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Abstract 
 
The high-pressure behaviour of NaSi is studied using Raman spectroscopy and angle-dispersive 
synchrotron X-ray diffraction to observe the onset of structural phase transformations and potential 
oligomerisation into anionic Si nanoclusters with extended dimensionality. Our studies reveal a first 
structural transformation occurring at 8-10 GPa, followed by irreversible amorphisation above 15 GPa, 
suggesting the formation of Si-Si bonds with oxidation of the Si- species and reduction of Na+ to metallic 
sodium. We have combined our experimental studies with DFT calculations to assist in the analysis of the 
structural behaviour of NaSi at high pressure. 
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1. Introduction 
 
Alkali and alkaline earth silicides and germanides belong to the family of Zintl phases, in which 
polyanionic species, formed of the tetrelide atoms counterbalance the electropositive metal cations [1-3]. 
These compounds are interesting because the Si and Ge atoms occur with negative oxidation states and 
low coordination numbers, and they form unusual low-dimensional structures such as sheets, chains or 
isolated polyhedra. They are also important precursors for the synthesis of bulk amorphous 
semiconductors, including Si nanoparticles prepared by solution-phase routes or in the solid state [4], and 
also the expanded framework solids known as semiconductor clathrates that are isotypic with ice clathrate 
hydrates [5-7]. There are two main features of interest for high-pressure studies of Zintl phases containing 
anionic Sin

z- units. First, the application of high pressure might cause a change of connectivity via 
redistribution of the Si-Si bonds within the anionic framework. Second, Si- oxidation reactions might 
occur resulting in additional Si-Si bond formation with corresponding reduction of Na+ and elimination of 
the elemental sodium (Na0). Either of these outcomes would result in a new family of methods for 
producing Sin clusters and nanoparticles with unusual coordination states, polymerisation and electronic 
properties, via solid state processing at low temperatures.  
 
The alkali metal monosilicides and monogermanides (MSi, MGe) structures have been described 
previously [8-10]. The larger alkali silicides (KSi, RbSi, CsSi) exhibit a cubic arrangement of [Si4]

4- 
tetrahedra and alkali metal cations, with space group . Sodium silicide (NaSi) crystallises with a 
monoclinic structure (space group ) containing isolated [Si4]

4- tetrahedra surrounded by Na+ ions 
(Fig. 1) [8, 9]. The [Si4]

4- anions present in the structure are analogous to the P4 groups found in white 
phosphorus, reflecting the fact that Si- is isoelectronic with P. By contrast, lithium silicide (LiSi) has a 
different structure to the other alkali metal silicides, in that the pyramidal 3-coordinated Si atoms are 
connected to provide alternating zig-zag chains, analogous to one of the black, high-pressure structures of 
phosphorus (Fig. 1).  
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Earlier studies aimed to prepare new alkali metal silicide or germanide compounds synthesised at high-
pressure and high-temperature conditions followed by quenching to ambient conditions for analysis of the 
structures [11-16]. However, no high-density structural modifications have been reported for NaSi so far. 
Here we describe the low-temperature compression of NaSi and the recovery of the resulting 
amorphous/nanocrystalline materials to ambient conditions. 
 
2. Experimental  
 
NaSi is highly reactive to moisture, and therefore all syntheses and DAC loading experiments were 
carried out in either a Schlenk vacuum line or a glove box with H2O/O2 content typically of less than 1 
ppm. For NaSi syntheses from sodium and silicon, a 15% excess of Na metal (about 5at.%) was added to 
counteract loss due to evaporation and reaction with the inner surface of the reaction vessel. The elements 
were placed together in a Ni crucible and placed inside a steel autoclave fitted with a screw top and 
annealed Cu gasket [17]. The sealed autoclave was placed inside a furnace for 30-40 hours at 650°C. 
After the reaction was complete, the autoclave was opened inside a dry-box. The sample was crashed in a 
mortar and placed in into the Pyrex glass cylinder. The cylinder was mounted in the vacuum system in 
order to remove the excess of Na from the sample using the turbomolecular pump (10-6 mbar, 240ºC for 
15-20 hours). The sample was checked by X-ray diffraction using a Stoe diffractometer (CuKα1 
radiation). The diffraction patterns indicated that complete reaction to form NaSi had occurred [9] (Fig. 
2).  
 
