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Introduction

Recently, a revolution has taken place in the field of integrated micro-electromechanical systems(MEMS) that offers new opportunities for smart structure design and optimization. The next generation of smart composite structures [1,2] is able to be created via the mechanical integration of active smart materials, electronics, chip sets and power supply systems. The material's intrinsic passive mechanical behavior can be controlled through electromechanical transducers in order to attain new desired functionalities [3]. Among the control configurations found in published works, a well-known technique is the piezoelectric damping using external resistor-inductor shunt circuit [3][4][5][6][7][8][9]. This semi-active configuration has the advantage of guaranteeing stability, and can be obtained by bonding piezoelectric elements onto a structure and connecting the electrodes to the external shunt circuit. Due to straining of the host structure, and through the direct piezoelectric effect, a portion of the mechanical energy is converted into electrical energy and subsequently be dissipated by Joule heating via the connected resistor. The R -L shunt circuit on piezoelectric patches can be regarded as light oscillators instead of heavy mass-spring structures. By varying the inductance L in the shunt circuit, the tuning frequency can be adjusted to desired fre-quency band.

In order to analyze and design structures with piezoelectric elements, techniques for the prediction of dynamical behavior of this kind of structure have been developed. At first, analytical models have been proposed.

A uniform strain model for a beam with piezoelectric actuators bonded on the surface or embedded in it was developed in the work of Crawley and de Luis [10]. This model also incorporated shear lag effects of the adhesive layer the piezoelectric actuator and the beam. In the work of Lee [11], induced strain was treated as equivalent thermal effects, and a model based on classical laminate theory was presented. Zhang and Sun [12] constructed a new adaptive sandwich structure using the shear mode of piezoelectric materials. Governing equations for the proposed beam and its surface-mounted counterpart are derived based on the variational principle. And later, Hu and Yao [13] derived the elasticity solution of PZT generated wave propagation in terms of the wave reflection and transmission matrices based on the Timoshenko beam theory. Hagood and von Flotow [4] provided a comprehensive description of the dynamic of shunted piezoelectric patch. Based on the work of Hagood and von Flotow [4], Park [14] studied the vibration attenuation of beams via shunted piezoelectric elements, and proposed a mathematical model to describe the flexural vibration behavior of a cantilevered beam system with resonant shunt circuits.

The development of the finite element method(FEM) enabled the numerical modeling of various structures with piezoelectric elements [15]. It is an effective tool for the prediction of structural dynamic behavior as it possesses the advantages of widespread use in the engineering domain and the capability of treating complex geometry. Structures with shunted piezoelectric elements were treated properly with FEM [7,8]. However, the excessive computational time associated with large models constitutes one of the major limitations of this method. As an alternative, the numerical description of waves traveling into waveguides and slender structures like beams can be applied. This description provides a low cost and efficient way to capture the dynamic behavior of those structures as it only requires the treatment of a typical unit subsystem [16] whose sizes are related to the cross-section dynamics only. The Wave Finite Element(WFE) method [17][18][19], which is based on the classic finite element description of a typical cell extracted from a given global system, is an appropriate tool for the prediction of wave propagation in waveguides such as beams [20,21] and plates [22,23] in a wide frequency band. It is also known that the transfer matrix method can be applied to calculate the wave propagation in periodic or nearly periodic structures [24,25]. However, this method is less advantageous than the WFE and DMM approaches, as the latter give full finite element description of the waveguide's cross-section dynamics, for the coupling element as well. Model reduction techniques can also be applied in the WFE and DMM approaches.

Recently, Spadoni et al. [6] and Casadei et al. [9] have studied the control of wave propagation in plates with periodic arrays of shunted piezoelectric patches. Efforts have been dedicated firstly to developing the finite element formulation of shunted piezoelectric elements, then to characterizing the dispersion relation of waves propagating over the surface of plate structures and the band gaps in the frequency domain. An experimental investigation was carried out in the work of Casadei et al. [9] to test the performance of shunted piezoelectric patches via the forced response of the structure.

Wang et al. [26] has realized the same analysis on a beam with periodic shunted piezoelectric patches through an analytical model and corresponding experimental tests. Collet et al. [3] provided a full finite element description of a beam with periodic shunted piezoelectric patches via the WFE method, but emphasis was placed on the optimization of shunt impedance. The energy diffusion is supposed to occur at the interface between the part of the beam without shunted piezoelectric patches and the part of the beam with a set of periodic shunted piezoelectric patches. The energy diffusion related to a unit cell in the set of periodic patches is not analyzed. Suitable numerical tools which can characterize energy diffusion properties for structures with shunted piezoelectric elements still need to be properly developed. These tools will be applied for intensive computations aiming at the design of the piezoelectric patch and the electronic shunt circuit on the patch.

In this work, general formulations for smart structures with shunted piezoelectric patches are proposed. These formulations can be applied for all kinds of slender smart structures. On the whole, this paper focuses on two main objectives: 1. Offering efficient numerical tools for the prediction of wave propagation characteristics and dynamic behavior such as reflection and transmission coefficients of the wave modes, frequency and time responses of beam structures with a pair of shunted piezoelectric patches so as to design properly this kind of smart structures. Optimization of the unit cell in the periodic set of piezoelectric patches can be carried out with these tools to obtain optimal geometric and electric parameters.

