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1 INTRODUCTION 

High closing tensions are an accepted cause of skin necrosis [1]. For linear scars, maximum tension is 

obtained along an axis perpendicular to the scar at the level of maximum excision but laterally, the 

tension decreases progressively [2] [3] [4]. In that case, the shape of skin necrosis is roughly parallel 

to skin margins (Figure 1). 

After having performed a VY advancement flap, we observed an unusual shape of necrosis, like a 

broad-based key hole, with major axis perpendicular to skin margins at the summit of the flap where 

a corner stitch has been performed (Figure 2). Major perpendicular axis and keyhole shape of the 

necrosis are both unusual. As there was a lot of tension when suturing, we discuss the possibility to 

explain this shape by determining the stress field with mathematical modeling.  

Based on a VY flap simulation during an abdominoplasty (Figure 3), we developed a mathematical 

model based on the finite element analysis (FEA), in order to determine the stress field by simulating 

the mechanical behavior of human skin during the suture.  

The work is divided in two parts. The first part of the modeling determines the orthogonal initial 

stress fields representing the in vivo skin tension by inverse method. The second part determines 

stress fields when suturing the corner stitch. Results are expressed in numerical and graphic form 

and compared to clinical case.  

2 CLINICAL CASE 

A 83 year old patient presents a dedifferentiated latéro-thoracic liposarcoma without metastasis. The 

major axis measures 10 cm.  A wide resection is performed including major pedicle of latissimus dorsi 

muscle. To cover the defect, a VY advancement flap is done, with two lateral expansions according to 

Pacman flap [5] (Figure 4). The flap is based on latissimus dorsi minor pedicles and advancement is 

permitted by medial muscle incision (Figure 5). The value of summit aŶgle’s flap is aďout ϱϬ°. 

The postoperative period is marked by skin necrosis and skin epidermolysis on either side of the 

summit. Both have a broad-based keyhole shape with major axis perpendicular to skin margins 

(Figure 2). Healing occurred by secondary intention.  

3 MATERIAL AND METHOD 

3.1 MATERIAL 

Natural tension of the skin is due to prestress. To determine the orthogonal prestress fields σx and σy, 

a rectangular defect is performed in vivo during an abdominoplasty in a 38 years old woman in 

accordance with the patient and the ethical committee approval of the university hospital. A 

rectangular mesh was drawn before skin incision. The dimension of one ŵesh’s square is 14x14 mm 

and the dimension of the rectangle is 42x84mm. The length of the rectangular defect d2 is parallel to 

the vertical plane represented by y direction, the width d1 parallel to the horizontal plane 

represented by x direction (Figure 3a). Horizontal and vertical skin deformations after incision are 

due respectively to horizontal prestress field σx and to vertical prestress field σy (Figure 3b). Width of 

the rectangle is approǆiŵatelǇ aligŶed ǁith LaŶger’s liŶes [6], lines which define the direction within 

the skin (along which the skin) has the least flexibility. 
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For the modeling, a planar non-linear bi-dimensional FEM was used. The numerical simulation has 

been carried out with Ansys® v12 software. This model was based on Arruda and Boyce's eight-chain 

model and Bischoff and al.'s finite element model of skin [7] [8]. 

3.2 METHOD 

FEA starts with creating the geometry of the rectangular defect according to Figure 3a.  Dimensions 

of the modeled defect are identical to clinical case. It is discretized into triangular finite elements. 

The stress fields at the boundary of the sought region are identified by the inverse method using a 

finite element calculation by comparing modeling with the deformed rectangular hole obtained 

experimentally (Figure 3b). 

Second step, the FEA created the geometry of the VY flap just before the corner stitch (Figure 7). The 

model is based on geometry of VY flap performed during the abdominoplasty (Figure 3d). The value 

of apeǆ aŶgle’s flap is also about 50°. The orthogonal prestress fields calculated above have been 

integrated as an additional parameter in the model. Then, material properties boundary conditions 

and forces are applied to the model and results are expressed in numerical and graphic form.  