NaSi samples were loaded into the DAC in a glove box, prior to the high-pressure experiments. The 
diamond culet faces were typically 300 ȝm in diameter, and 80 ȝm-diameter holes were drilled in pre-
indented rhenium gaskets (30-50 ȝm indent thickness) to contain the sample. Raman experiments were 
carried out using a mechanically-driven opposed 4-screw symmetric diamond anvil cell [18]. Synchrotron 
x-ray diffraction studies were carried out using a N2-driven membrane cell from Diacell (now EasyLab). 
No pressure-transmitting medium was added to avoid potential reactions with the sample. Ruby chips 
were added for pressure measurement by the ruby fluorescence method [19]. The narrow width of the 
ruby fluorescence peaks indicated approximately hydrostatic pressure conditions below 10 GPa. Above 
this pressure the ruby lines became broadened, but differences in the pressure indicated by different ruby 
chips within the sample chamber did not exceed 2 GPa.  
 
The in-house Raman system at UCL consisted of a high-throughput optical system based on Kaiser 
supernotch filters, an Acton spectrograph and a liquid-N2 cooled back-thinned CCD detector. Spectra 
were excited using the 514.5 nm line of an Ar+ laser focused onto the sample using a 50x long working 
distance Mitutoyo objective (numerical aperture= 0.42). Raman scattering was collected in 180o geometry 
through the same lens. The laser power was maintained at ~1 mW to avoid excessive heating of the 
sample. Subsequent data analysis and peak fitting were carried out using the PeakFit v4 software. Angle-
dispersive X-ray diffraction data were collected at the UK Synchrotron Radiation Source (SRS, 
Daresbury Laboratory, station 9.5HP). Two-dimensional X-ray patterns were obtained and then integrated 
around the diffraction rings and converted into 1D plots using the FIT2D software [20]. FullProf [21] was 
used with the WinPlotr GUI interface [22] to carry out LeBail and Rietveld analyses of the data. The 
known structure of NaSi at ambient pressure and temperature conditions was used as a starting model for 
refining the high pressure structures. Cell parameters were first approximately refined manually before 
performing subsequent LeBail and Rietveld refinements. Further Rietveld refinements of the high 
pressure structures were also performed using the DFT calculated results as starting models. 
 
Initial DFT optimisations were performed using the DMol3 code with a double numeric basis set and the 
PWC functional [23, 24]. The unit cell parameters were fixed at the initial values suggested from 
refinements of the experimental data and the atom positions optimised. We then undertook an initial 
series of compressions and expansions around these initial cell sizes to explore the potential energy 
surface (those results are not reported here, but are available from the authors on request). In each case, 
the cell was compressed (or expanded) by 5% along each cell dimension, initially with a fixed β angle 
and then by scanning the angle in steps of 5°. These studies were carried out to provide suitable starting 
geometries for the subsequent full structural optimisations. In order to achieve these, the CASTEP code 
was used, with ultrasoft norm-conserving pseudopotentials, the PWC functional and a plane-wave cut-off 
of 330eV [25]. Each structure was fully optimised (cell parameters and atomic positions) with a specified 
applied external pressure. We considered two starting geometries obtained from the (constant volume) 
DMol3 calculations: one obtained starting from the ambient pressure experimental unit cell (with a 



monoclinic angle of 117°), and another obtained from the high pressure phase, where we found a local 
minimum with a monoclinic angle of 105°. The first model was fully optimised under applied external 
pressures ranging from 0 GPa to 40 GPa, and the second was fully optimised over a more limited sample 
of the pressure range. 
 
