
Video Stream Transmodality

Pierre-Olivier Rocher12, Christophe Gravier1, Julien Subercaze12 and Marius Preda2

1Laboratoire Télécom Claude Chappe, télécom Saint-Etienne, Université Jean Monnet, F-42000 Saint-Etienne, France
2Département ARTEMIS/GRIN, télécom SudParis, 91000 Evry, France

{pierre-olivier.rocher, christophe.gravier, julien.subercaze}@telecom-st-etienne.fr

marius.preda@telecom-sudparis.eu

Keywords: video encoding; vectorization; modality;

Abstract: Transmodality is the partitioning of an image into regions that are expected to present a better entropy using

different coding schemes, depending on their structural density, at constant bandwidth. In this paper we

present the transmodality of video stream. Our contribution is a transmoder module that includes various

different optimized video codecs and implements the concept of transmodality on a set of video streams. We

evaluate our proposal with different kinds of video (in content term), and our algorithm shows comprehensive

results by saving up to 8% of bandwidth for the same PSNR in comparison with the state-of-the-art video

encoding baselines.

1 INTRODUCTION

Video communication accords for one of the highest

development slope among various internet applica-

tions for the last few years. It is forecasted to be one

of the main bandwidth consumer with respect to fu-

ture applications. Different kinds of applications are

using video compression: live TV, online newspapers,

social networks. . . Over the last few years, new appli-

cations have emerged and one of the most important

one is probably the Cloud Gaming. All cloud gaming

applications like Gaikai 1 or OnLive 2 are based on

remote rendering. Such a system is generally based

on two parts. On the server side, the game is rendered

and the current picture is encoded using a state-of-the-

art video encoder like MPEG-4 AVC (alias H.264),

then streamed to the clients. Currently, for all previ-

ously described applications, the compression engine

handles each image as an atomic element, regardless

if the image contains more or less homogeneous re-

gions. Adaptive encoding schemes bring new fea-

tures, both in size and quality term, but the video is

still processed as a pixel set. Some regions of the pic-

ture will be encoded with different parameters, but us-

ing the same global encoding scheme. The intuition

behind this work is to go one step beyond by defin-

1http://www.gaikai.com/
2http://www.onlive.com/

ing an adaptive region-based encoding algorithm us-

ing fundamentally different encoding schemes. The

encoding scheme should be chosen independently for

each region, depending on its structure and hetero-

geneity. In this paper we propose several video cod-

ing systems to encode one video stream.

The remainder of this paper is organized as fol-

lows: Section 2 presents a review of background liter-

ature. Section 3 details the concept of transmodality.

Section 4 presents our video encoding system from a

global perspective to detailed components. Section 5

is dedicated to comparative testing and Section 6 con-

cludes the paper and draws perspectives.

2 RELATED WORK

This section investigates existing work in the broad

field of video encoding. While a complete state-of-

the-art on video coding is out of scope of this paper,

we aim at focusing on relevant results in this part. We

present two major encoding methods relevant to our

approach: matrix-based and the one based on graph-

ics primitives. We also present their applications to

image and video coding. The initiated reader may

skip this section.



2.1 Image

We can consider two ways to store and manipulate a

picture. The first one is a matrix-based representation,

while the second one is based on graphics primitives.

Nowadays, both solutions coexist but each represen-

tation brings specific advantages and disadvantages.

The following paragraphs present respective benefits

and drawbacks.

The matrix-based method is widely used for stor-

ing and sharing pictures. Such image representa-

tion, also known as raster or bitmap, is based on the

pixel definition. Under this method, images are repre-

sented as 2D-matrices. This is a very convenient way

for storing and even compressing pictures and pixel-

based compression algorithms are proved to be quite

efficient. The most common encoders are BMP, PNG,

JPEG. Although, its major drawback is decrease qual-

ity while zooming into the parts of the picture. Even

if the picture is not compressed, the original pixel el-

ement will eventually outsize the corresponding pixel

in the screen space. At this point, the picture quality

will strongly suffer from this limitation.

