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Abstract. Partitions are a very common and useful way of organiz-
ing data, in data engineering and data mining. However, partitions cur-
rently lack efficient and generic data management functionalities. This
paper proposes advances in the understanding of this problem, as well
as elements for solving it. We formulate the task as efficient process-
ing, evaluating and optimizing queries over set partitions, in the setting
of relational databases. However, producing universally fast execution
plans remains a challenging task, since the underlying relational model
has a significant impact on the algebraic definition of the operators and
therefore on their implementation in terms of space and time costs.
We first demonstrate that there is no trivial relational modeling for man-
aging collections of partitions. We formally motivate a relational encod-
ing and show that one cannot express all the operators of the partition
lattice and set-theoretic operations as queries of the relational algebra.
We investigate SQL features beyond FO to build optimized queries for
partition operators. We provide multiple evidence of the inefficiency of
FO queries. Our experimental results enforce this evidence, event ac-
counting for careful SQL query optimization.
We claim that there is a strong requirement for the design of a dedicated
system to manage set partitions, or at least to supplement an existing
data management system, to which both data persistence and query
processing could be delegated.

1 Introduction

Let us consider a set of items organized into disjoint groups. If these groups
cover together the set of items, they form a partition of this set. Partitions are
a very common and useful data structure manipulated in data engineering and
mining. However, this structure is not yet a first-class citizen, in terms of data
management functionalities. This becomes particularly critical when scaling up
to arbitrary partitions defined over a very large set of items. As a motivating
vignette, one may think of a research activity conducting exploratory analysis via
unsupervised classification on massive scientific data in a collaborative fashion.
Researchers would then supply their clustering results to a shared repository and
try to elaborate forms of comparison and combination of partitions, for instance,
to acquire knowledge about the all experiments. Our perspective is that further



exploitation of these results would gain from the availability of (a) independence
of the physical and logical representation of set partitions b.t.w. of an abstract
layer (b) query facilities and (c) an optimized set partition query engine.

In this paper, we address the issue of querying set partitions regardless of
types, features and any other auxiliary information of the items. In other words,
given a set Ω of items, our very basic assumption states that, given two distinct
items x and y in Ω, we know whether they are in the same group (x ∈ [y])
or not. One does not make any other assumption on values of x and y, such
like having identical or similar features. This agnostic position, being the most
generic approach, makes possible combining partitions of the same set Ω of items
with very different points of view (aka. feature spaces) w/o any trade-off or tricks
to a priori merge both representations.

As a motivating example, we shortly present hereunder a generic applica-
tion scenario where storing and querying partitions can greatly support data
exploration task.

Scenario: Set Partitions for an OLAP Cube-like Structure In declarative
query languages to multidimensional data Ω : A, coined tables, a partitioning
task is usually performed explicitly by picking attributes from A and designing

an aggregation mapping agg : 2Ω × 2A → 22
Ω × R, for which one wants to

group tuples from Ω and ultimately get an aggregate value in R such that it
underlies a partition of the ongoing table. As an example, we may think about
the SQL group-by clause over a subset X of attributes in A, with any usual
aggregate function (min, max, sum, count, avg). In this setting, every pair of
tuples (t, u) ∈ Ω2 such like t[X] = u[X] belongs to the same group and the
aggregate function computes one single value for each group. By the way, the
aggregation mapping yields to a disjoint assignment of tuples into groups and

then, it denotes a partition (Pagg ∈ 22
Ω

) of the whole table.

Aggregation operators are the core of online analytical processing (OLAP) [9].
Roughly, with a slight generalization over the aggregate value, that depends on a
given numerical attribute called measure, we can basically model cubes with the
previous aggregation mapping. In real-life settings, cubes have only 3 dimensions
in A for visualization purpose as in (product, customer, area) with the sold-
amount measure that can be sum up, for instance. Here, dimensions are multi-
scaled such that we can switch from quarters (zip code) to cities and consider a
new—smaller—set of attribute values to map to new—coarse-grained—groups.
This operation is usually coined roll-up and its dual drill-down in the cube. They
can easily be translated to set partition refinement in our model for aggregation
mapping. Then, it seems to be a relevant solution to build statistical databases
and aggregate summaries at large. One could gain also benefit from saving several
frequent aggregation queries as set partitions along with their attribute vectors
to ease further analysis as soon as one wishes to design new queries from the
former ones [16].



Problem Scope and Contributions The above setting illustrates the need
for management systems to support manipulations on set partitions. The base-
line work direction consists in carrying out the mapping of partitions onto the
well-established Codd’s relational model [5]. This indeed provides mature sys-
tems with sophisticated query capabilities, query optimization policies and well-
founded theoretical background. We then explore the relational encoding of set
partitions as well as delegation of operators on partitions to the SQL engine.