3. Results 
 
3.1 Raman spectroscopy 
 
The isolated Si4

4- anion is isostructural with the P4 molecule and exhibits Td point group symmetry ( ). 
The vibrational modes of the cluster anion and their Raman (R) or infrared (IR) activities are A1 (R) + E 
(R) + T2 (R, IR). The A1 mode corresponds to a symmetric breathing vibration of the tetrahedral molecule, 
the E mode is a doubly degenerate symmetric deformation, and the T2 vibration involves both stretching 
and bending components. These modes give rise to three peaks of approximately equal intensity at 474-
482 cm-1 (A1), 351-356 cm-1 (T2), and 285 cm-1 (E) in the Raman spectra of the solid silicides with cubic 
symmetry, CsSi, K3LiSi4 and K7LiSi8 [26]. In these materials, the Si4

4- groups are slightly distorted from 
tetrahedral symmetry, and this gives rise to weak additional peaks and small splitting of the main bands. 
Lattice modes and vibrations associated with the heavy metal cations occur at low frequency below 150 
cm-1, although it has been suggested that Li+ cations may contribute to the higher frequency modes for 
K3LiSi4 and K7LiSi8 samples [26].  
 
The Raman spectrum for NaSi at ambient conditions is quite different from those of the other alkali 
monosilicides (Fig. 3). The strong A1 mode is easily recognised at 480 cm-1; however, the E mode is split 
to give a pair of medium intensity peaks at 280 and 300 cm-1, and the T2 mode gives rise to a group of 
three peaks centred near 350 cm-1. This is a result of the site distortion of the Si4

4- anions within the 
monoclinic crystal structure. Carrying out a symmetry analysis for the C2/c structure (point group C2h) 
with Z = 8 Na4Si4 units in the equivalent primitive cell leads to a prediction of Гnormal = 12Ag + 12Au + 
12Bg + 12Bu, where the Ag and Bg species are Raman active. Each Si4

4- unit is associated to 3 internal 
modes, Ȟ1 (480 cm-1), v2 (280 cm-1) and v3 (350 cm-1) and 6 external modes (3 rotations and 3 
translations). In our Raman spectra, we expect 6 bands associated to the internal modes: 1 around 480 cm-

1), 2 around 280 cm-1 and 3 around 350 cm-1. Rotations and translations are expected at low wavenumbers 
and only a few are often observed with our spectrometer. This is also the case for the modes related to 
translation of Na atoms (6Ag+6Au+6Bg+6Bu).  
 
During the first compression steps, changes in the Raman spectra indicate how the sample accommodates 
to pressure in non-hydrostatic conditions. This is evidenced by the appearance of two modes at 350 and 
185 cm-1 at 4 GPa (Fig. 3). However, noticeable structural transformations occurring within the Si4

4- units 
during compression result in a rapid increase in the intensity of a band near 370 cm-1, in the region of the 
T2 vibration, above 8 GPa. This observation coincides with a reduction in the number of peaks observed 
in the spectrum. Both changes are consistent with a transition into a phase with higher symmetry. The 
spectral features of crystalline NaSi remain recognisable up to 23 GPa. However, further compression 
results in a dramatic broadening of all modes, indicating pressure-induced amorphisation (Fig. 3). The 
onset of the amorphisation process is preceded by a noticeable reduction in intensity of the Si4

4- stretching 
and bending vibrations, suggesting that the amorphisation may be associated with changes in the Si-Si 
bonding. During further compression to 50 GPa the Raman scattering signal from the sample consists of a 
broad featureless signal extending to above 600 cm-1 that could barely be distinguished from the 
background (Fig. 3). 
 
On examination of the Raman data at elevated pressures (Fig. 4), a linear increase of about 4 cm-1 GPa-1 is 
observed for most modes up to 8 GPa. The Si-Si stretching mode at 482 cm-1 is the most resistant to 
compression, with a coefficient of 2.81 cm-1 GPa-1. Between 8 and 12 GPa, some of the lattice and 
vibrational modes show a small shift to lower wavenumber. The softening is largest in the case of the A1 
and E symmetry modes: –3.24 cm-1 GPa-1 and –4.71 cm-1 GPa-1 respectively and it indicates the 
occurrence of a phase transition. The transformation is fully reversible upon decompression but it occurs 
with some hysteresis, indicating a first order transition (Fig. 4). A second vibrational mode softening at 
around 15 GPa suggests the initiation of the pressure-induced amorphisation observed. This will be 
explained and confirmed by our X-ray diffraction results.  
 
