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A High-Resolution Method for Direct Numerical 
Simulation of Instabilities and Transitions in a 

Baroclinic Cavity
Anthony Randriamampianina1 and Emilia Crespo del Arco2

16.1. INTRODUCTION

Baroclinic instability is recognized to be one of the 
dominant energetic processes in the large-scale atmo-

spheres of terrestrial planets, such as Earth and Mars, 
e.g., Pierrehumbert and Swanson [1995], and in the oceans. 
Its fully developed form as sloping convection is strongly 
nonlinear and has a major role in the transport of heat and 
momentum in the atmospheric and oceanic motions. Its 
time-dependent behavior also exerts a dominant influence 
on the intrinsic predictability of the atmosphere and the 
degree of chaotic variability in its large-scale meteorology 
[e.g, Pierrehumbert and Swanson, 1995; Read et al., 1998; 
Read, 2001]. On the other hand, the close analogy between 
the dynamics of the ocean and atmosphere has been 
reported by Orlanski and Cox [1973]: “Similar phenomena 
take place from the high frequency range characterized 
by internal gravity waves to the low range of frequen-
cies dominated by quasi-geostrophic motion. Detailed 
temperature measurements indicate that the ocean has 
relatively large-scale density discontinuities that are very 
much like atmospheric fronts. The oceanic fronts have a 
characteristic slope which is determined by the density 
difference, rotation and vertical shear of the currents par-
allel to the front. Since atmospheric fronts are known to 
be baroclinically unstable, it appears to be appropriate to 
suspect the same mechanism may be present in the ocean.”
Since the pioneering works of Hide [1958] in the 1950s, 

the differentially heated, rotating cylindrical annulus has 
been an archetypal means of studying the properties of 
fully developed baroclinic instability in the laboratory.

1Laboratoire Mécanique, Modélisation & Procédés Propres, UMR 
7340 CNRS, Aix Marseille Université, Marseille, France.
2Departamento de Física Fundamental, Universidad Nacional de 
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The system is well known to exhibit a rich variety 
of different flow r egimes, d epending u pon t he imposed 
conditions (primarily the temperature contrast �T and 
rotation rate �), ranging from steady, axisymmetric cir-
culations through highly symmetric, regular wave flows to 
fully developed geostrophic turbulence [Hide, 1958; Fowlis 
and Hide, 1965].
With the exponential increase in computing power these 

last decades, direct numerical simulation has become 
an indispensable tool for investigating the complex spa-
tiotemporal behaviors of baroclinic instability in the lab-
oratory, complementarily with experiments. Even though 
it does not yet allow for a complete study of the fully 
developed turbulent regimes, it provides new insight into 
the mechanisms responsible for these disordered flows. 
Moreover, direct numerical simulation, free of uncertain-
ties related to turbulence modelings and of imperfections 
of experimental setups, can supply more extensive data 
than measurements and thus facilitate the detailed anal-
ysis of the wave dynamics. In particular, it is useful to 
explore the different nonlinear flow regimes in the param-

eter space in order to accurately delineate a bifurcation 
diagram. Moreover, direct numerical simulation provides 
relevant information about the small-scale fluctuations 
that progressively destroy the regularity of the flow dur-
ing the transition toward geostrophic turbulence. Thereby 
it can efficiently serve as a guide to experiments and also 
supplement measurements.

16.2. NUMERICAL MODEL

16.2.1. Background

The first n umerical i nvestigations d evoted t o baro-
clinic waves in the differentially heated rotating cylindri-
cal annulus were reported by Williams [1969] based on
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a second-order finite d ifference a pproximation i n space 
and in time. The approach was implemented on staggered 
grids over a regular mesh for the pressure-temperature and 
the velocity components. An explicit second-order leap-
frog scheme was employed to discretize both the space 
and time derivatives. However the integration domain 
was restricted to a sector, only admitting the dominant 
wave and its harmonics. The cavity was filled with water, 
assumed to satisfy the Boussinesq approximation, with the 
density variation applied to the gravitational acceleration 
[Williams, 1971].
Then James et al. [1981] carried out a combined labora-

tory and numerical study of the steady baroclinic waves. 
Similar to the model proposed by Williams [1969], stag-
gered grids were used with a second-order finite difference 
formula, but without any arbitrary truncation of the full 
spectrum of the waves. A hyperbolic tangent transfor-
mation was introduced to stretch the mesh toward the 
boundaries in the radial and axial directions while keep-
ing uniform distribution in the azimuthal direction with 
Fourier series. To avoid severe constraint on the time 
step stability condition associated with these small grid 
sizes within the boundary layers, a Dufort-Frankel scheme 
was used for the diffusion terms, taking into account 
eventual variations of the viscosity, unlike the formula-

tion of Williams [1969]. Using a water-glycerol mixture 
as working fluid, properties were assumed variable, with 
quadratic and linear dependencies with the temperature 
respectively for the density and for the kinematic viscos-
ity and the thermal diffusivity. However, the authors did 
not achieve direct comparison of results between exper-
iment and numerical simulation under the same exter-
nal conditions, partially inferred to the restricted coarse 
resolutions used, due to the existing computer capacity 
constraints.

Hignett et al. [1985] continued these studies and 
obtained the same wave flow s tructure u nder identical 
conditions for the laboratory experiment and numerical 
simulation by using a different combination of water and 
glycerol than James et al. [1981]. They introduced density 
variations in centrifugal acceleration, contrary to James 
et al. [1981]. They put forward the intransitivity of the flow 
for steady wave state, corresponding to the coexistence of 
different stable wave structures under the same external 
conditions. They also mentioned the occurrence of hys-
teresis cycles during the transition from axisymmetric to 
nonaxisymmetric solutions, as already observed by Hide 
[1958] with an open upper free-surface configuration.
A sophisticated version, MORALS (Met Office/Oxford 

Rotating Annulus Laboratory Simulation), derived from 
the numerical tool proposed by James et al. [1981], was 
implemented at the University of Oxford, UK (AOPP), 
for the investigations of a wide spectrum of applications 
devoted to geophysical fluid dynamics.

