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ABSTRACT 
Steam Generator (SG) tubes are subjected to fluid-elastic 

coupling forces and impacts against support plates & anti-
vibration bars. Understanding their vibrations is crucial not 
only at the design stage, but also to optimize the SG 
maintenance policy and to lengthen the SG service life. The 
aim of our research is to provide a better understanding of the 
conjugate stabilizing effects of impacts and coupling with fluid-
elastic forces. Since fluid-elastic forces are difficult to simulate 
and expensive to reproduce experimentally, the fluid coupling 
forces of our numerical model are represented using velocity 
dependent damping and stiffness matrices, both for the fluid 
and the tube. Their effect is experimentally reproduced having 
recourse to active vibration control in the frame of specifically 
designed “hybrid” experimental tests. In this paper, we present 
a method for modeling tube vibrations in order to estimate the 
conjugate effects of the coupling between the fluid elastic 
forces and impacts. This strategy lowers the costs and avoids 
the difficulties associated to the case of fluid in the 
experiments. Our numerical model will be implemented in the 
active control loop in the next step of the study.  

NOMENCALTURE 
b  : Influence vector 
𝒞 : Structural damping Matrix 
𝐶𝑑 : Dimentionless damping coupling coefficient 
Cf : Added fluid damping Matrix 
Ck : Dimensionless stiffness coupling coefficient 
D : Tube diameter 
𝐸𝑐 : Kinetic energy 
𝐸𝑚 : Mechanical energy 

𝐸𝑝 : Potential energy 
𝐸𝑝𝑐 : Impact potential energy 
Fc : Impact force 
Ffe : Fluid elastic force 
F𝑇 : Turbulence force 
𝑓 : Frequency vibration 
𝑓 : Rice frequency 
𝑔 : Gap distance 
𝒦 : Structural stiffness matrix 
Kc : Impact stiffness 
Kf : Added fluid stiffness 
𝑘f : Modal added fluid stiffness 
ℳ : Structural mass matrix 
Mc : Mass Impact 
M𝑓 : Added fluid mass 
𝑚f : Modal added fluid mass 
𝑞 : Generalized modal coordinates 
Tc : Impact duration 
𝑡 : Time 
𝑉 : Fluid velocity 
𝑉  : Dimensionless reduced fluid velocity 
𝑥 : Coordinate gap impact 
𝜌𝑓 : Mass density of the fluid 
𝜍 : RMS value 
𝜔 : Modal circular frequency (mode n) 
𝜁 : Modal damping (mode n) 
𝜑 : Eigenvector (mode n) 
𝜙 : Eigenvector matrix  
(∗) : Mode n 
(∗)( ) : Iteration n 
(∗) : Stagnant water (𝑉 = 0) 
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INTRODUCTION 
Steam generators are heat exchangers used to convert 

water into steam from heat produced in a nuclear reactor core. 
They are used in pressurized water reactors between the 
primary and secondary coolant loops. 

Figure 1. Steam generator 

When the steam generator is operating, water in the 
secondary loop partially changes to steam. When rising up, this 
fluid interacts with the U-tubes (see Fig.1), which are therefore 
subjected to flow excitation.  
This excitation can be split into two kind of forces: turbulence 
forces which are independent of the movement of the tube and 
the so-called fluid-elastic coupling forces, depending on 
acceleration, velocity, displacement and fluid reduced 
velocity[1][2]&[3] . The total flow excitation can be finally 
expressed as: 

𝐹𝑇 + 𝐹𝑓  (𝑦̈, 𝑦̇, 𝑦, 𝑉𝑟) = 𝐹𝑇 − 𝑀𝑓. 𝑦̈ − 𝐶𝑓(𝑉𝑟). 𝑦̇ − 𝐾𝑓(𝑉𝑟). 𝑦 
𝑉 = 𝑉/(𝑓 ∗ 𝐷)

(1) 

Where 𝑦̈, 𝑦̇ and 𝑦 are acceleration, velocity and 
displacement vectors. Under some specific conditions of fluid 
reduced velocity, 𝐶𝑓 is negative enough to make the structure 
instable. This phenomenon is called fluid-elastic instability and 
can damage the structure. The tubes are however supported by 
plates (see Fig.1) which guide them and limit their vibration 
amplitude. In fact, the impacts between the tubes and the plate 
tend to stabilize the tubes. Thus, we can finally represent the 
whole problem as below: 