During decompression from 50 GPa (Fig. 5), the sample remained mainly amorphous with a broad 
maximum near 470 cm-1 at 1 GPa. Some regions of the sample probed within the cell exhibited broad 



features that are similar (but not identical) to Raman bands reported for metastable silicon phases such as 
Si-III [27]. It is not known whether the partial metastable recrystallisation occurs spontaneously during 
decompression or whether it is due to the laser irradiation.  
 
Once the sample was recovered to ambient conditions and the DAC opened, a vigorous reaction with 
atmospheric O2 or H2O took place, either with the highly reactive amorphous NaSi phase or with perhaps 
nanocrystalline Na metal produced during the amorphisation process.  
  
3.2 X-ray diffraction studies and density functional theory calculations. 
 
Our Raman studies were complemented with in situ X-ray diffraction. Upon initial compression, all the 
peaks are observed to broaden due both to internal strains developed at grain boundaries (in the absence 
of a pressure transmitting medium) within the  compressed polycrystalline sample, and also the 1-2 GPa 
pressure gradients, indicated by the different ruby chips placed within the sample chamber (Fig. 6). The 
monoclinic NaSi structure remains recognisable up to about 8 GPa (Fig. 6). Changes in the pressure 
variation of individual reflections reveal evidence for a structural or phase transformation occurring in the 
8-12 GPa range (Fig. 7). The new diffraction pattern is dominated by two strong reflections at 2.4 and 2.9 
Ǻ (=.6° and 11.9°) at 14 GPa. Substantial peak broadening did not allow an accurate structural 
refinement of the high-pressure solid, so we carried out DFT calculations in order to obtain models to be 
used in our LeBail and Rietveld refinements.  
 
The calculated cell volume matched that obtained by LeBail extraction (Fig. 8). Changes in the 
tetrahedral Si-Si distances and angles calculated upon compression are also shown in Fig. 8. Our initial 
constrained minimizations indicated that, as the cell was compressed, the monoclinic angle would be 
reduced. Full optimisation of the approximate high-pressure phase at 12 GPa resulted in a structure with β 
= 106°, compared with β = 120° at ambient conditions. This structure is close to one obtained by taking 
the ambient phase and re-optimising it at an applied pressure of P = 12 GPa. However, that optimization 
was not successful if the high pressure condition was applied in a single step: the pressure must be 
increased gradually in steps of ~2 GPa from the ambient phase to achieve an optimised high pressure 
structure. That result indicates the presence of an energy barrier in the system that is likely associated 
with a first order phase transition into a high pressure NaSi phase. One example of a Rietveld refinement 
using the calculated structure of NaSi at 12 GPa as a starting model is shown in Fig. 9. Experimental and 
calculated cell and atomic parameters are given in Table 2. The observed data (dots) fit quite well with 
the calculated curve (line), with reliability factors of Rp= 9.21, Rwp= 10.9, Rexp= 2.27 and the Bragg R-
factor = 2.20. 
 
Diffraction evidence for pressure-induced amorphisation (PIA) of the sample as recorded by the Raman 
scattering measurements is shown by peak broadening and disappearance of most of the diffraction peaks 
beyond ~15 GPa. Although this pressure is much lower than that determined for the onset of PIA in the 
Raman experiments, this is not surprising in view of the longer correlation length required for crystalline 
X-ray diffraction features to be observed. The diffraction pattern corresponding to the amorphous 
modification is dominated by a single broad reflection. The initiation of PIA in the X-ray diffraction data 
indicates that the onset of the amorphisation process is associated with loss of long range order beginning 
at 15 GPa but the Raman data indicate that the local order of the [Si4]

4- units is maintained until 23 GPa. 
No recrystallisation of the amorphous modification occurs during further pressurisation to 50 GPa (Fig. 
7). On decompression, it was possible to follow a continuous shift in the position of the broad amorphous 
reflection down to nearly ambient pressure, but the diffraction pattern changed abruptly in the last stages 
just before opening the DAC, with the appearance of two very weak broad reflections at 2.3 and 3.7 Ǻ-1 
that are reminiscent of the pattern produced by amorphous silicon [28] (Fig. 10). We carried out a further 
experiment at high pressure using CO2 laser heating in the diamond anvil cell to anneal the amorphous 
sample held at 30 GPa. To our surprise, this resulted in the appearance of sharp crystalline peaks due to 
bcc Na metal (Fig. 11). However, the broad features of the amorphous Na1-xSi material remained in the 
patterns.  
 