Providing effective verification and validation ap-

proaches to evaluate wave propagation characteristics and dynamic behavior in order to test the efficiency of all the numerical techniques. This article is organized as follows: in Section 2, a brief outline of the WFE approach is provided (Subsection 2.1).

Then the numerical tool to predict the energy diffusion of the flexural wave mode in the beam with shunted piezoelectric patches is presented (Subsection 2.2). Thereafter, the numerical tool to evaluate the forced response of the structure, namely the Forced Wave Finite Element(FWFE) approach, is described (Subsection 2.3).

The approach to acquire time response of the structure is introduced in Subsection 2. 

Wave propagation and diffusion in structures through finite elements

The WFE method was employed to study the energy diffusion problem [17,[START_REF] Ichchou | Computer methods in applied mechanics and engineering[END_REF][START_REF] Huang | [END_REF]. These references provide a detailed description of the dynamical behavior of a slender structure, as illustrated in Figure 1, which is composed, along a specific direction (say X-axis), of N identical substructures. Note that this general de-scription can be applied to homogeneous systems whose cross-sections are constant. The dynamic of the global system is formulated from the description of the waves propagating along the X-axis.

Figure 1

Let us consider a finite element model of a given substructure k (k ∈ {1, . . . , N }) belonging to the waveguide (cf. Figure 1). The left and right boundaries of the discretized substructure are assumed to contain n degrees of freedom (DOFs). Displacements q and forces F which are applied on these boundaries are denoted by (q L , q R ) and (F L , F R ), respectively. It is assumed that the kinematic quantities are represented through state vectors u

(k) L = ((q (k) L ) T (-F (k) L ) T ) T and u (k) R = ((q (k) R ) T (F (k) R ) T ) T ,
and that the internal DOFs of substructure k are not submitted to external forces. According to Mencik and Ichchou [17], the continuity conditions between the substructures combined with the periodicity condition and the dynamical equilibrium of each substructure can finally lead to the following boundary value problem:

SΦ i = µ i Φ i , |S -µ i I 2n | = 0. (1) 
According to [3], the eigenvalues µ i and wavenumbers k i are linked through the relation µ i = e -iki dx , where d x denotes the length of the unit cell in X-axis. The real part of the wavenumber k i ,Re(k i ), represents the direction of the phase velocity of the corresponding waves:

if Re(k i ) > 0, the phase propagates in the positive x direction; if Re(k i ) < 0, the phase propagates in the negative direction, and if it is zero, k i corresponds to the wavenumber of a pure evanescent wave that only occurs when an undamped system is considered [23].

The matrix Φ of the eigenvectors can be described in this way:

Φ =     Φ inc q Φ ref q Φ inc F Φ ref F     , (2) 
where subscripts q and F refer to the components which are related to the displacements and the forces, respec-

tively; ((Φ inc q ) T (Φ inc F ) T ) T and ((Φ ref q ) T (Φ ref F ) T ) T stand
for the modes which are incident to and reflected by a specific boundary (left or right) of the heterogeneous waveguide, respectively. Finally, assuming modal decomposition, state vectors u

(k) L and u (k) R
of any substructures k can be expressed from eigenvectors {Φ i } i=1,...,2n [16]:

u (k) L = ΦQ (k) , u (k) R = ΦQ (k+1) ∀k ∈ {1, . . . , N }. (3) 
Here, vector Q stands for the amplitudes of the wave modes, which can be expressed by (cf.Equation ( 2)):

Q =     Q inc Q ref     . (4) 
The dynamical behavior of a periodic waveguide can be simply expressed from a basis of modes representing waves traveling in the positive and negative directions of the system. An analysis of the dynamical response consists of evaluating a set of amplitudes

{(Q inc(k) , Q ref(k)
)} k associated with the incident and reflected modes. Nevertheless, to evaluate energy diffusion, the formulation of the boundary conditions of the system is needed, and particularly at a coupling junction where several waveguides can be considered.

It should be mentioned that the whole system has free boundary conditions, and the coupling conditions are in fact boundary conditions for subsystems(waveguides and coupling element).

In order to characterize, in terms of wave modes, the coupling conditions between two different periodic waveguides, the two systems are assumed to be connected, in a general manner, via an elastic coupling element (see Figure 2). This study aims to predict the dynamics of complex systems which are composed of two periodic waveguides.

Figure 2

Let us consider two periodic waveguides which are coupled through a coupling element and let us consider two corresponding substructures (1 and 2) which are located at the ends of the waveguides (see Figure 2).

These substructures are coupled with the coupling element at surfaces Γ 1 and Γ 2 and are coupled with the other substructures, into waveguides, at surfaces S 1 and S 2 . It is assumed that the coupling element is only sub-ject to the coupling actions (i.e. there is no force inside the element).