Further Reading. . . The remainder of the paper is organized as follows.
Section 2 presents the basic mathematical background required to operate on
set partitions. Different flavors are provided. We also introduce the encoding
schemes for partitions. In Section 3, we express relational queries against en-
coding schemes that relate to a collection of set partition operations. Section 4
reports experimental results that confirm our static analysis. Sections 6 and 7
respectively cover related work and draw concluding remarks.

2 Data Model(s)

This section motivates the relational encoding, formally defined in Section 2.3.
The data model actually depends on combinatorial properties of set partitions.
Set partitions admit two levels of nesting and constraints: a partition P =
{a1, a2, . . . , an} is indeed a set of sets (blocks ai) of items where blocks satisfy
both

⋃
ai∈P ai = Ω and ai∩aj = ∅ if ai 6= aj , with respect to the ground set Ω of

items. For ease of reading, we shall denote a partition as P = ♦♠♥♣ | ∞¬ | \][
where | separates blocks of items. Thereafter, we use natural numbers N as the
underlying domain for Ω without loss of generality.

2.1 Partition Algebra

The set of all partitions ΠΩ defined on the same ground set Ω is endowed with
the refinement relation ≤ so that the poset (ΠΩ ,≤) is the well-known partition
lattice. In this lattice, P refines Q, denoted P ≤ Q, if and only if every block of
P is a subset of a block in Q.

According to the algebraic definition of the partition lattice (ΠΩ ,∧,∨), there
are semantically equivalent definitions for ∧ (meet) and ∨ (join) operators by
means of their least upper bound and greatest lower bound :

P ∨Q := inf sup {R | P ≤ R and Q ≤ R}
P ∧Q := sup inf {R | R ≤ P and R ≤ Q}

Example 1. Given P = 123|456|78|9 and Q = 123|45|67|89, then P ∧ Q =
123|45|6|7|8|9 et P ∨Q = 123|456789.

This leads to the following identity rule: (P ≤ Q) ⇐⇒ (P ∨Q = Q) ∧ (P ∧
Q = P ) and >Ω ≤ P and P ≤ ⊥Ω for all P,Q ∈ ΠΩ , where ⊥Ω denotes the



bottom partition where each block contains a single object and >Ω is the top
partition with a single block.

Besides, as partitions are also a family of sets, we would like to consider
some set-theoretical operators which apply to blocks. Indeed, the very first idea
behind partitions is that they are subsets of the boolean lattice 2Ω . Further, we
can apply some boolean operations on pairs of blocks:

P ∩Q := {a | a ∈ P ∧ a ∈ Q}
P −Q := {a | a ∈ P ∧ a 6∈ Q}

The intersection operator is equivalent to computing either P − (P − Q) or
Q − (Q − P ). Both − and ∩ are well-defined over partitions, given that they
build partitions on support sets S ⊆ Ω. Indeed, only a subset of blocks from P
composes the result set of P ∩Q and P −Q as well.

Example 2. Following Example 1, P − (P ∧ Q) = 456|78 since 123 and 9 are
blocks of P ∧Q. Support set of P − (P ∧Q) becomes S = {45678} ⊆ Ω.

Finally, the set union operation ∪ is not expected to preserve mutual dis-
junction since blocks of distinct partitions may overlap, then it is not eligible in
our study. To sum up, we are staying with four set partition operations: meet
(∧), join (∨), intersection (∩), difference (−), that we would like to perform on
generic set partitions.

2.2 Extensional Representation

Let the classical set-theoretic representation of a partition be called the inten-
sion. In this conceptual view, blocks are anonymous subsets of items. For opera-
tional purpose, there is a requirement for elaborating an encoding schema that is
able both to perform boolean tests over blocks (membership, containment) and
to update block configurations. Then, as a counterpart to the intentional view,
extension refers to an equivalent representation, where the same properties hold.
It must basically preserves item-to-block membership. And ultimately, we are
concerned about the design of a one-to-one mapping ε from intention to exten-
sion of partitions, which conveys the same structure within each representation.
To this end, in this section we go from the underlying item-to-item associations
up to the relational encoding schema.