The choice of high-resolution spectral technique in the 
present study stems from its ability to accurately pre-
dict the thresholds of the different bifurcations occurring 
during time-dependent flow r egimes, r esulting f rom its 
global character, in contrast with local finite difference 
discretization [Gottlieb and Orszag, 1977; Canuto et al., 
1987]. In particular, the accuracy of spectral techniques 
was discussed in detail by Pulicani et al. [1990] (see also 
Randriamampianina et al. [1990]) during the simulation of 
oscillatory convection at low Prandtl number. Moreover, 
the approach is well suited for the simulation of rotat-
ing flows in enclosures, where the boundary layer is three 
dimensional from its inception.

16.2.2. Governing Equations

The physical model, the so-called baroclinic cavity, con-
sists of an annular domain of inner radius a, outer radius 
b, and height d rotating around its vertical axis of symme-

try. The cavity is filled with a liquid defined by a Prandtl 
number Pr and is submitted to a temperature difference
�T = Tb − Ta between the inner, cold, and outer, hot,

cylinders closed by horizontal insulating rigid endplates.

One specific configuration involving an open upper free

surface is also considered.

In the meridional plane, the dimensional space vari-

ables (r∗, z∗) ∈ [a, b] × [0, d] have been normalized into

the square [−1, 1] × [−1, 1], a prerequisite for the use

of Chebyshev polynomials (where the asterisk denotes

dimensional variables):

r =
2r∗

b− a
−
b + a

b− a
, z =

2z∗

d
− 1.

The fluid is assumed to satisfy the Boussinesq approxima-

tion [Zeytounian, 2003] with constant properties except for

the density when applied to the Coriolis, centrifugal, and

gravitational accelerations, where ρ∗ = ρ0[1−α(T∗−T0)],

where α is the coefficient of thermal expansion and T0 is a

reference temperature T0 = (Tb + Ta)/2. However, it was

found that the contribution of density variation with the

Coriolis term ρ0αT
∗�ez ×V

∗ was negligible compared to

the centrifugal and gravitational ones. Moreover, for the

imposed external conditions, the variations with temper-

ature of viscosity and thermal diffusivity remain small,

keeping the value of Prandtl number almost constant

(at least below the margins of error from measurements).

The reference scales are the velocityU∗ = gα �T/2� and

the time t∗ = (2�)−1, and the nondimensional normal-

ized temperature is 2(T∗ − T0)/�T [Randriamampianina

et al., 2006].

Depending on the type of solution sought, axisymmet-

ric or nonaxisymmetric, two different approaches are con-

sidered independently for the governing equations of the

flow dynamics. In the first case, a vorticity stream function
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Table 16.1. Summary of the dimensions of the system, the fluid properties, and the governing
parameters for the liquid-filled cavity: Pr = 16.

Inner radius a 4.5 cm

Outer radius b 15. cm

Height d 26. cm

Gap width L = b− a 10.5 cm

Mean temperature T0 293 K

Temperature difference �T = Tb − Ta 2 K

Rotation rate � 0.25–1.25 rad/s

Volume expansion coefficient α 3.171 × 10−4 K−1

Kinematic viscosity ν 2.0397 × 10−2 cm2/s

Thermal diffusivity κ 1.2731 × 10−3 cm2/s

Aspect ratio A = d/L 2.47619

Curvature parameter Rc = (b + a)/L 1.857

Prandtl number Pr = ν/κ 16.0215

Rayleigh number Ra = gα �T L3/(νκ) 2.7735 × 107

Froude number Fr = �2L/g 6.69 × 10−4–1.67 × 10−2

Taylor number Ta = 4�2L5/(ν2d) 2.95 × 106 − 7.37 × 107

Thermal Rossby number � = g dα �T/(�2L2) 2.3475–0.0939

with azimuthal velocity formulation is introduced. Not

only does it reduce the number of equations to solve, in

comparison with the primitive variable velocity-pressure

formulation, but it also ensures a divergence-free velocity

field irrespective of the mesh used. An influence matrix

technique is implemented to treat the lack of boundary

conditions for the vorticity coupled with the stream func-

tion [Chaouche et al., 1990; Randriamampianina et al.,

2001, 2004]. For the three-dimensional solution, the prim-

itive variables are directly solved. We present hereafter

the details of the governing equations and the numerical

method for the latter.

In a frame of reference rotating with the cav-

ity, the resulting dimensionless system is written as

[Randriamampianina et al., 2006]

∂V

∂t
+

2Ra

A2 Pr Ta
N(V) + ez × V

= −∇
 +
4

A3/2 Ta1/2
∇2

V + F, (16.1)

∇ · V = 0, (16.2)

∂T

∂t
+

2Ra

A2 Pr Ta
∇.(VT) =

4

A3/2 Pr Ta1/2
∇2T , (16.3)

with


 =
p + ρ0gz− 1

2
ρ0�

2r2

ρ0gα �T d/2
,

F =
1

2
Tez −

Fr

4A
(r + Rc)Ter,

where er and ez are the unit vectors in the radial and axial

directions, respectively, and N(V) represents the nonlin-

ear advection terms. The parameters governing the flow

and the heat transfer are the aspect ratio A, the curvature

parameter Rc, the Prandtl number Pr, the Rayleigh num-

ber Ra, the Froude number Fr, and the Taylor number Ta

(see the definitions in Table 16.1). For a given fluid within

a fixed geometry, the Taylor number is one of the two

main control parameters traditionally used to analyze this

system, following, e.g., Fowlis and Hide [1965] and Hide

and Mason [1975]. The second parameter is the thermal

Rossby number,

� =
g dα�T

�2(b− a)2
≡

4Ra

Pr Ta
,

introduced by Hide [1958] as a stability parameter, which 
gives a measure of the buoyancy strength over the Coriolis 
term and appears explicitly as coefficient of the advection 
terms in equations (16.1) and (16.3).
The “skew-symmetric” form proposed by Zang [1990] 

was chosen for the nonlinear advection term N(V) = 
[V.∇V + ∇.(VV)]/2 in the momentum equation (16.1) 
to ensure the conservation of kinetic energy, a necessary 
condition for a simulation to be numerically stable in time.

16.2.3. Boundary Conditions

The boundary conditions are no-slip velocity conditions 
at all rigid surfaces,

V = 0 at r = ±1 and at z = ±1,
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thermal insulation at horizontal rigid surfaces,

∂T

∂z
= 0 at z = ±1,

and constant-temperature conditions at the vertical

sidewalls,

T = ±1 at r = ±1.