The second method does not use pixel as the ba-

sic element but instead makes use of graphic primi-

tives. Each graphic primitive is a mathematical objet,

like a point, a line or a polygon, and is defined by

a formal definition. This representation then uses a

set of graphic primitives to build an image. However,

More complex objects like splines, Bezier curves or

even non uniform rational basis spline (NURBS) can

be used. Each graphic primitive is positioned in a

reference system and bears specific attributes like its

color, shape or thickness. Due to this approach of im-

age representation, picture is first rendered and then

displayed. i.e. every point in the reference system is

computed using graphics primitives. The result of this

computation is what is being displayed on the users

device. The main advantage of this representation in-

cludes, independence from the rendered image size,

its compacity and required data to reconstruct a vec-

torized picture cost the same price in size term.

When a picture or a video is live recorded, the

raster format is used. Meantime, vectorization is the

format of choice mainly for Computer-Aided Design

(CAD) softwares. Due the increase of heterogene-

ity of display devices in our daily lives (IPTV, smart-

phones, tablets. . . ) multimedia content is now often

included in web pages. Whatever the screen’s size,

display picture quality is maximal.

Building a raster representation of a vector picture

is a trivial task, but the reverse process is not obvious

(Sun et al., 2007). References on this topic can be

found (Lai et al., 2009), (Zhang et al., 2009), (Orzan

et al., 2008), but proposed solutions are quite basic

and are most often limited to black and white pictures

processing. Some approaches to handle color exist

but they cannot bear with photo realistic pictures (nat-

ural shots).

In proceeding sections, we distinguish codec types

based on pixel and vector. The first one is related to

a raster representation while the second one denotes

the vector representation.

2.2 Videos

This subsection presents state-of-the-art video en-

coders (based on the MPEG-4 AVC video coding

standard). Our main focus is on literature aiming to

use several encoders to process a single video, but

also on existing adaptive solutions. The first para-

graph is a reminder on how a modern video encoder

is working.

To compress a video, it is first splitted into a so

called Group Of Pictures (GOP), which is basically

made of three different types of pictures called I, P

and B. An I picture is a reference picture also known

as a key frame. P pictures are predicted using a past

referenced picture.

B pictures are bi-predicted, using both past and

future P pictures (depending on the standard defini-

tion). Main steps of such encoders are prediction,

transformation, quantization and entropy coding. In

the encoder scheme the main step responsible of data

compression is quantization. In order to control the

final bitrate, the user can tune the quantization factor,

called Qp in most common implementations. Vari-

ous strategies can be applied to control this parameter

throughout the encoding process, like constant Qp or

constant bitrate (therefore with a non-constant Qp). A

little Qp value will ensure a good video quality. Fur-

thermore usually, when Qp = 0 the compression is

lossless. Resulting entropy coded data, and necessary

decoding information like prediction mode, motion

vectors, quantization factor form the encoded video

stream.

The previous paragraph described the main steps

of a state-of-the-art video encoder. We now focus on

systems using more than one video encoder to com-

press a video.

In (Chaudhury et al., 2011), (Khandelia et al.,

2008) some macroblocks are encoded in a paramet-

ric manner, using an Auto Regressive (AR) process

[9]. Selection of these macroblocks is done using a

particular edge detection. Some moving textures can

be modeled as a spatio-temporal AR process, which is

in fact a tridimensional basis model version. In their

system, I pictures are H.264 encoded, while P pic-



tures are encoded using the proposed method. The

process is based on 16 × 16 macroblock size (be-

cause of H.264). Macroblocks are then categorized

into two sets: with or without edges, where mac-

roblocks without edges are encoded with the proposed

solution. The quality assessment was done using the

Mean Opinion Score (MOS) system because the re-

construction scheme is statistically built. No informa-

tion within the video like spatial resolution, frames

per second or even related enconding time are ex-

ploited.

In (Zhu et al., 2007) authors offer to simply delete

some macroblocks during the encoding process, in or-

der to rebuild them by synthesis methods at the decod-

ing stage. The method chosen to regenerate missing

parts is the spatio-temporal patch searching. The sys-

tem is running with an I-P-B picture scheme. Some

tests have been conducted with QCIF videos, at 30

FPS using different Qp. Experimental results show

a bitrate reduction of about 38.8% with a quite simi-

lar image quality (although no objective metrics were

used).

In (Tripathi et al., 2012) the encoding process

is based on both a traditional bloc coding and on a

model coding. For such appraoch, they use a long-

term temporal redundancy. Object detection related

part is based on region of interest (ROI) algorithms,

these ROIs are detected using principal component

analysis (PCA). ROI areas are then segmented us-

ing graph-cut algorithms (Felzenszwalb and Hutten-

locher, 2004). Finally a resultant area analysis is

done, aiming to regroup some areas for whole opti-

mization. A tracking algorithm is used for following

ROIs in futures images. Theses ROIs areas, defined

by a rectangle and an angle are finally coded using an

active appearance model, which is statistically based.