Partition Decomposition An extension of a set partition relies on the setoid
alternative representation, that is (Ω,∼Ω) where ∼Ω is an equivalence relation
on the ground set Ω (reflexive, symmetric and transitive). This extension simply
emphasizes that, given two items x, y ∈ Ω, x and y are in the same block of
partition P iff x ∼P y. Let us define the morphism φ : P 7→∼P as:

φ(P ) :=
⋃

(a,a)∈P×P

a× a



We may retrieve the original partition through its inverse φ−1(∼P ) := P/ ∼Ω
and hence recover explicit item assignments to their respective blocks.

Such an extensional representation is the most expensive description as its
space complexity is in O(|Ω|2). Actually, it provides the all item-to-item associa-
tions of a partition. For instance, φ(1234|56) = {(11, 12, 13, 14, 21, 22, 23, 24, 31,-
32, 33, 34, 41, 42, 43, 44, 56}. To follow on the intensional-to-extensional mapping,
it is worth to notice that the following properties hold:

φ(P ∧Q) = ∼P ∩ ∼Q
φ(P ∨Q) = 〈∼P ∪ ∼Q〉

One requires an algebraic closure operator 〈R〉 =
⋂
{∼⊆ Ω × Ω | R ⊆∼} in

order to “promote” ∼P ∪ ∼Q as a set partition.
At this stage, we come up with a—very inefficient—extension b.t.w. of the

equivalence relation counterpart of a partition. In this setting, performing a set-
theoretic operation over partitions requires round tripping from the scope of
the extensions to intentions and backward. This mechanism is described in the
following equality:

φ(P Op Q) = φ(φ−1(∼P ) Op φ−1(∼Q)), Op ∈ {−,∩}.

Then, a key issue for an efficient encoding is to avoid such intensive enumer-
ation of item-to-item associations while retrieving explicit item memberships
when performing set operators {∩,−}.

Tree-based Representation Thankfully the transitivity property of the equiv-
alence relation can be relaxed in our setting to a simple reachability property.
From a graph-theoretical perspective, we may consider as consistent the fact that
x, y, z are equivalent w.r.t. a partition if there is a chain that only guarantees
existence of a strongly connected component rather than a complete (sub)graph.

Such a structure is optimal according to space complexity if it is a minimum
spanning tree, i.e. O(n)-space, which entails every item with at least two edges
(except for the leaves) and states that every item within a block is reachable
by all the others. As an example, partition 1234|56 can easily be represented by
{12, 23, 14, 56} as a forest of two trees rooted resp. by 1 and 5. Furthermore, this
tree-based representation can straightforwardly be traversed through a relational
encoding since it is utmostly flattened.

2.3 Relational Encoding

As previously stated, the relational model natively supports partitions and pro-
vides a very straightforward encoding scheme for the tree-based representation
of generic set partitions. We refer to the relational mapping as a membership
encoding scheme.

This encoding scheme represents the item-to-block membership within the
relational model.



M

elt block

1 1

2 1

3 1

4 4

5 4

6 6

N

elt block

1 1

2 1

3 1

4 4

5 5

6 5

Fig. 1: Relational view of P = 123|45|6 and Q = 123|4|56

Definition 1. Given a partition P and its related equivalence relation ∼P ; as-
sume a relation schema M(elt : Ω, block : Ω) where columns elt and block are
both items of Ω.The relational encoding scheme ε of set partitions is defined as:

ε : ΠΩ 7→M(Ω,Ω)
P → I(M) := {(x, y) | x ∈ [y]}

In the above definition, we require each equivalent class [y] of ∼P to have
an anchor y, i.e. a highlighted item that identifies the block. In conjunction
with algebraic properties stated in Section 2.2, we arbitrarily decide to set the
minimum item’s value y as the anchor, assuming that [y] has a deterministic
and unique lower bound while the Path Independence condition [13] entails that
ε must be defined as an extremal function, and thereafter, y could be assigned
min or max value only. It is especially required for having a unique mapping
ε(P ) for any input P . It follows that items, except the anchor, are all siblings
and the underlying tree-based representation is actually a star. Hence objects
but the root of a block are not ordered.

Example 3. Tables M and N in Figure 1 show the relational mapping of parti-
tions P = 123|45|6 and Q = 123|4|56. Block identifiers, also known as anchors,
are 1,4,6 for P and 1,4,5 for Q. They all meet the minimum value of each block.
Each block, such as 123, is encoded by a set of edges, e.g. {(11), (12), (13)}, such
that it builds a star with the anchor as the root, and follows the tree-based
representation.

3 Performing Operations

We focus in this section on the way to translate partition operators among
{−,∩,∧,∨} within relational queries over the membership encoding scheme ε.

We assume two partitions P and Q encoded resp. by relations M and N .
For convenience, we do not distinguish relation schemes M and N from their
respective instances. We also consider that P and Q are defined over the same
ground set of objects Ω.