ℳ ∙ 𝑦̈ + 𝒞 ∙ 𝑦̇ + 𝒦 ∙ 𝑦 = 𝐹 + 𝐹𝑓  (𝑦̈, 𝑦̇, 𝑦, 𝑉 ) + 𝐹 (2) 

Premultiplying the Eq.(2) by modal base Φ we get a set of 
independent equations of motion in the modal coordinates  

ℳ ∙ 𝑞̈ + 𝒞 ∙ 𝑞̇ +𝒦 ∙ 𝑞 = 𝑓 + 𝑓𝑓  (𝑞̈, 𝑞̇, 𝑞, 𝑉 ) + 𝑓 (3) 

Where 𝑞̈, 𝑞̇, 𝑞 are generalized acceleration, velocity and displacement 
vectors. Because these mechanisms are complex and difficult to 
realize in an experimental set up, the main aim of our study is 
to develop a hybrid control loop to simulate this coupling effect 
in the frame of an experimental characterization test bench. 

STRUCTURE & MODAL UPDATING 

Figure 2. Gap supported tube 

 The studied structure Fig.2 is composed of a tube attached 
to a slender plate clamped in rigid block. At the middle height 
of the tube, two gap stops located at 0.5mm create punctual 
impacts depending on the vibration amplitude of the tube. 

A finite element shell model was developed to generate the 
mass, damping and stiffness matrices. This model was updated 
in order to match the numerical behavior with experimental 
one. Two criterions were used to compare the numerical and 
experimental model: Modal Assurance Criterion (MAC) and 
frequency error criterion. Fig.3 & Tab.1 summarizes the results 
obtained for the 6 first modes. 

 
Figure 3. Modal updating (MAC) 

Tab 1. Frequency error 

It can be observed that there is a good agreement between 
the two models. The lowest values of  MAC is 85% and the 
mean frequency error is lower than 4%. 

Modes Numerical modal 
frequency 

Experimental modal 
frequency 

Error  

1 23.1 23  0% 
2 103 100 3% 
3 305 318 4% 
4 426 407 4.6% 
5 774 798 3% 
6 1300 1404 8% 

Mean 3.7% 
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EXPERIMENTAL IDENTIFICATION 

Impact stiffness: 

The only source of nonlinearity in our problem comes from 
the impact forces located at xc (middle height of tube), which 
are computed in an explicit manner as the Eq.(4) shows. 

Where Kc is the impact stiffness. The value of the 
parameter Kc is identified through experimental measurements. 
Several impact tests were performed in which the impact forces 
where measured by using force sensor. Knowing the mass 
sensor „Mc‟ and measuring the duration of the impact „Tc‟, we 
can deduce an estimation of the impact stiffness using the 
following approximation: 

𝑇𝑐 =
𝜋

𝜔
= 𝜋√𝑀 /𝐾

(5) 

Figure 4. Impact stiffness identification 

Figure 4 presents a histogram of the obtained results for 25 
tests.  Kc was estimated at 106N/m on average (for Tc = 0.3ms 
on average), which matches with the results found by P.Piteau 
[4] & T.Thenint[5]. 

Fluid-elastic forces parameters: 

In order to model fluid-elastic forces, a significant research 
effort has been conducted over the last four decades. These 
researches leaded to several theoretical models. We can quote 
M.Paidoussis [6], S.Price [7] or S.Granger [8] models etc. In 
our study we have chosen the CEA one [9] which is semi-
analytical model. In this approach, the parameters Mf, Cf and Kf 
are identified experimentally. 

Referring to works carried out by CEA [4], the first mode 
is predominant in the tube response and the effects of higher 

modes are almost negligible, thus the fluid elastic force is 
projected only on the first mode and the other modes are not 
influenced.  

𝑓𝑓. (𝑞,̈ 𝑞̇, 𝑞) = −(𝑚𝑓𝑞̈ + 𝑐𝑓(𝑉 )𝑞̇ + 𝑘𝑓(𝑉 )𝑞) (6) 

Therefore, the fluid-elastic effect can be finally modeled as 
fluid added mass, fluid added damping and fluid added 
stiffness. These last two coefficients are assumed depending on 
reduced fluid velocity Vr [4]. 