In the case of an open upper wall, planar free-surface

conditions are imposed, assuming the absence of verti-

cal deformation along this boundary, in agreement with

experimental observations for the control parameter val-

ues under consideration [Harlander et al., 2011]:

∂T

∂z
=

∂Vr

∂z
=

∂Vφ

∂z
= Vz = 0 at z = 1.

16.2.4. Solution Method

A pseudospectral collocation Chebyshev method is 
implemented in the meridional plane (r, z), in association 
with Galerkin-Fourier approximation in azimuth φ for 
the three-dimensional flow regimes to solve the primitive 
variable formulation described above. Each dependent 
variable is expanded in the approximation space PNM , 
composed of Chebyshev polynomials of degrees less than 
or equal to N and M in the r and z directions, respec-
tively, while Fourier series are introduced in the azimuthal 
direction with K modes.

For each dependent variable f (f ≡ Vr, Vφ , Vz, T , p), 
it reads

fNMK(r,φ, z, t)

=

N
∑

n=0

M
∑

m=0

K/2−1
∑

k=−K/2

f̂nmk(t)Tn(r)Tm(z) exp(ikφ),

where Tn and Tm are Chebyshev polynomials of degrees

n and m.

This approximation is applied at collocation points,

where the differential equations are assumed to be satisfied

exactly [Gottlieb and Orszag, 1977; Canuto et al., 1987].

We have chosen the Chebyshev-Gauss-Lobatto distribu-

tion defined by a high concentration of points toward the

boundaries, well suited to handle the thin dynamical and

thermal boundary layers expected to develop at high val-

ues of the Taylor Ta and Rayleigh Ra numbers, which

scale as Ta−1/4 (Ekman layer, along horizontal walls) or

Ta−1/6 (Stewartson layer, along vertical cylinders) and

Ra−1/4, respectively:

ri = cos

(

iπ

N

)

for i ∈ [0,N],

zj = cos

(

jπ

M

)

for j ∈ [0,M],

and a uniform mesh in the azimuthal direction according

to the Fourier series:

φk =
2kπ

K
for k ∈ [0,K].

The time integration used is second-order accurate and

is based on a combination of Adams-Bashforth (AB) and

backward differentiation formula (BDF) schemes, cho-

sen for its good stability properties [Vanel et al., 1986].

The resulting AB/BDF scheme is semi-implicit, and for

the transport equation of the velocity components in

equation (16.1),

3f l+1 − 4f l + f l−1

2 δt
+ 2N (f l) − N (f l−1)

= −∇
l+1 +
4

A3/2Ta1/2
∇2f l+1 + F l+1i (16.4)

where N (f ) is a “global term” including the advection

terms N(V) and the Coriolis term, Fi corresponds to the

component of the forcing term F, δt is the time step,

and the superscript l refers to time level. The cross terms

in the diffusion part in the (r,φ) plane resulting from

the use of cylindrical coordinates in equation (16.1) are

treated withinN (f ). The latter is discretized in time using

a second-order explicit AB scheme in order to main-

tain an overall second-order time accuracy with the BDF

scheme applied to the diffusion term, as shown in equa-

tion (16.4). An equivalent discretization applies for the

transport equation (16.3) of the temperature. For the ini-

tial step, we have taken f−1 = f 0. At each time step, the

problem then reduces to the solution of Helmholtz and

Poisson equations. We recall that the same time scheme is

also implemented for the integration of the axisymmetric

system, even though steady state solutions are sought.

An efficient projection scheme is introduced to solve

the coupling between the velocity and the pressure in

equation (16.1). This algorithm ensures a divergence-free

velocity field at each time step, maintains the order of

accuracy of the time scheme for each dependent variable

and does not require the use of staggered grids [Hugues

and Randriamampianina, 1998; Raspo et al., 2002]. At

each time step, a preliminary Poisson equation for the

pressure, directly derived from the Navier-Stokes equa-

tions, is first solved before integrating the governing sys-

tem described above. It allows for a variation in time of

the normal pressure gradient at boundaries [Hugues and

Randriamampianina, 1998], which plays an important role

for time-dependent flows, in particular in the presence

of an open free surface. A complete diagonalization of

operators yields simple matrix products for the solution

of successive Helmholtz and Poisson equations at each

time step [Haldenwang et al., 1984]. The computations of

eigenvalues, eigenvectors, and inversion of corresponding
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matrices from these Helmholtz and Poisson operators are 
performed once during a preprocessing step.

16.2.5. Computational Details

For the transition from the upper symmetric regime to 
the regular waves, the initial conditions corresponded to 
the steady axisymmetric solution at each azimuthal node 
to which a random perturbation was added to the tem-

perature field in azimuth. Subsequently, the strategy con-
sisted of progressively increasing the rotation rate without 
adding any further perturbations for the computation of 
the following successive three-dimensional solutions.
The length of time for each specific c omputed solu-

tion strongly depends on the fluid c onsidered, e .g., on 
the Prandtl number, due to the very different temporal 
behaviors involved. Some values of the wave drift were 
reported for air by Randriamampianina et al. [2006]. Theo-
retically, only one drift period of the large-scale baroclinic 
waves is necessary to have a complete analysis of the flow. 
But close to a bifurcation, corresponding to significant 
changes on the flow structure and temporal behavior, sev-
eral drift periods have been computed until the final state 
is reached. This was the case during the computations 
of the different bifurcations occurring at the transition 
between wave numbers m = 2 and m = 3 for air, in par-
ticular during the bifurcation between the quasi-periodic 
regimes QP2 and QP3 characterized by two and three 
incommensurate frequencies, respectively. On the other 
hand, the presence of small-scale inertia gravity waves in 
the cases of liquids required much longer drift periods 
of the baroclinic waves and higher resolutions to ensure 
grid independency of the solution than for air, therefore 
increasing the length of integration time to be simulated. 
The different meshes with the corresponding time step 
used are reported hereafter for each specific case treated.
For Pr = 16 with �T = 2K at � = 0.5125 rad/s, about 

7.62 × 10−5 CPU seconds per time step and per mode on 
the supercomputer NEC−SX5 (IDRIS, Orsay, France) 
were necessary to compute the different scales occurring 
simultaneously within the cavity once the transient was 
removed (see hereafter the corresponding time step and 
mesh used). The transient is assumed to be finished when 
a clear temporal behavior can be identified from the time 
evolution of one dependent variable taken at a fixed mon-

itoring point and when its random behavior disappears. 
The transient is also associated with the flow structure 
observed.