4. Discussion  
 
The ambient pressure structure of NaSi is analogous to that of white phosphorus that forms a body-
centered cubic lattice with discrete P4 tetrahedra with intra-tetrahedral P-P distances of 2.21 Å [29]. The 
black orthorhombic modification that is analogous to the Si sublattice arrangement in LiSi is formed by 
puckered layers of phosphorus atoms, with P-P distances of 2.22 and 2.24 Å within the same layer, which 



fall within the same range as in the white modification [30, 31]. The longest Si-Si bonds in the three-
dimensional LiSi structure are at around 2.4-2.5 Å, which are shorter than the first-nearest neighbour 
distance between tetrahedra calculated in this study for NaSi at 15 GPa (3.39 Å). The latter result 
indicates it is unlikely that the high pressure transition observed for NaSi is simply a transformation into a 
LiSi-related three-dimensional network. Instead, our experimental results and calculations suggest that the 
two NaSi structures are related through a translation of the [Si4]

4- tetrahedral layers accompanied by a 
rearrangement of the Na + positions and a relaxation of the [Si4]

4- tetrahedra towards a more highly 
symmetric structure (Fig. 12). 
 
It has been reported that NaGe, which is also monoclinic at ambient conditions, undergoes a phase 
transition into the tetragonal NaPb structure at 4 GPa and 700 oC [13]. This structure contains isolated 
[Si4]

4- tetrahedral anions and it is also adopted by the cubic alkali monosilicides and monogermanides 
containing large cations (K, Rb, Cs) at conditions around 4 GPa and 600-700oC [16]. However, the 
Rietveld refinements carried out using the NaPb structure as a starting model did not fit the diffraction 
patterns accurately and the minimum value for the monoclinic -angle in NaSi was calculated to be 106°.  
 
The formation of the amorphous (Na1-xSi) material at high pressure is an intriguing observation. The 
featureless Raman spectra and broad X-ray diffraction pattern resemble those recorded for the metallic 
high-density amorphous phase (HDA) of elemental a-Si [28, 32, 33]. It is therefore possible that a high-
density metallic amorphous form of NaSi has been produced in our experiments. Such an amorphous 
phase could contain a mixture of separated Si4

4- units as well as tetrahedra linked by Si-Si bonds, by 
analogy with those that occur among varieties of "red" phosphorus. However, the appearance of 
diffraction peaks due to metallic Na following heating experiments at high pressure indicates that redox 
reactions can occur, producing Nao by Na+ + e-. The corresponding oxidation of silicon species involves 
Si- = Sio + e-, with the formation of new Si-Si bonds. The result is a progressive cross-linking of the 
silicide network to form nanoclusters of partially polymerised (Six)

y- units, that can contain both Si(Si)3 
and Si(Si)4 sites. These could have interesting and unusual electronic and optical properties. High 
pressure treatment of alkali metal silicides may provide a new route to synthesise and control the 
polymerisation state of silicon-based nanoclusters.  
 
Our results also have implications for the occurrence of high-density/low-density (HDA, LDA) 
polyamorphic transitions in Si- and Ge-based systems [28, 32-35]. Amorphous Si and Ge are known to 
undergo a semiconductor-metallic transformation at high pressure that maps on to an expected density-
driven liquid-liquid phase transition that appears quite general among elemental and other simple liquids 
[36]. It is interesting to explore how the observed PIA in NaSi and other alkali metal-containing alloys 
and compounds relate to the HDA-LDA behaviour. Recently, Machon et al. [37] studied amorphisation of 
the semiconductor clathrate phase Rb6Si46, and suggested that the large Rb atoms remain trapped within 
the a-Si structure at high pressure. They indicated that the high-density amorphous structure resembled 
that of HDA a-Si, and that a polyamorphic transition to an LDA phase resembling a-Si occurred during 
decompression. Our diffraction data indicate that the situation for NaSi is different, and that chemical 
diffusion accompanied by Na+/Na0 and Si-/Si0 redox processes occurs at high pressure or during 
decompression. In contrast to Rb, the smaller Na atoms appear to diffuse more easily through an a-Si 
network; as occurs during the formation of Si clathrates from the thermal decomposition of NaSi [38]. We 
expect that nanocrystalline bcc Na may form readily at high pressure causing the production of new Si-Si 
bonds between [Si4]