To solve the bi-dimensional finite element problem, the following assumptions were made at the 

first step:  

 

- The plane stress hypothesis was supposed for all elements. 

- The thickness of the human skin was set to be 1 mm.  

- The wound is considered to be small compared to the size of the skin sheet (560 x 406 mm).  

- Prescribed zero displacement is set to left (x direction) and bottoŵ ;Ǉ direĐtioŶͿ edge’s Ŷodes 
(Figure 6). 

- Mesh is denser around the object of interest.  

 

At the second step, new assumptions are added to simplify the modelling (Figure 7): 

- The horizontal symmetry of the model allows modeling half of the flap, 

- The summit of the flap is retracted because of the horizontal prestress field σx,  

- But skin margins are not loaded by the orthogonal prestress, 

- The apex of the flap is immovable when corner stitch is performed,  

- Points used for the corner stitch are the closest to the apex N (corresponding to point M of 

the Figure 7). 

4 RESULTS 

In Figure 3a, initial dimensions of the rectangle are d1=42mm and d2=82mm. After incision, the 

orthogonal prestress fields deform the rectangle and dimensions of the rectangular defect become 

dϭ’=ϴϰŵŵ aŶd dϮ’=ϳϲŵŵ. Froŵ iŶǀerse FEA using the nonlinear material model, the prestress is 

found to be σx=6.4kPa σy=0.3kPa (Figure 8). 

After integrating these values in the numerical model, biaxial loading determine the maximum stress 

in the corner stitch. Values of maximum stress are σǆ=45.3kPa σy=93.4kPa. The results are expressed 

in graphic form with the representation of iso-stress lines at the summit of the flap (Figure 9). The 

shape of the vertical iso-stress line σy for a stress equal to 18.8kPa (border of the sky blue surface) is 

similar to a broad-based keyhole, with a major axis perpendicular to the skin margin. This shape is 

comparable to the necrosis observed in our clinical case. 
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5 DISCUSSION  

5.1 FINITE ELEMENT ANALYSIS OF SKIN 

FEA is a powerful computer-based tool widely used by engineers and scientists for understanding the 

mechanics of physical or biological system like the skin [9] [10].  

FEA seeks to approximate the behavior of an arbitrarily shaped structure under general loading and 

constraint conditions with an assembly of discrete regions or domains called 'elements'. These 

elements have regular geometric shapes with known solutions and are connected at the edges called 

'nodes'. The behavior of the structure is obtained by analyzing the collective behavior of the 

elements. Elements are the building blocks of a finite element model, they are used to divide a given 

complex physical domain into simple mathematical representation (simple shapes) with known 

solutions.  

FEA of the skin has many applications like virtual surgery [11] [12], cutaneous flaps [13] [14] and 

aging of the skin [15]. It has ever been used to describe stress fields after simple sutures [3] or after 

flaps [9].  

Concerning our modeling, two points should be discussed. First point, mechanical skin properties of 

the patient with necrosis and the patient used to determine prestress fields are widely different. The 

modeling uses data from a 38 years old woman with an abdominal skin excess while necrosis 

appeared at the back of an 83 year old man [16] [17]. Nevertheless, as the aim of the study is to 

determine the graphic representation of the stress fields when suturing the corner stitch, it is not in 

itself a problem. It would have been a problem if we wanted to identify the values of stress 

responsible for the necrosis. Second point, values of prestress were obtained by inverse method. 

Values extracted from literature [16] or experimental methods on the patient like indentation, 

suction, torsion tests, wave propagation and extensometer could have been also used [18]. 

Nevertheless, the values of prestress calculated in our study are comparable to literature data. A 

value of σx superior to σy corresponds to anisotropic properties of the skin [19] [20].  