16.2.6. Validation

The numerical tools have been completely devel-

oped by the team [Chaouche et al., 1990; Hugues and 
Randriamampianina, 1998; Raspo et al., 2002]. The

three-dimensional solutions were previously validated by 
Randriamampianina et al. [1997] for a liquid-filled cavity 
(Pr = 13.07) with respect to the detailed results reported 
by Hignett et al. [1985] from a combined laboratory 
and numerical study. Comparisons have been carried out 
between our computations and their measurements for a 
regular steady three-wave flow ( characterized by a  domi-

nant azimuthal wave number m = 3). Very close agreement 
has been obtained for the qualitative structure of the flow 
pattern and for the quantitative comparison of the radial 
variation of the azimuthal velocity at different heights. 
Particular attention has been paid to the grid effect on 
the solution, which has served as a basis for subsequent 
studies.

16.3. RESULTS

Hide [1958] and Fowlis and Hide [1965], from their pio-
neering experimental investigations of baroclinic instabil-
ity using liquids as working fluids, h ave d elineated three 
main classes of flow r egimes: a xisymmetric r egimes, reg-
ular waves, and irregular waves or geostrophic turbu-
lence (see also Hide and Mason [1975]). The regular wave 
regimes are composed of the steady waves, denoted S, 
and the vacillation regimes subdivided into amplitude vac-
illation, AV or MAV (modulated amplitude vacillation), 
and structural vacillation, SV. The steady waves are deter-
mined by a dominant azimuthal wave number m in space 
and characterized by periodic oscillations in time induced 
by the uniform angular drift of the waves with constant 
amplitude. The amplitude vacillation regimes are defined 
by periodic (AV), quasi-periodic, or chaotic (MAV) tem-

poral behavior of the amplitude of the dominant wave 
number (for a detailed analysis of the amplitude vacilla-
tion phenomenon, see Chapter 3 in this book). The SV 
regime, an intermediate step before the transition toward 
geostrophic turbulence, is characterized by a spatiotem-

poral chaos but still with a well-defined d ominant wave 
number, as shown by the experimental evidence of Früh 
and Read [1997] (see also Read et al. [2008]).
Three specific fluids have been considered in the present 

study, air, a water-glycerol mixture, and water, in order to 
get insight into the important role played by the Prandtl 
number on the spatiotemporal characteristics of the baro-
clinic instability. Indeed, the Prandtl number Pr is a 
parameter of particular interest, also in the context of 
other convection problems. Fein and Pfeffer [1976], who 
carried out a careful survey of the main flow regimes 
in a thermally driven annulus using mercury, water, or 
silicon oils, found significant d i fferences i n  t he o nset of 
baroclinic instability in the region of the so-called lower 
symmetric transition at low Taylor number, where viscous 
diffusion and thermal diffusion are expected to play a 
major role. Some substantial differences in the onset of
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various types of regular waves were also noted at higher 
Taylor numbers. Jonas [1981] investigated the influence 
of Prandtl number on the incidence of various forms of 
vacillation using fluids w i th P r  r a nging f r om 1 1  t o  74. 
He reported that amplitude vacillation in particular was 
significantly m o re w i despread a t  h i gh P r andtl number, 
though the onset of “structural vacillation” close to the 
transition zone at high Taylor number was less sensitive 
to Pr. In most of the published studies so far, however, 
the range of Pr investigated has either been limited to rel-
atively high values (using liquids based on water, silicon 
oils, or organic fluids such as diethyl ether) or very low Pr 
in liquid metals (mercury).

16.3.1. Transition Between Successive Wave Numbers in 
Air-Filled Cavity Pr = 0.7

The geometric configuration c orresponds t o t he one 
used by Fowlis and Hide [1965] in their experimental stud-
ies of liquids, defined b y  a n  i n ner r a dius a = 3 4 .8 mm, 
outer radius b = 60.2 mm, and height d = 100 mm. 
The cavity is filled w i th a i r, Pr = 0 . 7, a n d a  tempera-

ture difference �T = 30 K is imposed between the two 
cylinders. For the rotation rate values considered, a res-
olution of N ×M × K =64  × 96 × 80 was used in the 
radial, vertical, and azimuthal directions, respectively, 
with a dimensionless time step δt = 0.1125. The results

are part of a previous work [Randriamampianina et al.,

2006].

Before our numerical investigations of the baroclinic

instability using air as working fluid [Randriamampianina

et al., 2006], there was not yet any available experimental

study devoted to this fluid with Pr = O(1). However, our

findings have subsequently motivated the installation of a

specific experimental rig at the university of Oxford, UK

[Castrejón-Pita and Read, 2007]. Then the measurements

confirmed a posteriori the computed results, especially the

route to obtain the AV regime. Indeed, unlike in previous

experimental works involving liquids, where the onset of

the m AV regime was associated with a decrease of the

rotation rate from the established steady wave regime mS

(defined by a dominant azimuthal wave number m), the

AV regime was observed when increasing the rotation rate

in this study with air, during the transition between two

successive steady waves regime, from an azimuthal wave

number m to m + 1.

Hide [1958] reported that the transition from axisym-

metric to regular wave regimes does not significantly

depend on the value of the Prandtl number but rather

depends on the thermal Rossby number through the

empirical criterion � ≤ �c = 1.58 ± 0.05. In the present

simulation, the first regular steady wave was obtained for

� = 1.488 < �c at Ta = 1.8 × 105 [Randriamampianina

et al., 2006]. In Figure 16.1 we display the bifurcation

0.17
0

0.05

US 2S 2AV 2MAV

QP3 Chaotic

0.1

0.15

0.2A
2

0.25

0.3

0.35

0.4

0.18 0.19 0.2

Ta [× 106]

0.21 0.22 0.23

Figure 16.1. Amplitude of the dominant azimuthal wave number mode at midradius and midheight versus the Taylor number 
showing the bifurcation diagram for the transition from the upper symmetric regime to a steady wave and subsequent vacillations for 
the m = 2 flows in the air-filled cavity.
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diagram showing the scenario for the transition from the

upper symmetric regime to a steady wave and subsequent

amplitude vacillations for the m = 2 flows. The, albeit

narrow, hysteresis at the transition between the axisym-

metric flow and the regular steady wave suggests a sub-

criticalHopf bifurcation, resulting froma zonal symmetry

breaking. By using a weakly nonlinear stability analysis in

the same air-filled configuration, Lewis [2010] confirmed

the subcritical Hopf bifurcation observed during our

numerical study. While Hide and Mason [1978] reported

that such an hysteretic behavior was observed only if

the upper boundary was a free surface, Koschmieder and

White [1981] presented evidence for the possibility of

small hysteresis in their experimental study of a water-

filled cavity. On the other hand, Castrejón-Pita and Read

[2007], using air as working fluid in their experiments,

mentioned the occurrence of the so-called weak waves,

characterized by� > �c, prior to the onset of fully devel-

oped regular waves, but did not observe any hysteresis

cycle. During this study, we did not find any hint of such

weak waves.