While the literature provides several encoding sys-

tems using more than one encoder, these solutions ap-

ply only to P pictures. Our system aims at working on

every picture of the video, and not only P pictures,

like in (Chaudhury et al., 2011), (Khandelia et al.,

2008).

Jointly to this research, work on adaptive video

coding is largely present. One can discern two ma-

jor trends: the first needs several versions of a same

video; the second is based on a single version, which

is adapted in realtime. The first solution is covered

by the Scalable Video Coding (SVC), but also by the

upcoming MPEG-DASH standard. Several recent ar-

ticles can be found about the second adaptive way.

In (Tizon et al., 2011a) real time adaptation is per-

formed on video encoder as according to the network

delay. Latency measurements are done before the

launch of the system, but also periodically during the

whole process. This latency evaluation makes possi-

ble the detection of network congestion and then the

ability to take necessary actions to adapt the stream.

In (Tizon et al., 2011a), they use a Cloud Gaming ap-

plication, with an aim to to guarantee fluidity and re-

sponsiveness of the system. The proposed solution is

to reduce the quantization parameter (among all mac-

roblocks) and the necessary bitrate. In (Tizon et al.,

2011b), the assumption between importants objects to

the user and their position in the depth map is done. In

other words, more the object is close to the user, more

it is important. To reduce the necessary bitrate with-

out loosing in quality, they refine the Qp parameter,

acting at macroblock level.

There is a common thread between all these so-

lutions: they always use a set of pixel to encode and

adapt the video coding. All presented solutions are

using a standard version of H.264, We will use an op-

timized one. Adaptive technologies are largely used,

but they are all the time confined to the pixel world.

We will use an other type of encoding system, which

is based on vectorization.

3 TRANSMODALITY

We introduce a new way of encoding a video stream

using so called modalities. A modality is a set of areas

to be compressed regarding a specific encoder. Each

modality refers to (a) specific(s) part(s) in a frame, re-

garding an encoder especially well suited for encod-

ing corresponding areas in a picture. According to our

experiments we conclude that using more than one

encoder will achieve a better compression rate than

using only one, while preserving the same quality in

terms of Peak Signal to Noise Ratio (PSNR). Con-

ventional encoding approaches consider a video as a

set of pixels and use a single encoding scheme for the

whole set. Our approach is based on the assumption

that a dynamic partitioning of the video frames and

the approximation of some regions with a parametric

representation will reduce the video bitrate. Splitting

a video stream into objects and encoding them sepa-

ratly is the basis of MPEG-4 part 2, but the way of

doing this work on a video stream is not covered by

this standard.

3.1 Transmodality definition

We define the Tansmodality as the fact of using sev-

eral specific encoders to compress the same video file.

The aim is to use a well-suited encoder to each region

and using different modalities for video encoding. In



other words, a modality is defined as being the com-

pression of an area set by an encoder.

We define a class as a set of areas, each class be-

ing encoded using one specific encoder. Using one or

more modalities is not known by advance but it be-

longs to the processed video itself. The decision to

use 1, 2 or n modalities is taken in real time during

multimodal encoding, which means that shapes and

area size are potentially different for each frame. For

instance, Figure 1 is made of five areas z1 to z5 which

are grouped into three classes m1 to m3. An area is

a contiguous set of pixels, contiguity of two pixels is

defined using the Kronecker operator (V4 neighbor-

hood).

z1, m1

z2, m2

z3, m1

z4, m3

z5, m2

Figure 1: Areas and modalities in a sample picture.

Figure 2: Input picture.

3.2 Real example

The whole splitting process is detailled step by step

in upcoming parts. As a basic example, Figure 2

presents a sample picture extracted from the ”Home”

movie 3. If we choose picture details (large amount

of edges and colours) as a main criteria, then we can

denote two kinds of modalities in this picture: a quite

3http://home-2009.com/fr/

uniform, smooth one (i.e. the sky part), and another

one which contains more details (the skyscrapper it-

self). Figure 3 outputs a possible splitting result. The

reader can notice the rectangle at the bottom-left of

the tower due to a macroblocking effect. This effect

is discussed in Section 5.2.