The particular shape of the necrosis is related to the particularities of the suture at the summit of the 

VY flap. It is at this level that the tension is maximal because the distance to suture is the longest 

(reference to other article joint with this one). Moreover, on either side of the summit, there is an 

angulation equal to 25° in our study. 

5.2 SKIN TENSION AND NECROSIS 

High closing tensions are an accepted cause of wound slough [1]. The relationship of tension, blood 

flow, and flap viability is well established [21] [22] [23].  Barnhill demonstrates that tension has 

important effects on the superficial dermal microvasculature, resulting in impedance and obliteration 

of blood flow. An average force of 11.9 N, accompanied by a mean strain of 10.3%, resulted in 

occlusion of all vessels [22].  

Two solutions to the problem of closing skin defects under tension are common: undermining [24] 

[25] and stretching the skin [26] [2]. Undermining has inherent drawbacks, because of the damage to 

the feeding vessels of the skin so undermined like skin-edge necrosis and seroma. Undermining 

results in decreases in skin blood flow and skin oxygenation [25] [27]. It is necessary to find the right 

balance between reduced blood flow and decreased tension [28]. Skin stretching reduces wound 
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closing tension [2] [29]. For Melis, the additional advantage of skin stretching over that of 

undermining alone is clearly shown  [2] [27]. Cyclic skin stretching seems even more efficient [30] 

[31].  

In our clinical case, both undermining and excessive tension probably contributes to the necrosis: 

-  In case of VY advancement flap, the tension of the suture is maximal at the summit of the 

flap,  

- In human, the highest skin stress is found in the back [16],  

- Skin is undermined from latissimus dorsi muscle, involving cutting musculocutaneous 

perforating vessels (Figure 5).  

Nevertheless, similarities between the shape of necrosis and the calculated stress field discuss the 

major role of skin tension.  

In this clinical case, in order to reduce closing tension, we could have propose: 

-  A reduction of the value of the angle at the summit of the flap. Nevertheless, the longer is 

the flap the less it is vascularized because summit is free of vascular support (Figure 5), 

- A keystone flap would have been more appropriate because distance to suture around it is 

smaller and more homogeneous compared to the advancement of a lonely V-Y flap 

(reference to other article joint with this one). Moreover, all skin paddle would have been 

supported by muscle. 

-  

6 CONCLUSION 

In a precedent study, we proposed a very simple modeling of VY flap with simple mathematical 

equations. Even if informations are limited, this model explains the relation between the distance to 

suture aĐĐordiŶg to flap’s shape and flap advancement and the particularity of the corner stitch at its 

summit. 

To evaluate stress fields, we developed a mathematical model to describe stress fields using FEA. The 

results of modeling correlate well with the clinical case. Our method is an original approach for 

describing the particular shape of a necrosis.  
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Figure 1. Stress fields when suturing skin incision (dotted line) in an orthotropic model. With permission from [4]. Values 

of stress are expressed in Pascal. 
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Figure 2. Skin necrosis and epidermolysis with a shape of broad-based key hole at the summit of the flap 
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Figure 3. A rectangular defect and a VY advancement flap are performed during an abdominoplasty to 

characterize skin properties. 

 

 

Figure 4. Latero-thoracic liposarcoma. VY flap design. (Patient positioned in right lateral decubitus position).  
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Figure 5. VY advancement flap with medial latissimus dorsi incision, suŵŵit’s flap aŶd ŵedial skiŶ without 
muscular vascular support.  
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Figure 6. Geometric model, meshing and boundary conditions of the domain with rectangular hole. 

 

 

Figure 7. . Geometric model, meshing and boundary conditions of the V-Y flap. 
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Figure 8. stress field σx calculated by inverse method. Values of stress are expressed in Pascal. 
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Figure 9. The shape of the vertical iso-stress line σy for a stress equal to 18.8kPa (dotted line) is similar to the 

clinical case necrosis. Values of stress are expressed in Pascal. 

 

 

 

 