[
𝑚 +𝑚𝑓 0 0

0 𝑚 0
0 0 ⋱

] 𝑞̈ + [
𝑐 + 𝑐𝑓(𝑉 ) 0 0

0 𝑐 0
0 0 ⋱

] 𝑞̇

+ [
𝑘 + 𝑘𝑓(𝑉 ) 0 0

0 𝑘 0
0 0 ⋱

] 𝑞 = 𝑓 + 𝑓 

(7) 

At this stage, in order to completely identify fluid-elastic 
forces we should determine the three parameters mf, cf(Vr) 
and kf(Vr). The modal characteristics of the structure are 
assumed to be known in the air and the fluid-added mass mf 
doesn‟t depend on fluid velocity. This parameter is then 
identified through the measurement of the frequency of the first 
mode in stagnant water and by comparing it to the equivalent 
measurement in air mf. Concerning fluid added stiffness kf and 
damping cf, we infer these coefficients by measuring for each 
fluid velocity first mode frequency and damping coefficient 
(see Eq.(6) & Eq.(7)). 

𝜔 = √
𝑘 + 𝑘𝑓

𝑚 +𝑚𝑓

(8) 

𝜁 =
𝑐 + 𝑐𝑓

2𝜔(𝑚 +𝑚𝑓)

(9) 

In the Fig.5 & Fig.6 we recall the results of measurements 
given by  [4] for each value of fluid velocity. 

Figure 5. Identified first modal frequency depending 
on fluid velocity (m/s) 
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Figure 6. Identified first modal damping coefficient 
depending on fluid velocity (m/s) 

As we can notice, the damping become negative from 2.1 
m/s and the fluid elastic instability phenomenon appears. 
Nevertheless in non-linear case (with impacts), the structure 
remains stable because the gap stop limit the vibration 
amplitude of tube. In order to model this phenomenon, we have 
to introduce another dimensionless concepts, reduced velocity, 
coupling damping coefficient Cd and coupling stiffness 
coefficient Ck. These dimensionless coefficients will help to 
explain the stabilizing effect of the impacts. 

In his works, S.Caillaud [10] introduced the dimensionless 
coupling coefficient as follow: 

𝐶𝑑 = 8𝜋(𝑚 +𝑚𝑓)
𝜁 ∙
𝜔
𝜔
− 𝜁

𝜌𝑓 ∙ 𝐷²𝐿 𝑉 
(10) 

𝐶 = 8𝜋²(𝑚 + 𝑚𝑓)

𝜔
𝜔
− 1

𝜌𝑓 ∙ 𝐷²𝐿 𝑉 ²
(11) 

𝑉 = 𝑉/𝐷𝑓 (12) 

𝐿 = ∫ 𝜑 (𝑥)² 𝑑𝑥 (13) 

Where Le is the modal equivalent length calculated from 
the first mode shape, ζoand ωo are the modal damping 
coefficient and circular frequency in stagnant water. 

When including impacts in the problem, the expression of 
the reduced fluid velocity in Eq.(1) becomes a little more 
complicated, since it depends on vibration apparent frequency 
of tube and not anymore on the first modal frequency (7).  

There are different way to estimate this vibration tube 
frequency, we can quote for example zero-crossing method [11] 
& [12] and Rice frequency method fR [13]. This last method 
was chosen for our problem. 

fR is proportional to velocity RMS over displacement 
RMS of the tube free end within sliding size windows τ.  

fR(t, τ) =
σẏ(t, τ)

2πσy(t, τ)
(14) 

The dimensionless coupling coefficients Cd and Ck can be 
inferred from ζ and ω already measured. In addition, as shown 
in Eq.(10) & Eq.(11), they depend on reduced velocity. Figure 7 
presents the variation of dimensionless coupling coefficient 
depending on reduced velocity. It can clearly be seen that Cd 
become completely negative from about 3.8. 

Figure 7. Identified dimensionless fluid-elastic 
damping coupling coefficient depending on 

dimensionless reduced fluid velocity 

Figure 8. Identified dimensionless fluid-elastic 
stiffness coupling coefficient depending on 

dimensionless reduced fluid velocity 

NUMERICAL SOLVER 

 After determining experimentally all parameters, the next 
step is to create a numerical solver including all concepts we 
introduced to solve the nonlinear problem. The Newmark time 
integration solver has been implemented to get the tube 
response. Numerous studies have been conducted in linear as 
well as in nonlinear problems[14].  
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In our approach, a mechanical conservation energy 
criterion has been used in order to verify trustworthiness of the 
numerical results.  𝐸𝑚  is constituted by sum of three terms: 
kinetic energy, potential energy and shocks potential energy. At 
each computation step, theses energy are evaluated as follows 
and the sum is divided by the initial mechanical energy in order 
to get the conservation in percentage.  