Figure 3: Level of detail based sample splitting.

The idea is to use several (two in this case) encoders to

process a single video and to demonstrate that the cor-

responding multimodal video is smaller in size, while

maintaining a good visual quality with minimal pro-

cessing time. This approach raises several issues, in-

cluding the choice of encoders and precision of the

process to separate modalities or the way the output

video stream will be written.

In the following section we focus on the trans-

moder whose role is to process the video compression

with multi-modalities.

3.3 Transmoder vs. Transcoder

A transcoder is a software or hardware element which

aims to modify the way how a video file or stream is

compressed. It first decodes a video file or stream, and

encodes it again using new parameters. This enables

the application to modify the way this video will be

transformed including three majors trends: the output

video size (spatial resolution), the frame rate (tempo-

ral resolution) and the quality (resolution in PSNR).

In this work, we introduce a new adjustable parameter

called modality. Doing so, we define a new applica-

tion called transmoder, which is a transcoder with an

ability of using modalities, as described in previous

sections. Our Transmoder as compared to transcoder

uses an additional parameter that increase the output

range of possible bitrates and thus make it possible to

distribute the video to a larger number of people. A

transmoder is also able to conduct simple transcod-



ing operations, so with regard to our definition, the

transcoder is a particular case of the transmoder.

In this work, we focus on implementing a trans-

moder that can handle two modalities, the pixel and

the vector ones. What follows therefore presents our

bimodal transmoder approach. In order to simplifiy,

following parts of this article will rely on a trans-

moder working on two modalities. The multimodal

process is then limited to a bimodal approach.

4 Transmoder process

Our transmoder is built on three separated parts: a

decoder, an encoder and a sunder. The whole archi-

tecture is presented in Figure 4. The decoder decodes

frames from a video file or stream. The sunder part

is in charge of the partitioning of each frame into n

modalities. As depicted in Figure 4, the sunder out-

put is a combination of n modalities denoted M1 to

Mn. Finally, the encoder uses the processed results

of sunder as its input and encodes the whole video in

a transmoded stream. The remaining systems blocks

are explained in the following sections.

Input video stream

Decoder

Sunder

Modality ��Modality �1…
Packetisation

Output transmoded

stream

�� encoder�1 encoder…

Figure 4: Synoptical scheme of the transmoding process.

4.1 Decoding

Like every transcoder, our transmoder has a decoding

step. Decoding stage can be used or not either input

data is in a compressed form or not. If the user wants

to process a video file or stream, the decoding process

provides a raw picture to the sunder using an appro-

priate decoder. An other solution is to catch a raw

picture from a video game engine buffer for example

and directly input it in the sunder.

4.2 The Sunder

The aim of Sunder is to take the decision of splitting

(or not) the frame in several modalities. All the re-

quired step for such functionality as depicted in Fig-

ure 5 are explained later. But at this point we con-

sider that the input of this whole process is an un-

compressed picture, typically in an Red Green Blue

(RGB) raw format. Some image processing treat-

ments is first applied, then the picture is splitted into

modalities (4.2.1). Once both modalities are splitted,

respective encoding is conducted and some optimiza-

tions are applied on the pixel encoding part (4.2.2).

The ouput of this process is a so-called bimodal pic-

ture. While all necessary informations are available,

the video stream can be recorded. This is done by us-

ing packets, which are usually containing one frame.

Packetisation process is described in (4.3.3).

Input picture

Modality splitter

Bimodal picture

M2 encodingM1 encoding

Figure 5: Synoptical scheme of the splitting process.

4.2.1 Modality splitting

Modality splitting involves with splitting operation by

utilizing well known image processing filters. Previ-

ously, we explained our choice to split a picture into

two modalities. To operate efficiently, an image pro-

cessing filter appears to be the best choice. Our ap-

proach splits an image, based on the level of details

which can be performed using an edge detector filter.

There are various filters available for such require-

ments including Canny, Laplace an Sobel. For scali-

bility reasons, we require an algorithm that exhibits a

good trade-off between performance an computation

time. Under these conditions, (Heath et al., 1996) and

more recenlty (Maini Raman, 2009) concludes that

the Canny filter is the filter of choice. Furthermore,

this choice of filter is affirmed by (Zhang et al., 2009)

in which the authors processed videos. As an exem-

ple, lets take the picture presented in Figure 2 as an

input picture. After the edge detector process, we

obtain a binary picture as displayed in Figure 6. As

the reader can see, details in the picture are spotted

in white, and more uniform areas are in black. Some



morphological operations are now necessary to clean

this mask (remove single points, close holes. . . ).