According to Mencik and Ichchou [17], with the dynamical equilibrium of the wave guides and the coupling element, and their continuity conditions of nodal displacement and force expressed in the modal basis, it can be demonstrated that the dynamical behavior of a given coupled periodic waveguide i (i = 1, 2) can be simply expressed in terms of wave modes incident to the coupling element ((Φ

inc(i) q ) T (Φ inc(i) F
) T ) T , and wave modes reflected by the coupling element ((Φ

ref(i) q ) T (Φ ref(i) F ) T ) T
. In this sense, it can be proved that amplitudes

(Q ref(1) , Q ref(2)
) of the modes reflected by the coupling element can be related to amplitudes (Q inc (1) ,

Q inc(2) )
of the modes incident to the coupling element via a diffusion matrix, namely C, which relates the reflection and transmission coefficients of the wave modes through the dynamical behavior of the coupling element:

    Q ref(1) Q ref(2)     = C     Q inc(1) Q inc(2)     , (5) 
The diffusion matrix C directly depends on the normalization of eigenvectors {Φ

(1) j } j and {Φ

k } k . It seems advantageous to normalize the eigenvectors of the two waveguides in a similar manner.

Piezoelectric finite element formulation for the coupling element

In the Diffusion Matrix Model(DMM) [START_REF] Ichchou | Computer methods in applied mechanics and engineering[END_REF], in order to consider properly a coupling element with shunted piezoelectric patches, an appropriate formulation should be used. Firstly, the three-dimensional piezoelectric constitutive law can be written as:

T = c E S -e T E (6a) 
D = eS + ǫ S E (6b)
where E denotes the electric field vector, T the mechanical stress vector, S the mechanical strain, and D the electric displacement vector; c E represents the material stiffness matrix, e denotes the piezoelectric stress coupling matrix, and ǫ S is the permittivity matrix under constant strain. Equation (6a) represents the indirect piezoelectric effect, whereas Equation (6b) characterizes the direct piezoelectric effect. A finite element model of the coupled system consisting of a beam and a pair of identic piezoelectric patches with shunted circuit is then established, as displayed in Figure 3. 

M dd d + K dd d + K dv V = f (7a) K T dv d + K vv V = Q (7b)
where d and V represent the structural and electrical DOF respectively, and:

M dd = Vs N T d ρN d dV, K dd = Vs B T d c E B d dV, K dv = Vs B T d e T BvdV Kvv = Vs B T v ǫ s BvdV, f = S f N T d f dS, Q = Sq N T v qdS. ( 8 
)
in which N d and N v are the shape functions,

B d = DN d and B v = ∇N v . D is the linear differential oper-
ator matrix which relates the strains to the structural displacements U . In this case, the matrix D is given in Equation ( 9).

D =                      ∂ ∂x 0 0 0 ∂ ∂y 0 0 0 ∂ ∂z ∂ ∂y ∂ ∂x 0 0 ∂ ∂z ∂ ∂y ∂ ∂z 0 ∂ ∂x                      (9) 
After finite element assembly, the discretized coupled -For nodes inside the piezoelectric patches, their associated electrical DOF are called ϕ i .

The equations of motion are subsequently written in the form shown in Equation (10).

           Muu 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0                       ü φi φp φg            +            Kuu Kui Kup Kug K T ui Kii Kip Kig K T up K T ip Kpp Kpg K T ug K T ig K T pg Kgg                       u ϕi ϕp ϕg            =            F Qi Qp Qg            (10) 
As ϕ g = 0, the fourth equation and fourth column in the mass and stiffness matrices can be eliminated. Internal potential DOF can be determined by exact static condensation from Equation (10) since internal electric charges Q i = 0:

ϕ i = -K -1 ii K T ui u -K -1 ii K ip ϕ p (11) 
Since all the nodes on the potential electrode surfaces have identical potentials, an explicit transformation matrix T m can be used to define the master potential DOF ϕ m , as shown in Equation (12).

ϕ p = T m ϕ m (12) 
The use of Equation ( 12) yields the fully coupled dynamics:

    M uu 0 0 0         ü φm     +     H uu H up H T up H pp         u ϕ m     =     F Q m     (13) 
with

H uu = K uu -K ui K -1 ii K T ui ( 14a 
)
H up = (K up -K ui K -1 ii K ip )T m (14b) 
H pp = T T m (K pp -K T ip K -1 ii K ip )T m (14c) Q m = T T m Q p (14d)
After the definition of the master DOF, the R-L shunt circuit can be considered. The electrical impedance of the circuit under harmonic excitation can be written as:

Z sh = R + jωL (15) 
The current I sh in the shunt circuit can be expressed as Equation ( 16)

I sh = jωQ m = ϕ m Z sh (16) 
By substituting Equation ( 16) into Equation ( 13), the electrical DOF can be condensed and the equation that governs the structural dynamics under harmonic excitation is shown in Equation (17).

[

H uu -ω 2 M uu +H up ( 1 jωZ sh -H pp ) -1 H T up ]u = Du = F (17) 
Equation ( 17) gives a full finite element description of the beam with two symmetric shunted piezoelectric patches as a coupling element for the DMM calculation.

Matrix D represents the dynamical stiffness matrix of the coupling element.