𝐸𝑐( ) =
1

2
. (𝑦̇( ))

𝑇
.ℳ. (𝑦̇( )) (15) 

𝐸𝑝( ) =
1

2
. (𝑦( ))

𝑇
.𝒦. (𝑦( )) (16) 

𝐸𝑝𝑐( ) =
1

2. 𝐾𝑐
. (𝐹𝑐( ))

𝑇
. (𝐹𝑐( )) 

(17) 

First we applied this criterion on Newmark method alone 
without any correction algorithm taking in consideration the 
impacts, but it does not insure the conservation energy 
especially for long time simulation. To avoid this behavior, a 
Newton-Raphson algorithm [15] slightly modified has been 
implemented to in order to fit our tolerance requirement 
concerning the impact time. Figure 10 presents the energy 
conservation criterion after implementing Newton-Raphson 
algorithm for a computation step of 2.10-5s, we reached around 
100% of energy conservation with less than 1% of error Fig.11.  

Figure 10. Newmark with Newton Raphson method 
conservation energy 

Figure 11. Newmark with Newton Raphson method 
conservation energy error 

IMPACTS STABILIZING EFFECT 

At this stage, the parameters describing the fluid elastic 
force are depending on reduced velocity. The later includes the 
effect of the impacts through apparent frequency fR.  

The impact stabilizing effect can be explained by the 
conjunction of two phenomena: The first one is the dissipation 
due to the higher orders modes of the structure. In fact, when 
impact occurs, many modes not excited by the turbulent flow 
are excited, and will then dissipate a part of energy increasing 
the stability of the tube. The second phenomenon is the increase 
of the stiffness of the structure by being in contact with a stiff 
obstacle. During contact, since the apparent stiffness is 
increased, apparent frequency of the structure should also 
increase, hence decreasing the reduced velocity (Eq.(12)), 
which makes the fluid elastic load dissipating. The numerical 
results in Fig.9 illustrate well this phenomenon. 

Figure 9. (a) Tube response & estimated impact force 
(b) Apparent frequency (c) Reduced velocity 
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NUMERICAL VS EXPERIMENTAL RESULTS 

In this part we compare our first numerical results to the 
experimental one [9] for gap equal to 0.5mm and flow velocity 
of 2.1m/s in order to validate our numerical approach. On the 
left side, a detailed plot of the free end displacement for 
numerical simulation and experimental measurement are 
shown. On the right, there associated histograms are presented. 

Figure 12. Computed response & Experimental 
response respectively 

The direct comparison of the detailed plots is not 
appropriate and results should be compared in a statistical 
sense, since turbulence forces are modeled by random 
excitation with a bandwidth of 40Hz. But through this plot we 
can highlight the displacement which is bounded at about 
double distance of the gap. This can be apprehended from the 
first mode shape. Concerning the histogram, the distribution is
centered on zero, namely the initial equilibrium position. Also
notice the good agreement of the estimated time between the 
two results.

ACTIVE CONTROL 

In order to design the active part of the bench which 
simulates the fluid-elastic force effect, the characterization of 
each control loop component (shaker, accelerometer etc) must 
be performed. This stage is crucial because it allows complete 
mastering of the system. In this paper we do not give details 
about this modeling stage but we can refer to Dorf and Bishop 
works [16] for more details. 

Figure 13. Control loop 

After this phase of modeling, our efforts were conducted 
on plant designing [17]. The aim is to impose a root for first 

pole (first mode) in such a way that the whole system fit as 
much as possible the evolution of both first modal frequency 
and modal damping coefficient previously measured for 
different value of the control gain G. In this way, by controlling 
the gain the corresponding reduced velocity configuration can 
be reproduced. 

Figure 14 gives an example of a root locus of the system 
for a plant that we are still working on. As it can be noticed, the 
system becomes instable around the modal frequency of the 
tube in stagnant water for G = 0.25 and fluid elastic instability 
occurs. We are currently working on the experimental setup to 
validate these results before adding gap stops and studying the 
stabilizing effect of the impact. 

Figure 14. Root locus 

CONCLUSION 

A numerical model of the vibrations of a SG tube subjected 
to fluid-elastic and impact forces were obtained. This model 
was updated with experimental modal analysis results. The 
Newmark time integration method combined with Newton-
Raphson algorithm provided an estimation of the response of 
the tube subjected to fluid excitation forces and impacts. The 
next step of our study is devoted to implementation of this 
controller experimentally to reproduce the fluid effect on the 
real structure and validate the numerical approach.  
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