By progressively increasing the rotation rate, the transi-

tion sequence from the upper symmetric US flow through

all observed two-wave flows follows clear steps of increas-

ing complexity before bifurcating to three-wave steady

flow (the number before the letter denotes the dominant

azimuthal wave number): US → 2S(P) → 2AV(QP2) →

2MAV(QP3) → 2MAV(NP) → 3S(P), as illustrated in

Figure 16.1 showing the mean amplitude and the enve-

lope of the vacillation. Here, P stands for periodic, QP

for quasi-periodic (QP2 is characterized by two incom-

mensurate frequencies, and QP3 by three frequencies)

and NP for aperiodic regime. Steady wave solution 2S is

obtained for 1.8 × 105 ≤ Ta ≤ 2.05 × 105. The first

2AV regime, at Ta = 2.1 × 105, likely occurs via a sec-

ondary Hopf bifurcation from an oscillatory flow, also

known as a Neimark-Sacker bifurcation through a tem-

poral symmetry breaking. It is characterized by a second

frequency (QP2) resulting from the periodic oscillations of

the amplitude, in addition to the wave drift observed dur-

ing the regular steady flow. A further increase in rotation

rate brings a third frequency coming from the modula-

tion of the amplitude oscillations in the 2MAV regime.

This corresponds to a continuation of “the quasi-periodic

route to chaos” described by Newhouse et al. [1978], but

the nature of the initial solution as a quasi-periodic 2MAV

with three incommensurate frequencies was unusual. As

shown by Newhouse et al. [1978], generic three-frequency

flows are expected to be chaotic rather than periodic. To

our knowledge, no previous example of such a flow has

been reported from either numerical or experimental stud-

ies of baroclinic waves. The final type of flow dominated

bym = 2 was a chaotic 2MAV regime that can be induced

by a crisis as discussed in a similar baroclinic cavity by

Read et al. [1998], in analogy with a noise-induced crisis 
in a multistable system (see also von Larcher and Egbers 
[2005]). Crisis is characterized by a sudden change in 
the flow d y namics a n d t e mporal b e havior [ s ee Grebogi 
et al., 1983]. A further increase in rotation rate up to 
Ta = 2.3 × 105 from this chaotic solution leads abruptly 
to the steady 3S regime, also due to a crisis. The tempo-

ral behaviors of all the AV and MAV solutions have been 
confirmed by the calculations of the corresponding largest 
Lyapunov exponent, reported in Figure 16.2. The quasi-
periodic solutions have a largest Lyapunov exponent 
which cannot be distinguished from zero within the mar-

gin of error, while chaotic solutions are characterized by 
a positive Lyapunov exponent: 2.2 × 105 < Ta < 2.3 × 105 

[Randriamampianina et al., 2006].

16.3.2. Liquid-Filled Cavity: Pr = 16

The details of the system, the fluid p roperties, and the 
governing parameters are summarized in Table 16.1. The 
configuration c o rresponds t o  o n e e xperimental r i g used 
at the University of Oxford, UK [Wordsworth, 2009]. It 
consists of an annular domain of inner radius a = 4.5 cm, 
outer radius b = 15 cm, and height d = 26 cm. The cavity is 
filled with a liquid described by a Prandtl number Pr = 16 
and is submitted to a temperature difference �T =2  K  
between the inner, cold, and outer, hot, cylinders closed 
by horizontal insulating rigid endplates. Four values of 
the rotation rate have been considered, covering different 
flow regimes o f  baroclinic waves. For �  =  0.25, 0.35, and 
0.5125 rad/s, a mesh of N × M × K = 128 × 150 × 256 
was used in the radial, axial, and azimuthal directions, 
respectively, with a dimensionless time step δt = 0.0125. 
For the rotation rate value � = 1.25 rad/s, a refined resolu-
tion in the radial and azimuthal directions was necessary, 
N ×M × K = 150 × 150 × 320, with a dimensionless time 
step δt = 0.00625.
The values of the control parameters used in the numer-

ical simulation of the flow at these four rotation rates are 
represented in Figure 16.3 together with the experimental 
cases considered by Wordsworth [2009] in a (Ta, �) regime 
diagram. The slight difference between the measurements 
and the computations along the traverse corresponding to 
the temperature difference �T = 2 K in Figure 16.3 results 
from the change operated on the outer radius of the exper-
imental setup when drawing the diagram (bexp = 14.3 cm 
instead of the value b = 15 cm used in the simulations; 
see Table 16.1). However, no significant d ifferences were 
observed on the nature of the flow r egime between mea-

surements and computed solutions at identical control 
parameter values. Thus, in agreement with experimen-

tal investigations, the first v alue a t � = 0 .25 r ad/s, corre-
sponding to (�, Ta) = (2.3475, 2.95 × 106), yields a weak 
wave flow, w hile f or t he t wo o thers, a t �  v alues o f  0.35
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midheight in the liquid-filled cavity, Pr = 16.

and 0.5125 rad/s, located at (�, Ta) = (1.1977, 5.78 × 106) 
and (0.5586, 1.24 × 107) in the regime diagram, the flow 
evolves to a regular wave flow regime, characterized tem-

porally by an amplitude vacillation but with different 
dominant azimuthal wave numbers: 2AV and 3AV, respec-
tively. Even though experimental data were not available at 
these three specific values o f the rotation rate, the regime 
diagram established from experiments pointed out the 
existence of these regimes at the corresponding control 
parameter values, as is cleary shown in Figure 16.3. The 
rotation rate � = 1.25 rad/s with (�, Ta) = (0.0939, 7.37× 
107) leads to a structural vacillation 3SV regime close to 
the transition zone as revealed by measurements. In the 
remainder of this section, comparisons of computed solu-
tions with available experimental data [Wordsworth, 2009] 
are carried out for this rotation rate. Finally, preliminary 
results from a first attempt to obtain a turbulent flow using 
direct numerical simulation are discussed and compared 
with measurements [Wordsworth, 2009].