Forced Wave Finite Element formulation

The WFE formulation provides wave propagation predictions under free boundary conditions. In order to obtain the forced response of the structure, the Forced Wave Finite Element(FWFE) formulation [18,29,30] can be employed. As mentioned in section 2.1, based on Equation (3) and Equation ( 4), amplitudes Q (k) which reflect for instance the kinematic variable u (k)

L for substructure k, are described from amplitudes Q (1) and

Q (N +1)
representing kinematic variables u 

(k ∈ {2, . . . , N }),q (k) L = q (k-1) R and -F (k) L = F (k-1) R
, the following relation can be found:

u (k) L = u (k-1) R ∀k ∈ {2, . . . , N } (18) 
which leads to

u (k) L = Su (k-1) L ∀k ∈ {2, . . . , N } (19) 
Equation ( 19) allows to write:

u (k) L = S k-1 u (1) L ∀k ∈ {1, . . . , N } (20) 
with S 0 = I 2n , and:

u (N ) R = S N u (1) L (21) 
Equation (20) and Equation ( 21) are projected on the basis {Φ i } i considering Equation (3). Since matrix Φ is invertible (it has been assumed that det[Φ] = 0), one obtains [31]:

Q (k) = Φ -1 S k-1 ΦQ (1) ∀k ∈ {1, . . . , N + 1} (22) 
that is (cf. Equation (1))

Q (k) =     Λ 0 0 Λ -1     k-1
Q (1) ∀k ∈ {1, . . . , N + 1} (23) where Λ stands for the (n × n) diagonal eigenvalue matrix for wave modes propagating in x positive direction, expressed by Equation ( 24) [31].

Λ =             µ 1 0 . . . 0 0 µ 2 . . . 0 . . . . . . . . . . . . 0 0 . . . µ n             (24) 
Expressing the boundary conditions of the waveguides in terms of amplitudes Q (1) and Q (N+1) allows us to express, from Equation ( 23), the dynamics of a given substructure k. In a general manner, the boundary conditions at a specific boundary of the waveguide can be formulated in this way:

Q ref | lim = CQ inc | lim +F ( 25 
)
where C stands for the diffusion matrix of the coupling element, and F denotes the effects of the excitations sources [18,32]. It is demonstrated in the work of Mencik et al. [32] that the general relation in Equation (25) can be applied to describe classical Neumann and Dirichlet boundary conditions. These conditions can be expressed as follows:

[0 | I] u = F 0 (N eumann) (26a) [I | 0] u = q 0 (Dirichlet) (26b)
They can be rewritten in the following manner via the projection of the state vector u onto the wave mode basis (see Equation ( 3)): fexc

Φ inc F Q inc + Φ ref F Q ref = F 0 (N eumann) (27a) Φ inc q Q inc + Φ ref q Q ref = q 0 (Dirichlet) (27b 
(ω k ) = M m=1 f exc (t m )e -jtmω k (28) 
This spectrum is then used in the FWFE approach to calculate the nodal displacement response û(ω m ) frequency by frequency. Subsequently, by applying an Inverse Discrete Fourier Transform(IDFT) to the frequency response, the time response can be acquired.

u(t k ) = 1 M M m=1 û(ω m )e -jt k ωm (29) 
It should be noted that M , the number of samples should be large enough to ensure the quality of the frequency and time response. Table 1 At first, the beam is treated as a waveguide and the corresponding dispersion curves of the wave modes propagating in the beam are extracted via the WFE approach, as shown in Figure 5.

Figure 5

Based on this calculation, the mesh resolution is chosen to be 0.005 × 0.005 × 0.002 m 3 , as the minimum wavelength of the Z-axis flexural wave mode is about 0.1m in the concerned frequency band. The DMM calculation of this wave mode gives the reflection and transmission coefficients as displayed in Figure 6, with R = 100 Ω and L = 2 H. The tuning frequency f tune of the piezoelec-tric patches is about 1340 Hz. In fact, around this frequency, the impedance of the structure is greatly modified by the shunted piezoelectric patches so that the wave propagation characteristics change significantly.

The tuning frequency can be calculated according to Equation (30):

f tune = 1 2π 2LC S p3 (30) 
where 

C S p3 = (1-k 2 31 )C T p3 is
C T p3 = ǫ T A 3 L 3 ( 31 
)
where A 3 is the area of the surface of the piezoelectric patch perpendicular to Z-axis, L 3 = h patch is the length of the piezoelectric patch in Z-axis direction.

Figure 6

Thereafter, these numerical results are compared to results derived from an analytical beam model. This beam can be divided into 3 propagation mediums, as shown in Figure 7.

Figure 7

It is a combination of 3 analytical models:

-For wave propagation in the beam, the classical Euler-Bernoulli beam model [33] is employed;

-For the part of the beam covered with 2 piezoelectric patches (Medium 2), a homogenization procedure [34] is applied;

-For the piezoelectric patches with shunted circuit, the model in the work of Hagood and von Flotow [4] is used.

This homogenized Euler-Bernoulli beam model with shunted piezoelectric patches offers analytical solutions to the reflection and transmission coefficients of the flexural wave. Assuming that the Young's modulus and density of the shunted piezoelectric patches are E patch and ρ patch . According to Hagood and von Flotow [4],

the shunt circuit modifies the material properties of the piezoelectric patch in the following way:

s sh patch jj = s E patch jj -Zel i d 2 ij ǫ T i (32a) E sh patch jj = c E patch jj 1 -k 2 ij Zel i (32b)
where s sh patch jj represents the shunted piezoelectric compliance in the jth direction and s E patch jj the mechanical compliance in the jth direction, while E sh patch jj de-notes the shunted piezoelectric stiffness in the jth direction, and c E patch jj the mechanical stiffness in the jth direction. k ij is the electromechanical coupling coefficient defined as shown in Equation (33a), and d ij is the piezoelectric strain coupling coefficient. Zel i denotes the relative electrical impedance defined as shown in Equation (33b). ǫ T i is the permittivity under constant strain in the ith direction.

