 6]. As the computed strains depend directly on the adsorption
isotherms, this might explain the discrepancy observed between the two porosity values.

4. Discussion

4.1. Helmholtz free energy and entropy jumps

The Helmholtz free energy jump ∆ψ is defined as the difference between the specific
Helmholtz free energies of the interstitial and bulk fluids when the system reaches equilib-
rium. If we consider isothermal transformations, the free energy jump reads

∆ψ =
Pb

ρb
−
Pf

ρf
(31)

It follows from equations (17) and (31) that the sign of the free energy jump is therefore
given by the following function F :

F (Pb) = f(Pb)Pb −

∫ Pb

0

dPbf(Pb) (32)

in which f is the function defined as

f(Pb) = (1− nex/nt)
−1. (33)

The function F is always negative if the function f monotonically decreases with Pb. The
derivative of f with respect to Pb reads

df

dPb

= (1− nex/nt)
−2 d

dPb

(

nex

nt

)

. (34)

Experimental data found in the literature and reported in figures 2(a), 3(a) and 4(a) clearly
show that the ratio nex/nt decreases with Pb. Consequently, we deduce from equation (34)
that f is a monotonic decreasing function of Pb and thus F is negative. As a result, the free
energy jump is negative as well and we find:

ψf − ψb = ∆ψ ≤ 0. (35)

Therefore, because of the confinement in the micropores, the interstitial fluid cedes free
energy to the skeleton under the form of mechanical work, which provokes the swelling
phenomenon. When adsorption and confinement effects become negligible, the ratio nex/nt

tends to 0 and so does the free energy jump. In such conditions, the interstitial and bulk
fluid specific Helmholtz free energies are equal.
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Now, let us focus on the sign of the entropy jump ∆s in the general case of non-isothermal
transformations. By rearranging equation (16), we obtain

∆s =
1

ρb

(

(1− χ)
dPf

dT
−
dPb

dT

)

. (36)

Several experimental studies point out that the swelling strain, as well as the adsorbed
excess number of fluid molecules, decrease upon increasing the temperature ([6], [26]). If
we consider the paradigm of §2.3, these results suggest that the effective pore pressure Pf

and the number of bulk fluid moles in the external bulk solution, nb, decreases and increases
respectively with temperature (dPf/dT ≤ 0 and dnb/dT ≥ 0). Moreover, in the case of small
swelling strain, the volume Vb occupied by the external bulk fluid (i.e the volume of the fluid
container minus the volume of the porous solid) does not significantly vary upon swelling
(dVb ≃ 0). Consecutively, assuming the bulk fluid behaves as an ideal gas, the derivative of
the bulk fluid pressure with respect to temperature reads

dPb

dT
≃
Rnb

Vb
+
RT

Vb

dnb

dT
. (37)

In such conditions, the bulk fluid pressure increase with temperature (dPb/dT ≥ 0). There-
fore, considering the above remarks and the expression of the entropy jump (36), we find:

sf − sb = ∆s ≤ 0. (38)

This result makes sense as the order in the interstitial fluid increases due to the confinement
of the fluid molecules in the micropores, and consecutively, the increase of the average fluid
density. When adsorption and confinement effects become negligible, the quantities 1 − χ
and Pf/Pb asymptotically tends to unity. In these conditions, equation (36) shows that the
entropy jump vanishes.

4.2. Comparison with the previous study by Pijaudier-Cabot et al

In a previous study, Pijaudier-Cabot et al developed a simplified poromechanical model to
address fluid adsorption and confinement effects in microporous materials [15]. In the limit of
isothermal reversible transformations, and accounting for the thermodynamical equilibrium
condition, the free energy balance of the porous solid reads

dΨs = Σ : d∆+ Pbdφ
∗ − dΨint (39)

where Ψint is an interaction energy and φ∗ is a corrected porosity defined as φ∗ = φ/(1−χ).
Although the approach is quite similar to the present study, the effective pore pressure is
not introduced in this formulation. The interaction energy Ψint is directly related to the
actual pore pressure at the pore scale, which is not well defined. As a consequence, direct
calculation of the interaction energy is impossible and further assumptions are thus required.
More specifically, the interaction energy is set as a function of the corrected porosity φ∗ only,
and consecutively an interaction pressure Pint is defined as:

Pint =
∂Ψint

∂φ∗

(40)
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In the equation of state of the microporous solids, this interaction pressure plays exactly
the same role as the effective pore pressure introduced in the present work. A prototype
constitutive equation is introduced:

Pint = −k nex (41)

where k is a proportionality constant. This empirical constitutive relation is based on the
experimental observation of Levine, who pointed out the relation of proportionality between
the Gibbs adsorption isotherm and the swelling strain of coal at low bulk pressures [3].
Nevertheless, according to experimental datas from Ottiger et al [6] and Day et al [4, 5],
this approximation breaks down at high bulk pressure, as the swelling strain is monotonic
whereas the Gibbs adsorption isotherm reaches a maximum and then decreases (see figures 2
and 3). Therefore, the knowledge of the adsorbed excess number of moles nex is not sufficient
to accurately predict the effective pressure that induces the swelling.