4- units and forming nanoscale clusters. Our computational studies indicate that the 
amorphisation process could originate in the ready distortion of the tetrahedral [Si4]

4- groups, indicated by 
our vibrational spectroscopy results at high pressure.  
 
Consideration of the molar volumes gives useful insights into the nature of the chemical processes 
occurring in these systems. Under ambient conditions, the molar volume of NaSi is calculated to be 29.34 
cm3 mol-1, whereas the sum of the molar volumes of elemental Na and Si is 35.74 cm3/mol. When the 
pressure is increased to 15 GPa, the molar volume calculated for NaSi decreases to 20.69 cm3 mol-1. At 
this pressure, the volume of Na metal is 12.05 cm3 mol-1 [39]. On the other hand, under these conditions, 
silicon can exist in either of three possible phases: in its high-density amorphous (HDA) modification, as 
the β-Sn type, or simple hexagonal (sh) phase. The molar volumes for β-Sn and sh-Si are known to be 
20.36 [40] and 20.15 [41] cm3 mol-1 respectively. The molar volume of HDA-Si, however, is unknown, 
but must be smaller than that of LDA-Si, 24.36 cm3 mol-1 [42]. What this implies is that the molar volume 
of NaSi at 15 GPa must be slightly greater than the sum of volumes of its elemental components, a 
situation that therefore favours the otherwise unexpected decomposition of the intermetallic to its 
elements upon compression.  Furthermore, we note that diffraction peaks of sodium become visible, 



whereas no evidence is observed for crystalline silicon. This is in stark contrast to our previous 
experiments in which -Sn Si crystallizes spontaneously in the X-ray beam at 17 GPa and suggests that 
the presence of sodium may play a role in suppressing crystallization, thereby extending the stability 
range of the amorphous silicon.  
 
5. Conclusions 
 
We have described the high-pressure behaviour of NaSi up to 50 GPa. As evidenced by both Raman and 
X-ray diffraction results, the solid adopts a higher-symmetry crystal structure in the range between 8-12 
GPa. Density functional theory calculations showed that the ambient and high-pressure crystal structures 
are related by slipping of the planes of Si tetrahedra and rearrangement of the Na atoms. No evidence of a 
transformation of NaSi into a crystalline non-molecular network was recorded. However, random cross-
linking between Si subunits has been suggested to result in irreversible loss of translational order. The 
nature of this amorphous modification has been discussed in terms of pressure-induced decomposition of 
the sample.  
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Fig. 1. (a) Representation of the crystal structure of NaSi at ambient pressure. NaSi is isoelectronic with 
white phosphorus, containing [Si4

4-] ions arranged in isolated distorted tetrahedra. (b) The crystal 
structure of LiSi at ambient pressure, related to black phosphorus Cmca structure, is formed by three-fold 
coordinated Si- anions arranged along chains, forming eight-membered rings.   
 
 
 
 

 

Fig. 2. X-ray diffraction pattern obtained at ambient conditions after the synthesis of NaSi. Rietveld 
refinement confirms the monoclinic C2/c structure. Reliability factors are Rp= 16.1, Rwp= 16.0, Rexp= 
8.58, Bragg R-factor= 3.56. 

 
 
 



 
Fig. 3. Raman spectra of NaSi upon compression at room temperature. The distortion of Si4

4- groups in 
the C2/c structure gives rise to Raman-active vibrational bands at 480 cm-1 (A1), 280 and 300 cm-1 (E) 
and 339.5, 355.7 and 380.5 cm-1 (T2) at normal pressure. The spectra suddenly changes above 8 GPa in 
the region of the T2 vibration, with a rapid increase in the intensity of a band around 370 cm-1. Above 23 
GPa, we observed irreversible broadening of all modes.  
 