16.3.2.1. Weak Waves. At the lowest value of rota-
tion rates considered, � = 0.25 rad/s (Ta = 2.95 × 106), 
the simulation predicts a “weak wave” flow regime with 
a dominant azimuthal wave number m = 2, in agree-
ment with experimental findings, as can be seen in Figure 
16.3. Similar to the observations of Castrejón-Pita and 
Read [2007] during their experimental investigations in 
an air-filled cavity, the corresponding thermal Rossby 
number � = 2.3475 is larger than the empirical criti-
cal value �c = 1.58 ± 0.05 determined by Hide [1958] for 
the occurrence of a regular wave regime. This particular 
flow, developing prior to the onset of regular steady wave,

is characterized by a small amplitude of the azimuthal

variations of the temperature, Am/�T < 0.01 [Hide and

Mason, 1978], where m refers to the dominant azimuthal

wave number. Figure 16.4 shows the time-averaged spa-

tial spectra of the amplitude of the azimuthal wave mode

fromFourier analysis of the temperature atmidradius and

midheight (rmid, zmid). The fractional amplitude of the

temperature A2/�T ∼ 0.005 at �=0.25 rad/s is about 10

times smaller than that of the regular waves obtained at

higher rotation rates, �=0.35 (A2/�T) and 0.5125 rad/s

(A3/�T), for which � < �c. Similar behaviors have been

mentioned by Castrejón-Pita and Read [2007] from their

experimental investigations of weak waves in an air-filled

cavity. Moreover, it was found that the computed flow

structure toward the upper half of the cavity remains

broadly axisymmetric while the baroclinic waves are

trapped toward the bottom of the cavity (Figure 16.5).

This is consistent with the observations of Hide and

Mason [1978] using liquids, but in contrast with the flow

pattern reported by Castrejón-Pita and Read [2007] using

air as working fluid with the weak waves visible at all

heights of the cavity. This difference can be explained by

the thermal stratification levels resulting from the differ-

ent fluid properties, e.g., the Prandtl number. In the case

of air, the Prandtl number is one order of magnitude lower

than in liquids, leading to amore uniform density gradient

along the vertical direction than in liquids, where a higher

density gradient prevails in the lower part of the cavity.

As a consequence, the baroclinic instability first develops

near the bottom region in cavities filled with liquids.

Another feature of the weak waves comes from their

angular drift velocity relative to the cavity. Hide and

Mason [1978] found that weakwaves drifted faster that the
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Ω = 0.25 rad/s Ω = 0.5125 rad/sΩ = 0.35 rad/s

Figure 16.5. Instantaneous isotherms for the three rotation rate values at different heights of the liquid-filled cavity: top at 
midheight z/d = 0.5, bottom at z/d = 0.19.

strong waves, and Castrejón-Pita and Read [2007] reported 
a ratio up to 10 in their air-filled experiment. In our case, 
for the dimensionless drift frequency, we have obtained a 
ratio of 2 between the weak wave at � = 0.25 rad/s and 
the next strong wave at � = 0.35 rad/s, and a ratio of 1.22 
between the two regular waves. These behaviors are con-
sistent with the measurements of Hide and Mason [1978] 
in a liquid-filled cavity, keeping in mind that the computed 
solutions at � = 0.25 rad/s and � = 0.35 rad/s are charac-
terized by the same dominant wave number m = 2, while 
at � = 0.5125 rad/s, the dominant azimuthal wave number 
is m = 3. Both experimental investigations, using liquids 
[Hide and Mason, 1978] or air [Castrejón-Pita and Read, 
2007], mentioned the marked transition between weak and 
strong waves. It is concluded that the presence of weak 
waves prevents the occurrence of a hysteresis cycle during 
the transition from the upper symmetric regime to reg-
ular waves, as these two phenomena were not observed 
simultaneously.

To our knowledge, the present numerical study repre-
sents the first simulation cleary showing such a weak wave 
flow occurring prior to the regular wave regime within a 
baroclinic cavity, in agreement with experimental findings.

16.3.2.2. Amplitude Vacillation Flow Regime. At � 
values of 0.35 and 0.5125 rad/s, corresponding to

(�, Ta) = (1.1977, 5.78 × 106) and (0.5586, 1.24 × 107),

respectively, in Figure 16.3, the simulation predicts two

regular wave regimes characterized spatially by dominant

azimuthal wave numbers m = 2 and m = 3, respectively,

as revealed by instantaneous isotherms in Figure 16.5 and

temporally by an amplitude vacillation. These solutions

have been directly obtained by progressively increasing

the rotation rate; e.g., the solution at the higher rota-

tion rate � = 0.5125 rad/s was computed using as initial

conditions the one at lower rotation rate �=0.35 rad/s.

The simulations were not able to capture any steady reg-

ular wave flow, although experiments reported 2S and

3S regimes in Figure 16.3, keeping in mind that 2AV

(3AV) regimes resulted experimentally from steady waves

2S (3S) by decreasing the rotation rate (see Chapter 3).

Moreover, as soon as the large-scale regular baroclinic

structures arise, we have observed the spontaneous devel-

opment of small-scale fluctuations particularly along the

cold inner cylinder, even though experimental studies did

not mention such a behavior. However, it can be explained

by possible technical limitations to detect the very low

level of these fluctuations at these rotation rates [Read,

1992]. Thus, in some particular regions, the computed

flow exhibits locally a spatiotemporal chaotic behavior.

As introduced previously by Randriamampianina et al.

[2006] to describe the temporal characteristics, we use the
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representation in the phase space based on time series of

cosine and sine components of the dominant azimuthal

wave number from a Fourier analysis of the tempera-

ture at two specific fixed (r, z) locations. We display these

behaviors in Figure 16.6 at � = 0.5125 rad/s, for which

the intensity of the small-scale features was found high-

est between the computed AV solutions. In agreement

with the experimental findings of Wordsworth [2009], the

first plot at midradius and midheight (rmid, zmid) shows

a “classical” 3AV profile defined by two frequencies: the

wave drift represented by the large circle and the peri-

odic oscillations of the wave amplitude, both related to

the baroclinic instability [Randriamampianina et al., 2006].