k ij = d ij s E jj ǫ T i (33a) Zel i = jωC T pi Z shi jωC T pi Z shi + 1 (33b)
In the case of this work, there is no shunt circuit in the 1st(X-axis) and 2nd(Y -axis) directions, so Z sh1 = Z sh2 = ∞ and then Zel 1 = Zel 2 = 1. C T pi is the capacitance between the surfaces of the piezoelectric patch perpendicular to ith direction (at constant stress). For the considered beam to be homogenized, only the loading in the 1st direction (X-axis) is taken into account, thus the Young's modulus of the piezoelectric patch can be calculated as E patch = E sh patch 11 . The effective Young's Modulus E ef f of Medium 2 can subsequently be expressed in the form shown in Equation (34).

E ef f = E beam 12 h 3 ef f ( h 3 1 6 + 2d 2 1 h1) + E patch 12 h 3 ef f ( h 3 2 6 + 2d 2 2 h2) (34)
where

h ef f = h beam + 2h patch , h 1 = 1 2 h beam , h 2 = h patch d 1 = 1 4 h beam , d 2 = 1 2 (h beam + h patch ) (35) 
The effective density ρ ef f , area A ef f and moment of inertia I ef f are shown in Equation (36a), Equation (36b), and Equation (36c) respectively. 

ρ ef f = h beam ρ beam h beam + 2h patch + 2h patch ρ patch h beam + 2h patch (36a) A ef f = b beam (h beam + 2h patch ) (36b) 
I ef f = b beam (h beam + 2h patch ) 3 12 ( 36c 

Figure 8

The results issued from the DMM approach and those from the homogenized Euler-Bernoulli model correspond well below 2 kHz. However, at higher frequencies, as the homogenization method becomes inaccurate [35,36], those two approaches give different predictions of reflection and transmission coefficients of the flexural wave. Furthermore, the Euler-Bernoulli analytical model becomes also incorrect at middle and high frequencies, as its plane wave description of the bending mode is not a priori satisfied in this frequency range [17]. Nevertheless, these two different approaches give the same tuning frequency f tune . On the whole, the prediction performance of the DMM approach is well manifested in this case. It can also be concluded that the longitudinally bonded shunted piezoelectric patches (case B) results in a higher reflection of the flexural wave mode in the beam than those bonded transversally (case C).

Forced response prediction with FWFE

In order to predict the forced response of the beam with shunted piezoelectric patches, the FWFE method mentioned in Subsection 2.3 can be applied. The same beam with a pair of shunted piezoelectric patches in case B is taken as an example, as displayed in Fig-

ure 13(a).

Figure 13

To calculate the forced response, boundary conditions and the lengths of the waveguides should be specified.

As shown in Figure 13 24)). The boundary conditions of the system can be written in the following manner:

Λ ref 1 = Λ inc 2 = Λ -1 (see Equation (
Φ inc F1 Q inc(1) 1 + Φ ref F1 Q ref(1) 1 = F exc (37a) Φ inc F2 Q inc(N+1) 2 + Φ ref F2 Q ref(N+1) 2 = 0 (37b)
The boundary condition at the left extremity of Waveguide 1 is a Dirichlet boundary condition(Equation (37a)), whereas the boundary condition at the right extremity of Waveguide 2 is a Neumann one(Equation (37b)).

The continuity conditions of displacement and force between the waveguides and the coupling element form the coupling condition and can be expressed as:

    q LC F LC     =     q (N+1) R1 -F (N+1) R1     (38a)     q RC F RC     =     q (1) L2 -F (1) L2     (38b) 
where q LC and F LC stand for the nodal displacement and the nodal force at the left boundary of the coupling element, and q RC and F RC at the right boundary of the coupling element.

By substituing these continuity conditions into the dynamics of the coupling element(see Equation ( 17)), the boundary conditions at the right extremity of Waveguide 1 and those at the left extremity of Waveguide 2 can be obtained, as shown in Equation (39). D * denotes the dynamic stiffness matrix of the coupling element condensed on the DOFs located on the interfaces between the waveguides and the coupling element itself.

D *     q (N+1) R1 q (1) L2     = -     F (N+1) R1 F (1) L2     (39) 
Combined with the boundary conditions in Equation (37a) and Equation (37b) and the propagation relation(see Equation ( 23)), an equation system which gives the wave amplitudes Q in both waveguides under the excitation force F exc can be developed as follows:

A            Q inc(1) 1 Q ref(1) 1 Q inc(1) 2 Q ref(1) 2            =            Fexc 0 0 0            (40) 
A =            Φ inc F1 Φ ref F1 0 0 (D * 11 Φ inc q1 + Φ inc F1 )Λ N (D * 11 Φ ref q1 + Φ ref F1 )Λ -N D * 12 Φ inc q2 D * 12 Φ ref q2 D * 21 Φ inc q1 Λ N D * 21 Φ ref q1 Λ -N D * 22 Φ inc q2 + Φ inc F2 D * 22 Φ ref q2 + Φ ref F2 0 0 Φ inc F2 Λ -N Φ ref F2 Λ N           
The resolution of this equation system provides the wave amplitudes at the left boundary of the waveguides 1 and 2, and via Equation ( 23 time compared to ANSYS. Furthermore, ANSYS is not capable of analyzing shunt circuits with negative capacitance, but the FWFE method is able to deal with all kinds of shunt impedance.