At this point, we need to make a choice regarding

modality encoding. We choose to use one encoder

from the pixel world and another one from the vector

one. Chosen pixel encoder is the well-known MPEG-

4 AVC, the state-of-the-art reference. As literature

does not provide any efficient library for a raster to

vector convertion, thus we employ our own vectoriza-

tion module. It is designed to suit our specific needs

and is further described in 4.3.1. As we previously

said, in the binary mask black parts represents a high

amount of details while white parts depicts more uni-

form areas. Based on the characteristics of selected

encoders, Black parts may be pixel coded whereas

white parts may be vector coded. At this point, white

areas are candidates to be vector coded, but further

analysis (as described in 4.2.2) may downgrade them

in the pixel world to ensure a good compacity in the

output video stream. Because we choose to compress

a modality using a MPEG-4 AVC encoder, the binary

mask needs to be adapted since this kind of encoder

is based on a macroblock definition (a 16× 16 pix-

els size). This is simply done in checking each pic-

ture macroblocks: if all pixels are black, then the

macroblock is black otherwise it is white. The cor-

responding new macroblock mask is depicted in Fig-

ure 7.

Figure 6: Canny filtered input picture representation.

4.2.2 Analysis

This concludes as the most important step of trans-

moding. All decisions made here are based on param-

eters set by the user at startup time. Currently a mac-

roblock mask is present, the aim is now to process this

mask and take appropriate decisions. Important steps

of this analysis are presented in Figure 8.

Figure 7: Macroblocked representation of vector areas (in
white).

Labeling The first operation involves a V4 neigh-

bourhood labelling of white areas. This will ensure

that each vector area is separated from the others, and

provides an internal data structure easy to manipulate.

First Filter Filter 1 as described in Figure 8 is re-

sponsible of the deletion of some area based on sur-

face size criteria as according to the threshold set by

the user. Consequently, some little areas which were

planned to be vector encoded is in place pixel en-

coded, because in this case a pixel encoder offers bet-

ter results. As an exemple, Figure 8 shows a possible

output result.

Macroblocked mask

Labeling

Filter 1

Largest rectangle 

decomposition

Filter 2

Final mask

Figure 8: Logic analysis process in the sunder.

Largest rectangle decomposition According to

Figure 8, we can now consider two areas. These ar-

eas can have any shape, including holes. To make the



decoding stage possible, we will need to know two

things: where are the vector areas and what are their

respective definitions. We need now to consider how

to store efficiently the binary mask. We can consider

a lot of different solutions but in all cases, we need

to keep a very good compacity. In order to fulfill this

need, we choose to decompose any vector area into

a set of largest rectangles. This kind of operation is

known as a rectangle decomposition of binary ma-

trix, henceforth DBMR problem. More information

on this subject can be found in (Ferrari et al., 1984).

Most of the time, taking into account the first two or

three biggest rectangles is enough to keep a good ap-

proximation of the intial shape.

Second filter Our second filter aims at deleting lit-

tle areas (user set thresold) that are moved in the

pixel modality. At the end of this analysis, only

important large rectangle areas are candidate for a

parametrized representation. This process is detailed

in Section 4.3.1.

This is the last step of sunder process. A binary

mask specifies if each area has to be compressed us-

ing the first or the second modality. Thus encoding

operations, related optimizations, and stream genera-

tion can be conducted.

4.3 Stream encoding

The modality splitting step is now finished. All pixel

and vector areas are known and respective encoding

operations can be conducted. The first paragraph de-

scribes our vectorization process while the second one

is devoted to optimizations. Bimodal video stream is

then packetized and dumped in an output video file.

4.3.1 Vectorization

As described earlier, vectorization is not a trivial task,

especially when the user wants to process a natural

picture and expect good quality results. The main

problem of such encoding scheme includes complex-

ity of such a project, necessary time to process pic-

tures and output obtained sizes. All these parameters

are intimately related to the picture content. The de-

sirable objectives at this point is the implementation

of specific software that meets our need along with a

fast processing and a good quality (in term of PSNR).

Because as the previous operations provides only a

specific texture type and in order to achieve a uniform

one, we can utilize a simple vectorization approach.