 
 

 
Fig. 4. Raman shifts plotted vs pressure for crystalline NaSi. Full and empty symbols stand for 
compression and decompression runs respectively. Softening of certain bands is observed in between 8-
12 GPa (highlighted). A further red-shift is observed in some modes at 15 GPa.  
 
 
 
 
 



 

Fig. 5. Raman spectra of the amorphous sample obtained in the diamond anvil cell at 30 GPa and 
following decompression to 1 GPa. Two different spectra were obtained from regions of the sample 
recovered to 1 GPa. Spectra (A) and (B) correspond to different spots across the sample in the DAC. 

 
 
 
 
 

 
Fig. 6. Synchrotron X-ray diffraction patterns on NaSi upon compression at room temperature. The 
pattern at 1 atm was obtained using a Stoe diffractometer (CuKα1), however, it has been calculated for the 
synchrotron radiation at SRS 9.5HP (Ȝ= 0.443λ70 Ǻ) to be compared with the patterns at high pressure. A 
first crystal-to-crystal transformation of NaSi is observed above 8 GPa followed by pressure-induced 
amorphisation of the sample at 15 GPa.  
 
 
 



 
Fig. 7. Variation of interplanar spacings (d) of NaSi upon compression. The transformation occurring 
between 8 and 12 GPa is highlighted by grey symbols.   
 
 
 
 
  

 

Fig. 8. Experimental (grey symbols) and calculated (black symbols) changes in unit cell volume as a 
function of pressure (left). Changes with pressure in Si-Si distances and angles calculated for [Si4]

4- 
tetrahedra in the NaSi structure during compression (right). 

 
 
 
 



 
Fig. 9. Rietveld refinement carried out for an X-ray diffraction pattern of the high-pressure phase of NaSi 
at 12 GPa (Ȝ= 0.443λ70 Ǻ). The NaSi C2/c structure calculated at 16 GPa was used as a reference model 
for the refinement. Reliability factors are Rp= 9.21, Rwp= 10.9, Rexp= 2.27, Bragg R-factor= 2.20.  
 
 



 

Fig. 10. X-ray diffraction patterns of NaSi obtained upon decompression from 30 GPa. Raw data (above) 
and corresponding baseline-subtracted data in Q space (below). A pattern of a-Si will be included here 
if Dominik agrees with it.   

 

 

Fig. 11. X-ray diffraction pattern obtained after laser annealing of the amorphous NaSi sample at 30 GPa. 
The sample was loaded in dried NaCl and heated indirectly with a CO2 laser, using ruby chips to transmit 
heat to the sample. The inset shows the pattern obtained after baseline subtraction, with characteristic 
lines from  bcc Na metal (100), (200) and (211) reflections (grey line) and peaks corresponding to the B2 
phase of NaCl used as the pressure-transmitting medium (marked by asteriks). 



 

 

Fig. 12. Representation of the crystal structure of NaSi at ambient and high pressure (view along [100] 
plane). The structures are related by a slip of the [Si4]

4- tetrahedral layers along with a rearrangement of 
the Na+ cations and reduced distortion of the [Si4]

4- units.  

 
 
Table 1. Correlation analysis for NaSi. There are three internal modes for each Si4 group, 1 (482 cm-1), 2 (285 cm-1) and 3 (356 cm-1) and 6 external modes (3 rotations and 3 translations). Ag and Bg are 
Raman active. 
 
 Ion movement  GM GS GF  
Transl. Libr. Int. Td C2 C2h  
       

Si4       
  1 A1  Ag Ȟ1, 2Ȟ2, Ȟ3, lib., trans. 
    A   
  1 E  Bg 2Ȟ3, 2lib., 2trans. 
 1  T1  Au Ȟ1, 2Ȟ2, Ȟ3, lib., trans. 
    B   
1  1 T2  Bu 2Ȟ3, 2lib., 2trans. 

       
Na(1) and Na(2)      

   C1   
     Ag 6 trans. 
     B1g 6 trans. 

6    A   
     Au 6 trans. 
     B1u 6 trans. 

 
 
 
 



Table 2. Experimental and calculated cell parameters and atomic positions for NaSi at high pressure.  

 