4.3. Comparison with the work of Brochard et al

Recently, Brochard et al proposed a reformulation of poromechanics to account for ad-
sorption induced stress in microporous solids [12, 13]. Although their approach is quite
similar to the present work, the main difference lies in the fact that they do not account for
the solid and fluid phases separately. Indeed, their model is based on the energy balance of
the porous medium (solid and fluid) considered as a whole, as opposed to the model devel-
oped in the present paper, which introduces the porosity of the material. As a consequence,
although their model does not provide any information about the variation of porosity, it is
however laid down in more general perspectives because it does not imply any assumption
regarding the interaction between the solid and the interstitial fluid. With the notations of
the present paper, the hydrostatic stress obtained by Brochard et al reads

σ = Kǫ−
∂

∂ǫ

[
∫ Pb

0

NtV̄bdPb

]

Pb

, (42)

where Nt is the number of moles of interstitial fluid per unit RVE volume, and V̄b is the molar
volume of the bulk reference fluid. By recalling that 1 − χ = Nb/Nt, where Nb = Nt −Nex

is defined as the number of moles of interstitial fluid that would fit in the porous volume at
bulk density, the hydrostatic stress obtained with the present model is:

σ = Kǫ− b

∫ Pb

0

Nt

Nb

dPb. (43)

By noting that the bulk molar volume is a function of the pressure only, and that, per
definition, φ = NbV̄b and b = [∂φ/∂ǫ]Pb

, the two models are equivalent provided the following
equation holds:

[

∂Nt

∂ǫ

]

Pb

=

[

∂φ

∂ǫ

]

Pb

Nt

φ
(44)

Therefore, the models are compatible if the quantity of interstitial fluid is proportional to the
porosity. Under such condition [∂Nt/∂φ]Pb

= Nt/φ and equation (44) is correct. In other
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words, the two models can be considered to be equivalent if, on average, the interstitial
fluid behaves like a bulk fluid, which is the central assumption of our model. Furthermore,
Brochard et al compared their model predictions to Ottiger et al experimental data. To do so,
they assumed that the quantity of interstitial fluid depends linearly on the volumetric strain,
which is implicit in equation (44). They hence define a so-called multivariate adsorption
isotherm as follows,

Nt(ǫ, Pb) = N o
t (Pb)(1 + C(Pb)ǫ) (45)

where C(Pb) is defined as a coupling coefficient. Upon inserting the above adsorption
isotherm in the constitutive equations (42) and (43), and then by equating those two equa-
tions, we obtain the following expression for the coupling coefficient:

C(Pb) =
b

φ− bǫ
(46)

In table 2, we report the values of C(Pb) adjusted to Ottiger et al data, obtained by Brochard
et al and from equation (46) respectively. Values of the parameters required for the calcu-
lation of C(Pb) from equation (46) are listed in table 1. In particular, the apparent bulk
modulus of coal is set to K = 2.65GPa, which is the same value as reported by Brochard
et al. We observe a good agreement between the two models. This suggests that the under-
lying assumption of our model is reasonable in the context of supercritical fluid adsorption
in amorphous microporous solids such as coal.

Gas type C(Pb), Brochard et al C(Pb), this work
CO2 7.60± 20% 6.89± 8%
CH4 6.05± 7% 5.92± 2%

Table 2: Quantitative comparison with the model of Brochard et al based on a fit of Ottiger et al data.