As a first implementation we choose to simply use

a polynomial based approach, inspired by what has

been done in (Zhang et al., 2009). In order to vector-

ize an area, a 3D polynomial mean square based re-

gression is computed using a matrix approach. Each

polynomial expression is based on a static template of

the form: Z = a+ bx+ cy+ dx2
+ exy+ f y2. Where

corresponding correlation coefficients are computed

for each area. This determines the quality of the vec-

torization per area. If the result is too poor in qual-

ity, the corresponding area will fallback in the pixel

mode.

4.3.2 Encoding optimizations

Encoding a single video using a per area optimized

compression is not such a tedious task. The most dif-

ficult part is to use them correctly while avoiding re-

dundancy in the data stream and trying to limit the

impact on the encoding time. However, the only fact

of adding some new lines of code will inevitably in-

crease the necessary computing power.

Starting from this fact, we tried to minimize the

impact of the sunder in optimizing the way encoder

works. Both vector and pixel parts have been opti-

mized. After all areas are vectorized, a process checks

if some of them can be modeled using a same poly-

nomial definition. Special treatment is reserved for

writing vector data: for example, the number of digits

is limited and all the data is compressed. The sunder

process gives us some useful informations, which can

be directly sent to the encoder. We can denote two

optimizations: the first one (O1) directly indicates to

the encoder macroblock to skip, and the second (O2)

manipulates the Qp parameter. Each of these two op-

timization is macroblock based. The aim of O1 is to

directly provide a list of macroblock to encoder that

have to be skipped. Thus the analysis cost is reduced

(minimize the encoding time) and the stream is more

compact, regardless the chosen encoding preset. This

optimization is only applied on P frames. O2 opti-

mization is related to I and P frames. Per macroblock

Qp is modified to force the encoder to skip some mac-

roblocks (thus which are not used by the pixel modal-

ity). These two optimizations can be used separately

but also at the same time. They do not impact the

quality of the output stream.

4.3.3 Packetisation

For being able to add our vectorization data part, we

modify the way packetisation is done. Each vector

data is just positionned after the picture data, hence a

frame is a combination of pixel and vector data. Fig-

ure 9 presents a schematic representation of an H.264

stream on the left, and our modified one on the right.

As the splitting is done live in an automatic manner,



SLICE SLICE SLICE

HEADER DATA

MACROBLOCK MACROBLOCK

SLICE SLICE SLICE

HEADER DATA

MACROBLOCK MACROBLOCK

HEADER PIXELDATA VECTORDATA

Figure 9: Usual H264 bitstream at left, our customized at
right.

some packets may have only a pixel part, some oth-

ers only a vector part. This stream is written in such

a way that any compliant MPEG-4 AVC decoder will

be able to read it, however only the pixel modality will

be correctly displayed on the screen. In order to ren-

der and display the whole transmoded video stream,

i.e. both pixel and vector modalities, a suitable de-

coder is necessary.

5 Performance evaluation

We evaluate our solution using videos from the real

life. For such requirement, we download four dif-

ferent kinds of video from Youtube. We choose a

documentary 4, a music video clip 5, a basketball

movie 6 and a video game screen record 7. Con-

tent of such videos is made of slow and fast scenes,

with any kind of areas: details, smooth parts. . . We

see our transmoder as a standalone application. As

a lot of parameters can be tuned and will inevitably

lead to differents results, we choose to use static pa-

rameters for testing. Both modalities coding param-

eters are fixed to make comparisons possible. Fur-

thermore the pixel video encoding strategy uses a

constant quantization parameter, which is set by de-

fault to Qp = 20. All testing movies have been re-

sized to a 480p resolution, frame number varies from

300 to 500 pictures. Optimzations presented in 4.3.2

are used. Our transmoder implementation outputs

XML files with all necessary informations, like frame

sizes, made decisions. . . Results between a classical

approach (transcoder) and our approach are then anal-

ysed.

4http://www.youtube.com/watch?v=jqxENMKaeCU,
our shot start at 00:35:40 s

5http://www.youtube.com/watch?v=

AgFeZr5ptV8&list=TLQurwwErDm7o
6http://www.youtube.com/watch?v=

7lvvoqEMHn4&list=TLnMx7QuIzwoM
7http://www.youtube.com/watch?v=NC39Ww9ZLgs

Table 1: Obtained sizes in bytes after transcoding (TC) and
transmoding (TM).