The second map, taken at a radius location rbl inside the

boundary layer along the inner cold cylinder and at a

height near the bottomwall, zbot, clearly exhibits a chaotic

behavior corresponding to a 3MAV regime.

Since such different AV and MAV regimes were

not observed simultaneously under fixed values

of control parameters within the air-filled cavity

[Randriamampianina et al., 2006] but successively

when increasing the values of rotation rate as shown in

Figure 16.1, this localized 3MAV is directly ascribed to

the presence of small-scale features. From their recent

direct numerical simulation in a liquid-filled baroclinic

cavity with Pr= 24.47, Jacoby et al. [2011] identified

these small structures, occurring spontaneously and

simultaneously with the large-scale baroclinic waves, as

inertia-gravity waves (IGWs). The characteristics of the

IGWs observed in the present configuration are discussed

by Randriamampianina [2013]. The values of the sine and

cosine components reported in Figure 16.6 are related to

IGW activity, more specifically t o t he b alance between 
the two phenomena involved, with highest values associ-
ated with baroclinic instability. It reflects t he variability 
of IGWs and the interaction between these two waves 
characterized by very different scales in time and in space. 
In particular, it puts forward the ability of the IGWs to 
induce locally a chaotic regime of the large-scale flow 
motion. Such a behaviour was not mentioned either by 
experiments [Wordsworth, 2009] or by previous simula-

tions using liquids [Hignett et al., 1985; Jacoby et al., 
2011]. From their numerical simulation based on finite 
difference approximation, Hignett et al. [1985] obtained 
also the AV regime, using a liquid defined by Pr =  13.07, 
but did not report the presence of these small-scale 
features. On the other hand, we did not observe the 
appearance of these fluctuations s imultaneously with 
baroclinic waves when considering air in the present 
geometry, but rather we found the same flow structures 
reported by Randriamampianina et al. [2006] for air 
using different geometric dimensions. It clearly reveals 
the strong dependence on the Prandtl number of the 
baroclinic instability characteristics through the thermal 
stratification o f t he fl ow. Ag ain we  re fer th e re ader to 
Chapter 3 in this book about the detailed analysis of the 
amplitude vacillation flow regime, particularly about the 
different mechanisms responsible for their occurrence.

16.3.2.3. Structural Vacillation Flow Regime. In spite 
of a well-defined dominant azimuthal wave number, this 
flow is characterized by the presence of small-scale fluc-
tuations which progressively destroy the regularity of
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z/d= 0.25 z/d= 0.50 z/d= 0.75

Figure 16.7. Comparison of flow structures between experimental measurements at midheight z/d = 0.50 (top) and computed 
solutions at different heights (bottom) for the structural vacillation regime in the liquid-filled cavity, Pr = 16.

the large-scale baroclinic waves and therefore eventually

lead to disordered flow [Früh and Read, 1997; Read

et al., 2008]. We have carried out comparisons of flow

structures between our computed results and labora-

tory measurements obtained by Wordsworth [2009] (see

also Wordsworth et al. [2008]). The rotation rate used

in the experimental study was �=1.3 rad/s while in the

simulation �=1.25 rad/s was used, corresponding to

(�, Ta)= (0.0939, 7.37× 107), which is located close to

the transition zone in the regime diagram (Figure 16.3),

with a temperature difference �T = 2 K. In both cases, a

SV regime was obtained. The experiment reported 4SV, as

revealed by instantaneous streaklines in Figure 16.7, but

also 3SV as seen in Figure 16.8 from the azimuthal veloc-

ity and axial vorticity in a horizontal plane. This situation

reflects the intransitivity phenomenon, inherent to rotat-

ing flows in cavities, with the coexistence of different stable

flow structures, e.g., different dominant azimuthal wave

numbers, under the same imposed external conditions (see

also Figure 16.3). The simulation predicts a 3SV regime.

The flow exhibits a chaotic behavior induced by the ran-

dom presence of small-scale fluctuations over an almost

regular arrangement of waves at midheight (z/d =0.5),

as can be seen in Figure 16.7. Such a flow structure

was already observed in a rotating cavity under symmet-

rical boundary conditions to ensure mass conservation

due to the antisymmetry of the flow with respect to the

midheight [Randriamampianina et al., 2001]. In particular,

it is clearly visible in Figure 16.7 from the two instanta-

neous computed streaklines at different heights z/d =0.25

and z/d =0.75 located symmetrically with respect to the

midheight, the onset and the growth of additional struc-

tures randomly induce the breakdown of the regularity

of the large-scale baroclinic waves. This phenomenon,

associated with the loss of symmetry of waves, known

to be characteristic of the structural vacillation regime,

ultimately leads to the fully disordered flow. The IGWs

mentioned above at lower rotation rate values, �=0.35

rad/s and �=0.5125 rad/s, are found to be the small-scale

fluctuations responsible for the chaotic behavior of this

SV flow, in contrast with the air-filled cavity where the

mechanism of transition resulted from radial buoyancy in

a Rayleigh-Bénard-like rotating flow [Read et al., 2008].

In the latter case the centrifugal acceleration was greater

than the gravity everywhere inside the cavity, giving a local

Froude number Frr ≡ �2r∗/g> 1, r∗ ∈ [a, b], while in the

present computations, Fr= 1.67× 10−2 (see Table 16.1).

We have compared the instantaneous contours of the

azimuthal velocity and of the axial component of the vor-

ticity between the available experimental measurements

[Wordsworth, 2009] and the computed solutions at mid-

height in Figure 16.8. We note the overall good agreement
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Figure 16.8. Comparison of flow characteristics at midheight between experimental measurements (top) and computed solutions 
(bottom) for the structural vacillation regime in the liquid-filled cavity, Pr = 16. For color detail, please see color plate section.

of the flow patterns obtained w ith t he two approaches, 
in particular the similarity of large-scale structures, char-
acterized by the same dominant azimuthal wave number 
m = 3. The slight discrepancy may result from the dif-
ferent isovalues chosen on contours by each approach. 
We note the presence of small-scale fluctuations initially 
developing along the inner cold wall, identified as IGWs 
and postulated to be the main mechanism responsible for 
the spatiotemporal chaotic behavior during the transition 
to turbulent flow regimes. Indeed, t hese small-scale fea-
tures are expected to grow randomly in the whole cavity 
for the irregular waves. We refer to Wordsworth et al. [2008] 
for a detailed analysis of the experimental investigations.