Time response calculation and reflection coefficient verification

In Subsection 3.2, the frequency responses are calculated with an excitation force of constant amplitude in the frequency domain. In order to evaluate the time response, the approach mentioned in Subsection 2.4 is carried out. The reflection coefficients can be extracted from the time response and then be compared to those calculated with the DMM approach. This extraction technique can equally be applied in experiments to validate numerical results. Let's consider an aluminium beam with a pair of longitudinally placed R -L shunted piezoelectric patches. According to the dispersion curves shown in Figure 10, it can be noted that in the frequency band from 0 to 20 kHz, the bending modes are dispersive as their dispersion curves are not linear, whereas the tension/compression mode is non-dispersive as its dispersion curve is linear. As nondispersive waves can maintain their wave form during the propagation, and their group velocity is almost constant, it will be much easier to track them in the structure. The group velocity of the tension/compression mode is shown in Figure 16. It is almost constant in the frequency band from 0 to 20 kHz. As the wavenumber of the X-axis tension/compression mode is smaller than the Z-axis bending mode, the wavelength of the former mode is larger than the latter mode. So the same mesh resolution can be applied for the finite element models.

Figure 16

Based on this group velocity, the length of the beam is chosen to be 3 meters which is large enough so that incident and reflected waves can be clearly distinguished.

To 

It can be noted that when the beam is equipped with the piezoelectric patches, the reflection of the tension/compression wave is no longer null due to the added mass and stiffness. When the shunt circuit is applied onto the piezoelectric patches, the reflection becomes stronger and the damping effect can be observed in the reflected packet.

In order to verify the reflection coefficients calculated via the DMM approach and provide an effective experi- 3. With the group velocity V g of this wave mode, the damping ratio in time domain can be calculated as Material stiffness matrix c E : 

γ t = -| Im(k)V g |.
c E = 10 10 ×                      15 
                     P a
The piezoelectric stress coupling matrix e: 

        N/(V • m)
The permittivity matrix under constant strain ǫ S :

ǫ S = 10 -8 ×         1.011 0 0 0 1.011 0 0 0 0.591         C/(V • m)
Fig. 1 An illustration of a periodic waveguide [17].

Fig. 2 An illustration of the coupling between two different periodic waveguides [17]. 

4 .

 4 All these numerical techniques are applied in Section 3, where 3 study cases are investigated carefully. Besides the performance of the shunted piezoelectric patches on the control of flexural wave mode in the beam, the influence of the orientation (longitudinal or transversal) of these patches is tested as well. Subsequently, the beam is excited in the tension/compression mode with a wave packet excitation, and corresponding frequency and time responses are calculated, based on which the reflection coefficients can be extracted to verify DMM simulation results. Concluding remarks and perspectives of this work are presented in Section 4. 2 Outline of the numerical prediction tools for smart structures with shunted piezoelectric elements In this section, firstly the WFE formulation and the DMM are presented. Then the numerical models of beams with shunted piezoelectric elements are described in detail. The finite element diffusion model proposed in the work of Mencik and Ichchou [17] was extended to consider piezoelectric elements. All these techniques enable the calculation of parameters like reflection and transmission coefficients, the frequency response function, and the time response of the structure under wave packet excitation, so as to investigate the influence of the shunted piezoelectric patches on the propagation of wave modes in the beam. The formulations developed are general and can be employed for all types of slender structures with shunted piezoelectric patches.

Figure 3

 3 Figure 3
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  piezoelectric and structural field equations are finally given in terms of nodal displacements u and nodal electric potential ϕ. Following the electrode definitions mentioned in the work of Becker et al. [8], the electrical potential DOF in the piezoelectric patches are partitioned into three different groups: For nodes on the outer surfaces of the piezoelectric patches, their associated electrical DOF are called ϕ p , and they have the same electrical potential; -For nodes on the inner surfaces of the piezoelectric patches bonded to the beam, their associated electrical DOF are called ϕ g , and they are grounded;

  boundaries. According to the coupling relations between two consecutive substructures k and k-1

) 2 . 4

 24 Wave Finite Element method in time domain Based on frequency response of the structure issued from the FWFE method, the time response of the structure can be obtained in a rather simple way. For example, if a structure is subjected to an excitation force f exc in time domain [t k ] k=1...M , through a Discrete Fourier Transform(DFT), the spectrum of this excitation force fexc can be expressed in the frequency domain [ω k ] k=1...M .