Video name TC size TM size % diff

Documentary 32774899 30796069 6.04

Music clip 2766735 2736886 1.08

Basketball 4465946 4481855 −0.35

Game screen rec. 3105475 2838761 8.6

5.1 Implementation

Video encoding is a quite heavy task even on most re-

cent computers. The choice of a native programming

language is then obvious. Because of code source

portability but also external available libraries, the

preferred choice for our implementation is C/C++. In

order to accelerate the developping time and reduce

the source code size to maintain, some well known

multimedia libraries were used, such as FFmpeg and

libx264 for decoding, encoding and manipulate the

different kind of codec and containers. Image pro-

cessing related operations are done by OpenCV, and

our basic vectorization software uses the GNU Scien-

tific library (GSL). The whole program is available

as a standalone executable capable of transmoding

any kind of videos, or as a library for direct split-

ting and encoding. Obviously the transmoder is also

capable of simple transcoding operations. Although

our model is designed for any number of modalities,

our current implementation is limited to two: a pixel

modality and a vector one.

All videos (Original, transcoded and transmoded

versions) from the tests carried out in the results sec-

tion are available 8. Furthermore, necessary binary

files are also available, thereby experiments can be

reproduced by everyone.

5.2 Results

For our first experiment, we choose to compare the

transcoded and transmoded size according the origi-

nal file size. Both filters 1 and 2 were set to 1, which

means only one rectangle area is candidate for vec-

torization. Table 1 contains the result for all tested

videos.

We can see that our transmoder provides better results

in some cases, like with the documentary 6.04% bet-

ter or with the game record 8.6% better. In some

other cases, improvement is not significant (music

clip video, 1.08% increase in efficiency), for some

videos it may lead to a larger size. These observations

8http://datasets-satin.telecom-st-etienne.

fr/porocher/videos/2013/



Table 2: Quality assessement, using PSNR.

Video name O vs. TC O vs. TM TC vs. TM

Documentary 33.3664 33.7969 32.5094

Music clip 40.0416 37.1115 36.2243

Basketball 34.0789 35.9083 32.5832

Game screen rec. 42.0799 43.0613 43.4582

can be explained as our model is searching for smooth

areas in order to provide a more compact representa-

tion. Ability of finding such areas is directly related

to the video content, but also according video quality.

If the video quality is poor, the macroblocking effect

will provoke an over segmentation, resulting in less

interesting results. Using a multiscale edge detector

could solve this issue and will be investigated in fur-

ther research.

5.3 Quality assessement

Quality assessment is not a trivial job and many well

known metrics including PSNR or MSSIM are used

to complete surveys. Our early tests use a PSNR met-

ric for quality assessment, with some particularities.

Indeed, we choose to compute a per modality and a

per frame PSNR value, aiming to preserve the maxi-

mum amount of information for later analysis.

Results on the quality assessement are presented

in Table 2. We denote three different tests. The

original video (O in the table) compared to the

transcoded version (TC) and original video compared

to the transmoded version (TM). Three times out of

four, our transmoder gives better result compared to

the transcoded version of the original video (Docu-

mentary, Basketball and Game screen record). For

the documentary video, the PSNR increases, which

means that the video quality is better, while necessary

bitrate was reduced of about 6.04%. For the game

screen record: our transmoder saves 8.6% in bitrate

while increasing the PSNR from 42.0799 to 43.0613.

As a short conclusion, we can say that our trans-

moder can provide better results both in bitrate and

PSNR terms for most of the test videos.

5.4 Real time processing

Our first tests, presented in Table 3 reveal that real

time processing is possible with videos assuming

quite little spatial resolutions (240p). Using this spa-

tial resolution, a 29 framerate is possible for the mu-

sic clip. This framerate isn’t reachable for all tested

videos, as an example the documentary framerate is

only about 7 pictures per second. In order to over-

Table 3: Transmoding time (second) vs. spatial resolution.

Video name 240p 480p 720p

Documentary 65.52 142.28 295.73

Music clip 14.50 54.27 111.84

Basketball 56.11 128.45 281.19

Game screen record 18.03 113.08 261.17

come this limitation, we first optimize the whole

architecture of the software, especially by adding

threading support in appropriate source code parts.

Another way of increasing performance, especially

in the image processing world is to use the GPU.