16.3.2.4. Irregular Wave Regime. Direct numerical 
simulation was carried out to provide a first attempt to 
obtain the irregular wave regime in a baroclinic cavity 
and to compare the results with experimental data pro-
vided by Wordsworth [2009] (see also Wordsworth et al.

[2008]). The imposed external conditions represent a tem-

perature difference between the two cylinders of �T =2K

with a rotation rate �=3 rad/s for the simulation, corre-

sponding to �=0.016 and Ta= 4.25× 108, while for the

experiment �=3.9 rad/s. The mesh used was N × M ×

K =256× 128× 512 in the radial, axial, and azimuthal

directions, respectively, with a dimensionless time step

δt=0.000125. The preliminary computed solution is com-

pared with experimental measurements in Figure 16.9,

showing the complex flow structure, where any dominant

azimuthal wave number can be extracted as in the SV

regime discussed above (see also the Figure 3 presented

by Wordsworth et al. [2008]). The solution is obviously

still far from its asymptotic state. However, this first result

demonstrates the ability of the present numerical tool to

compute the complex irregular waves in baroclinic cavi-

ties. The computed structures mimic very well the streak

photographs illustrating irregular waves reported byHide

and Mason [1975] from their experimental studies in a
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Figure 16.9. Comparison between experimental visualization and computed solution for the irregular wave regime in the liquid-filled 
cavity, Pr = 16.

water-filled c avity. Wordsworth e t a l. [ 2008] r eported a 
detailed analysis of the experimental investigations. The 
prohibitive CPU time cost resulting from an adequate 
mesh resolution required to resolve all the scales of the 
flow did not allow statistical convergence in a reasonable 
time. It also points out the actual limitations of computing 
power. An extension of the present numerical tool to par-
allel machines is in progress by implementing a domain 
decomposition technique, which should allow sufficient 
resolution to capture all the turbulence scales.

16.3.3. Open Free-Surface Water-Filled cavity: Pr = 7

Preliminary results are reported for an open upper 
free-surface cavity using water as working fluid, Pr = 7, 
and compared with available measurements from 
K. Alexandrov, Y. Wang, U. Harlander, and C. 
Egbers (DFG-MetStroem reference experiment, BTU, 
Cottbus, Germany). The geometric configuration 
used in the simulation is the one considered above in 
the liquid-filled cavity, with an inner radius a = 4.5 
cm, outer radius b = 15 cm, and height d = 26 cm, 
while a = 4.5 cm, b = 12 cm, and d = 13.5 cm in the 
experimental setup [Harlander et al., 2011]. 
Comparison concerns the tem-perature distribution at 
the upper free surface for a regular wave flow. It is 
recognized that the occurrence of baroclinic instability 
does not depend on the presence or absence of a top lid 
[Hide and Mason, 1978], even though significant 
differences can be observed. The open free surface, by 
inducing a shear flow, triggered by the use of Neumann 
conditions at this boundary in the numerical 
simulation, yields a motion at this top height with the 
associated temperature behavior. On the other hand, in 
the presence of a rigid lid, a part of the upper region 
remains at the same temperature as the outer hot wall, 
as was observed in the liquid-filled cavity with Pr = 16

[Randriamampianina, 2013]. Moreover, at low rotation

rate for the later fluid in the weak wave regime, baroclinic

instability was found to develop first near the bottom wall

due to higher density gradient level toward this region

(see Figure 16.5).

We display in Figure 16.10 the instantaneous tem-

perature field at the open upper free surface obtained

from simulation and infrared thermography. As differ-

ent external conditions were used for the simulation

(�T =2 K, �=0.8 rad/s) and for the experiment with

�T =8 K, �=0.47 rad/s, the figure is presented to show

qualitative behavior for a three-wave flow between the

two approaches. It appears that the computed result did

not yet reach the asymptotic state, as revealed by the

asymmetry of the waves, in comparison with the mea-

surements. Harlander et al. [2012] mentioned from their

experimental investigations that a complete cycle can

take about 27 revolutions. However, an overall agreement

can be observed, in particular a pronounced incursion of

“hot plumes” recirculating from the external hot cylinder

toward the center of the cavity along the anticyclonic

vortices, associated with a strong acceleration as seen

from the superimposed velocity field. Such wave asym-

metry can also be attributed to wave interaction during

the establishment of baroclinic instability, as reported

by Harlander et al. [2012].

16.4. CONCLUSIONS

Direct numerical simulations based on high-resolution 
pseudospectral methods were carried out for the inves-
tigation of the complex flow r egimes o ccurring i n a 
differentially heated rotating cylindrical annulus, the 
baroclinic cavity. The computed solutions have been 
compared with available laboratory measurements in 
configurations having an insulating top lid or an open free
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Figure 16.10. Instantaneous temperature field at the open upper free surface for the water-filled cavity. For color detail, please see 
color plate section.

surface. The approach was applied to describe the various

spatiotemporal characteristics of baroclinic waves using

three different fluids. It has allowed for a detailed analysis

of the features observed during laboratory measurements.

The results demonstrate the ability of the present numer-

ical tool to reproduce the complex spatiotemporal behav-

iors and to capture the small-scale fluctuations responsible

for the break of the regular waves to chaotic motion in

baroclinic cavities. The simulations report the first realistic

solutions of weak waves and structural vacillation regimes

for liquids and amplitude vacillation for air, in agreement

with experimental observations. Moreover, the computa-

tions point out the important role played by the Prandtl

number on the baroclinic instability characteristics due

to the differences in the thermal stratification levels. In

particular, at high values of the Prandtl number, the spon-

taneous generation of IGWs was found simultaneously

with the large-scale baroclinic waves. These small-scale

features, initially developing along the inner cold cylin-

der, are postulated to be the mechanism responsible for

the transition to irregular flows.

The extension of the approach to parallel computing,

by implementing a domain decomposition technique, is in

progress and is expected to allow for a direct numerical

simulation of the fully developed turbulent flow regime in

the baroclinic cavity.
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