4.4. Limitations of the model

As discussed previously, the central assumption of our model consists in considering that,
on average, the interstitial fluid behaves like a bulk fluid with pressure Pf . This assumption
is not true in general because it neglects the contribution of solid/fluid interactions to the
energy of the interstitial fluid. For instance, when dealing with ideal micropores models
(slit, cylindrical or spherical pores), the solid/fluid interactions result in a strong structural
ordering of the confined fluid and thus drive its thermodynamical state. More specifically, in
the case of slit pores models, these interactions induce the organization of the fluid in one or
several layers parallel to the planar pore walls. This layering results in a so-called solvation
(or disjoining) pressure highly sensitive to the distance between the solid planes and therefore
sensitive to the porosity [15, 16, 27, 28]. This pressure can be positive or negative and is thus
conducive to swelling or shrinkage of the microporous material. At the scale of the RVE, such
effects are significant in crystalline microporous solids with well-defined pores’ geometries
and narrow pore size distributions: under such conditions structural effects in the confined
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fluid are indeed important and local mechanisms involved at the pore scale directly impact
the global behavior of the material [29]. Shrinkage may also occur in isotropic microporous
materials, as evidenced by experiments performed on carbide derived carbons by Yakovlev
et al [30]. Our model, in its present formulation, cannot reproduce the shrinkage strains
observed in these experiments. Several factors should however reduce these confinement
induced ordering effects and the possible resulting shrinkage: (1) temperature, because it
increases molecular disorder; (2) Roughness of the pore walls, because it kills the symmetry
of the pore structure; (3) Polydispersity and isotropy of the porous network, because local
mechanisms are more likely to compensate at the scale of the RVE. For instance, Yakovlev et
al observed that increasing the temperature suppress the adsorption-induced shrinkage and
then only monotonous swelling is observed. In addition, Brochard et al performed molecular
simulations of gas sorption on unidimensional elastic carbon chains [12] . Their results show
that shrinkage is observed for crystalline chains, whereas amorphous chains can only swell.
Therefore, we arguably consider that our model pertains to amorphous microporous solids
with broad pore size distribution under high temperature conditions.

5. Conclusion

We have shown that the poromechanical theory can be refined to account for adsorption
induced swelling in saturated isotropic microporous solids. Because of fluid adsorption and
confinement effects in the micropores, the interstitial fluid is likely to exchange mechanical
work with the microporous skeleton, which eventually leads to the swelling of the porous
solid. The introduction of an effective pore pressure allows us to infer the virtual pressure
jump between the bulk and interstitial solutions, without relying on the description of the
interstitial fluid state at the local pore scale. By accounting for the chemical equilibrium of
the fluid phase, the effective pore pressure is related to a reduced set of macroscopic vari-
ables. This work explicitly quantifies the influence of the fluid molecules confinement degree
on the volumetric deformation of isotropic microporous solids during sorption of fluid. In
particular, this study points out the dependency of the effective pore pressure, and consecu-
tively the swelling strain and porosity variation, on the ratio between the excess number of
adsorbed moles nex and the total number of interstitial fluid moles nt. We have observed a
fair agreement between the fit of the theoretical predictions and several sets of experimental
data found in the literature. In addition, the significant variation of porosity, as predicted by
the model, suggests that the adsorption-induced swelling is likely to impact fluid transport
mechanisms through the microporous network.

Acknowledgements: Financial supports from ERC advanced Grant project Failflow (Ad-G
27769) is gratefully acknowledged.

References

[1] O. Coussy, Poromechanics, John Wiley Pubs, 2004.
[2] O. Coussy, Mechanics and Physics of Porous Solids, John Wiley Pubs, 2010.

18



[3] J. R. Levine, Model study of the influence of matrix shrinkage on absolute permeability of coal bed
reservoirs, Geol. Soc. Spec. Pub. 109 (1996) 197–212.

[4] S. Day, R. Fry, R. Sakurovs, Swelling of australian coals in supercritical CO
2
, url =

http://linkinghub.elsevier.com/retrieve/pii/S0166516207001334, volume = 74, year = 2008, Int. J.
Coal Geol. (????) 41–52.

[5] S. Day, G. Duffy, R. Sakurovs, S. Weir, Effect of coal properties on CO
2
sorption capacity under

supercritical conditions, Int. J. Greenh. Gas Con. 2 (2008) 342–352.
[6] S. Ottiger, R. Pini, G. Storti, M. Mazzotti, Competitive adsorption equilibria of CO

2
and CH

4
on a

dry coal, Adsorption 14 (2008) 539–556.
[7] F. Meehan, The expansion of charcoal on sorption of carbon dioxide, Proc. R. Soc. A 115 (1927)

199–207.
[8] D. Bangham, N. Fakhroury, The expansion of charcoal accompagnying sorption of gases and vapours,

Nature 122 (1928) 681–682.
[9] M. Vandamme, L. Brochard, B. Lecampion, O. Coussy, Adsorption and strain: The CO

2
- induced

swelling of coal, J. Mech. Phys. Solids 58 (2010) 1489–105.
[10] Z. Pan, L. Connell, A theoretical model for gas adsorption-induced coal swelling, Int. J. Coal Geol. 69

(2007) 243–252.
[11] S. Mushrif, A. Rey, An integrated model for adsorption-induced strain in microporous solids, Chem.

Eng. Sci. 64 (2009) 4744–4753.
[12] L. Brochard, M. Vandamme, R.-M. Pellenq, Poromechanics of microporous media, J. Mech. Phys.

Solids 60 (2012) 606–622.
[13] L. Brochard, M. Vandamme, R. J.-M. Pellenq, T. Fen-Chong, Adsorption-induced deformation of

microporous materials: Coal swelling induced by CO
2
- CH

4
competitive adsorption, Langmuir 28

(2012) 2659–2670.
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