3

  Numerical simulations of beams with shunted piezoelectric patchesIn this section, the DMM with shunted piezoelectric elements is firstly employed to calculate the reflection and transmission coefficients of the Z-axis flexural wave and the X-axis tension/compression wave in the beam. A full finite element description that takes the mechanicalelectrical coupling into account is given to the smart structure. The influence of the shunted piezoelectric patches on the propagation of these wave modes is carefully investigated, and an analytical model is developed to verify the numerical results. Subsequently, the FWFE approach is applied for the evaluation of the dynamical behavior of the structure in frequency domain.Unlike the DMM approach which gives predictions for the beam structure with free boundary conditions, frequency response functions can be obtained for the beam structure with forced boundary conditions. Waveguides are of finite length in this case. Thereafter, based on the frequency responses, the calculation of time responses of the structure under wave packet excitation is carried out. An extraction procedure is proposed to calculate reflection coefficients of the X-axis tension/compression mode so as to verify the results issued from the DMM approach.It should be mentioned that the problem of a piezo-electric patch shunted through a R -L circuit that acts as a vibration absorber or noise controller has been used extensively in the past and its behavior has been examined thoroughly via analytical or numerical models. However, no numerical tools that can predict wave propagation and diffusion in a unit cell belonging to a set of periodically distributed shunted piezoelectric patches are proposed in the literature. The effects of a piezoelectric patch shunted through a R -L circuit as a vibration absorber on the energy diffusion of a specific wave mode propagating in a slender system are never studied in detail. The focus of the present work lies in the wave propagation and energy diffusion problems in such systems, and new efficient numerical tools aiming at achieving these goals are provided and tested in this section.3.1 DMM approach applied for Z-axis flexural waveThe structures to be studied here are beams with two symmetric bonded R -L shunted piezoelectric patches.In the first case of study (Case A), the widths of the beam and the patches are the same. The finite element model of the coupling element is shown in Figure 4, with the definition of geometric parameters. The parameter L beam represents the length of the beam involved in the coupling element. Numerical values of those geometric parameters are listed in Table 1. The material of the beam is aluminium and considered as isotropic, with Young's modulus E beam = 70 GP a and Poisson's ratio ν beam = 0.34, and density ρ beam = 2700 kg/m 3 . The piezoelectric patches are fabricated by Saint Gobain Quartz (type SG P189) and the corresponding material characteristics are listed in Appendix A. This type of piezoelectric patch works mainly in the 3-1 mode, and the two piezoelectric patches should work in phase (both stretched or compressed) for the control of the tension/compression wave, whereas for the flexural mode, they should work in opposite phase (one stretched, the other compressed).
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  the capacitance of the piezoelectric patch measured at constant strain, and the 2 in front of L is due to the fact that the two piezoelectric patches are connected in parallel. If each piezoelectric patch has an independent shunt circuit, the 2 in front of L will disappear. The subscript 1 represents the Xaxis direction while the subscript 3 denotes the Z-axis direction. k 31 is the electromechanical coupling coefficient. C T p3 is the capacitance of the piezoelectric patch measured at constant stress. It can be calculated in the following manner:

)

  Reflection and transmission coefficients of the flexural wave propagating in the beam in case A are calculated analytically and the results are compared to those acquired through the DMM approach, as shown in Figure 8.

3. 2 3 . 2 . 1

 2321 Application of DMM and FWFE for the choice of configuration Prediction of reflection and transmission coefficients with DMM Two other numerical simulations are performed for an aluminium beam with two symmetric bonded shunted piezoelectric patches. All the material properties are the same as those used in case A, but the dimensions piezoelectric patch in these two cases (case B and case C) are 0.03 × 0.01 × 0.001 m 3 , and the dimensions of the beam section are 0.03 × 0.003 m 2 . These values are defined according to available materials in the laboratory so that the numerical results can be later validated experimentally. Two different configurations are tested: in case B, the two piezoelectric patches are bonded in the longitudinal direction of the beam, as shown in Figure 9(a), whereas in case C, these patches are bonded transversally on the same beam, as displayed in Figure 9(b). Numerical values of the geometric parameters are listed in Table 1, and there definitions can be found in Figure 9(a) and Figure 9(b).
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1 = Λ ref 2 =

 12 (a), one extremity of the beam is excited by a punctual force F exc , and the other extremity is free. The amplitude of the excitation force remains constant in the frequency domain. The first waveguide consists of N 1 identical unit cells while the second one consists of N 2 identical unit cells. The part of the beam covered with the pair of shunted piezoelectric patches is considered to be the coupling element. For the sake of simplicity, it is assumed that N 1 = N 2 = N . The two waveguides are identical as they belong to the same beam, thus Λ inc Λ, and

  ), wave amplitudes at any node in the two waveguides can be obtained. The nodal displacement in Z-axis at the center of the free extremity of the beam is used for the calculation of the frequency response function(FRF) of the beam. As an example, the length of the beam is chosen to be 1 m, thus N = 97. The pair of piezoelectric patches share the same shunt circuit with R = 100 Ω and L = 2.8251 H, in order to tune a flexural mode around 1350 Hz. The FRF with shunt circuit and without shunt circuit (open circuit case) are calculated numerically. Additionally, a classical finite element harmonic analysis has been performed using ANSYS to extract the FRF of the same structure in the open circuit condition. SOLID45 elements are used for the beam, and SOLID5 elements with electric potential DOF are applied for the piezoelectric patches. The finite element mesh resolutions are the same as those mentioned in subsection 3.2.1. The comparison results are displayed in Figure 14.
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  minimize the effect of induced dispersion by the piezoelectric patches, narrow band signals are used, composed of 2.5 cycles modulated by a Hanning window with the central frequency f 0 equal to 9 kHz. The time wave form and the spectrum of this wave packet excitation force is displayed in Figure 17. The maximum amplitude is 100 N and the sampling frequency is 20 times greater than the central frequency in order to guarantee the signal quality of the wave packet.