This aspect has been brought to our program using

OpenCV GPU related functions.

6 Conclusion and future works

In this paper, we presented a new kind of video en-

coding system called transmoder. The video stream

is splitted into regions that are encoded using sev-

eral modalities depending on the regions character-

istics. We propose an overall system architecture for

transmoding by employing two modalities, pixel and

vector encoding. We first split each frame into re-

gion using an edge detector and then determine the

more relevant encoder for each region. Where the

resulted output of biomodal video stream is a com-

bination of vector and pixel frames. We tested our

approach against several real life videos and perfor-

mance analysis shows that our approach significantly

outperforms state-of-the-art encoder for a large ma-

jority of testbed videos. These tests present a reduc-

tion of the necessary bitrate up to 8%. Future research

will allow us to optimize even more our system, us-

ing for example GPU optimized algorithms. In the

frame of our research on cloud gaming systems, we

aim to integrate this multimodal coding scheme in the

realtime rendering chain. We therefore adapt our ap-

proach for distributed processing in a cloud architec-

ture.



REFERENCES

Chaudhury, S., Mathur, M., Khandelia, A., Tripathi, S.,
Lall, B., Roy, S. D., and Gorecha, S. (2011). Sys-
tem and method for object based parametric video
coding. U.S. Classification: 375/240.16; 375/240.25;
375/E07.027; 375/E07.076.

Felzenszwalb, P. F. and Huttenlocher, D. P. (2004). Effi-
cient graph-based image segmentation. International
Journal of Computer Vision, 59(2):167–181.

Ferrari, L., Sankar, P., and Sklansky, J. (1984). Minimal
rectangular partitions of digitized blobs. Computer Vi-
sion, Graphics, and Image Processing, 28(1):58–71.

Heath, M., Sarkar, S., Sanocki, T., and Bowyer, K. (1996).
Comparison of edge detectors: a methodology and ini-
tial study. In Proceedings CVPR ’96, 1996 IEEE Com-
puter Society Conference on Computer Vision and
Pattern Recognition, 1996, pages 143–148.

Khandelia, A., Gorecha, S., Lall, B., Chaudhury, S., and
Mathur, M. (2008). Parametric video compression
scheme using AR based texture synthesis. In Sixth
Indian Conference on Computer Vision, Graphics Im-
age Processing, 2008. ICVGIP ’08, pages 219 –225.

Lai, Y.-K., Hu, S.-M., and Martin, R. R. (2009). Auto-
matic and topology-preserving gradient mesh gener-
ation for image vectorization. ACM Trans. Graph.,
28(3):85:185:8.

Maini Raman, D. H. A. (2009). Study and comparison
of various image edge detection techniques. Interna-
tional Journal of Image Processing.

Orzan, A., Bousseau, A., Winnemller, H., Barla, P., Thollot,
J., and Salesin, D. (2008). Diffusion curves: a vec-
tor representation for smooth-shaded images. ACM
Trans. Graph., 27(3):92:192:8.

Sun, J., Liang, L., Wen, F., and Shum, H.-Y. (2007). Im-
age vectorization using optimized gradient meshes. In
ACM SIGGRAPH 2007 papers, SIGGRAPH ’07, New
York, NY, USA. ACM.

Tizon, N., Moreno, C., Cernea, M., and Preda, M. (2011a).
MPEG-4-based adaptive remote rendering for video
games. In Proceedings of the 16th International Con-
ference on 3D Web Technology, Web3D ’11, pages
45–50, New York, NY, USA. ACM.

Tizon, N., Moreno, C., and Preda, M. (2011b). ROI
based video streaming for 3D remote rendering. In
2011 IEEE 13th International Workshop on Multime-
dia Signal Processing (MMSP), pages 1–6.

Tripathi, S., Mathur, M., Dutta Roy, S., and Chaudhury,
S. (2012). Region-of interest based parametric video
compression scheme. Communicated to the IEEE
Transactions on Circuits and Systems for Video Tech-
nology.

Zhang, S.-H., Chen, T., Zhang, Y.-F., Hu, S.-m., and Mar-
tin, R. (2009). Vectorizing cartoon animations. IEEE
Transactions on Visualization and Computer Graph-
ics, 15(4):618 –629.

Zhu, C., Sun, X., Wu, F., and Li, H. (2007). Video cod-
ing with spatio-temporal texture synthesis. In ICME,
pages 112–115.