Figure 17 This

 17 Figure 17 

Figure 18 Subsequently

 18 Figure 18

Figure 19 From

 19 Figure 19

  mental evaluation technique for the reflection coefficient based on time response of the structure, the following extraction procedure is proposed: 1. The Hilbert Transform is applied to the time response of the structure, and its absolute value is representative of the envelope of the signal. The first peak represents the maximum amplitude of the incident wave, and the second peak for the reflected wave, as shown in Figure 21.
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 45 On the plot of the Hilbert Transform result, a damping curve can be drawn to take into account the damping effect caused by the distance between the measure point and the piezoelectric patches so as to evaluate the reflection coefficient correctly. This curve passes the first peak of the Hilbert Transform result and follows the exponential decreasing law defined by A = A 0 e γtt . A r denotes the amplitude of the reflected wave, and A i represents the amplitude of the incident wave with the attenuation effect taken into account, as shown in Figure 21. The reflection coefficient can be calculated as R = A r /A i . By varying the central frequency f 0 of the wave packet excitation, reflection coefficients at different frequencies can be acquired frequency by frequency in order to verify the reflection coefficients calculated with the DMM approach. The reflection coefficients of the tension/compression mode tuned at 9350 Hz are calculated via the DMM approach, and then compared to those obtained through the extraction procedure. It should be mentioned that this extraction procedure is a rather coarse evaluation tool for the reflection coefficients. If an error of ±10% is applied to each extracted reflection coefficient, then the envelope of the extracted reflection coefficients can be obtained. The results are shown in Figure 22.
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Fig. 3

 3 Fig. 3 Finite element model of a beam with symmetric shunted piezoelectric patches. The coupling element is the part of the beam with the two symmetric piezoelectric patches.

Fig. 4

 4 Fig. 4 Finite element model of the coupling element and definition of geometric parameters in case A.

Fig. 5

 5 Fig. 5 Dispersion curves of the wave modes propagating in the beam in case A: (1)Tension/compression wave in Xaxis (2)Torsional wave in X-axis (3)Flexural wave in Y -axis (4)Flexural wave in Z-axis. These wave modes are identified through their mode shapes (eigenvectors) issued from the WFE approach.

Fig. 6

 6 Fig. 6 Reflection and transmission coefficients of the Z-axis flexural wave mode propagating in the beam in case A. (Solid line)With R-L shunt circuit (Dashed line)Open circuit (Dashdotted line)Beam without piezopatches.

Fig. 7

 7 Fig. 7 Homogenized Euler-Bernoulli beam model with two symmetric R-L shunted piezoelectric patches.

Fig. 8 Fig. 9

 89 Fig. 8 Comparison of reflection and transmission coefficients of the flexural mode in Z-axis between the results of the homogenized Euler-Bernoulli beam model and those of the DMM approach in case A. (Solid line)DMM results (Dashed line)Homogenized model results.

Fig. 10

 10 Fig. 10 Dispersion curves of the wave modes propagating in the beam in case B and case C: (1)Tension/compression mode in X-axis (2)Torsional wave in X-axis (3)Flexural wave in Yaxis (4)Flexural wave in Z-axis. These wave modes are identified through their mode shapes (eigenvectors) issued from the WFE approach.
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 1112131415 Fig. 11 Wavelength of the flexural wave in Z-axis in case B and case C.

Fig. 16 Fig. 17

 1617 Fig.16 Group Velocity of the tension/compression wave in X-axis in case B.

  Fig. 17The time wave form and the spectrum of the wave packet excitation. (a)Time wave form (b)Spectrum.

Fig. 18 Fig. 19

 1819 Fig. 18 Configuration for the time response simulation of the tension/compression wave in X-axis.

Fig. 20

 20 Fig. 20 Time response of the structure under wave packet excitation. (Solid line)Piezoelectric patch with shunt circuit. (Dashed line)Piezoelectric patches without shunt circuit. (Dash-dotted line)Beam without piezoelectric patches.

Fig. 21

 21 Fig. 21 Hilbert Transform of the time response and the damping curve to extract the reflection coefficient of the tension/compression wave. (Solid line)Absolute value of the Hilbert Transform of the time response. (Dashed line)Damping curve based on spatial damping.

Fig. 22

 22 Fig. 22 Comparison of reflection coefficients of the tension/compression wave in X-axis calculated through the DMM approach and the extraction procedure. (Solid line)Calculation with DMM, piezoelectric patch with shunt circuit. (Dashed line)Calculation with DMM, piezoelectric patch without shunt circuit. (× markers)Calculation with extraction procedure. (Dash-dotted line)Envelope of the extracted reflection coefficients.

Table 1

 1 Numeric values of the geometric parameters in the coupling element shown in Figure 4(case A), Figure 9(a)(case B) and Figure 9(b)(case C). The units of all the parameters are in meter (m). Case L beam L patch b beam b patch h beam h patch

	A	0.04	0.04	0.02	0.02	0.004	0.002
	B	0.03	0.03	0.03	0.01	0.003	0.001
	C	0.03	0.01	0.03	0.03	0.003	0.001
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