(P,Q) P OpQ

(M,N) Rel-exprOp(M,N)

Op ∈ {−,∩,∧,∨}

ε

Rel-exprOp

ε−1

Fig. 2: Relational Encoding Diagram

Figure 2 gives an overview of the challenge we are addressing in this Section.
The main idea is to provide, for each partition operator Op, a query expression
Rel-exprOp in any relational language, such that P OpQ is given by:

P OpQ = ε−1(Rel-exprOp(ε(P ), ε(Q)))

More precisely, three main issues have to be addressed to deal with set par-
tition operators in the membership encoding : (i) block comparison, (ii) block
intersection and (iii) block identification.

Firstly, set-theoretic operators {−,∩} on partitions require testing equality
of M -blocks and N -blocks pairwise. We also have to decide whether or not, a
given M -block overlaps an N -block, especially to perform the join (∨) opera-
tion that merges overlapping blocks. Those are block comparison operations, or
predictates on blocks.

Secondly, performing the meet (∧) operator involves calculating the set-
theoretic intersection of pairs of M -blocks and N -blocks. The baseline mech-
anism requires computing the equivalence relation φ(P ) resp. φ(Q) from M
resp. N at query time. It is easily formulated as π1,3σ2=4(M ×M) but it intro-
duces severe performance pitfall (see Section 4).

Last but not least, every lattice operation (meet and join) requires the as-
signement of an anchor (block id) to the newly created blocks. Therefore, the
process must iteratively fix block id’s to minimum values.

3.1 Difference

The Difference operator in Domain Relational Calculus DRC is as follows:

ε(P −Q) := {(x, y) : M(x, y) ∧ ∀z.∃t.¬ (M(t, y)↔ N(t, z))}

where we build elt-block pairs (x, y) such that there is one such pair in M , and
we can not find any block z in N that is equal to block y in M .

We then come up with the following algebraic expression:

ε(P −Q) :=M − π1,2(σ2=3(M × ((adom× adom)−
π2,4(σ1=3(((adom× adom)−N)×M)∪
σ1=3(((adom× adom)−M)×N)))))



where adom = adom(M) = adom(N) = π1(M) = π1(N) since support sets
of both partitions P and Q are equal. Hence, the naive evaluation of ε(P −Q)
query would require 3 full cross products, 3 equi-joins, 3 set differences and 1
union operation over relations of size in O(|adom|2).

To follow on, since the equivalence A ∩ B ≡ A − (A − B) holds, then the
set difference operator gives a proper definition for the intersection operator as
well.

3.2 Meet

The meet operation P ∧Q translates in DRC as:

ε(P ∧Q) := {(x, y) : ∃z.(M(x, z) ∧M(y, z)∧
∃t.(N(x, t) ∧N(y, t)∧
∀u.((M(u, z) ∧N(u, t))→ u ≥ y)))}

The above formula combines block intersection issue with block identification
issue. Indeed, assigning a single y value as an anchor to each distinct (M -block=
z, N -block= t) pair is operationally similar to assigning an anchor value to a set
of equivalent objects. Actually, pairs (z, t) uniquely identify each block of the
meet operator. It then requires recomputing the all equivalence relation from
the membership encoding scheme.

Example 4. From the partitions of Figure 1, we can see on Table 1 the (M -block,
N -block) pairs that identify each result block of the operation ε(P ∧ Q). The
next step to achieve the meet partition is to assign anchors to blocks. It is shown
on Table 2, from the self-join of JTab = σ2=4(M ×N).

σ2=4(M ×N)

1 1 1

2 1 1

3 1 1

4 4 4

5 4 5

6 6 5

Table 1: ε(P∧Q): (M -block,
N -block) pairs

σ(2,3)=(5,6)(JTab× JTab)

1 1 1 1 1 1
1 1 1 2 1 1
1 1 1 3 1 1

2 1 1 1 1 1
2 1 1 2 1 1
2 1 1 3 1 1

3 1 1 1 1 1
3 1 1 2 1 1
3 1 1 3 1 1

4 4 4 4 4 4

5 4 5 5 4 5

6 6 5 6 6 5

⇒

ε(P ∧Q)

1 1

2 1

3 1

4 4

5 5

6 6

Table 2: ε(P ∧Q): objects & anchors

3.3 Join

The Join operation P ∨Q is not expressible in RA since a transitive closure needs
to be performed [6]. Indeed, the union propagates to blocks each time there are



pairwise overlapping blocks from P and Q, until we reach a fixpoint. Since it is
not possible to a priori plan the number of iterations in the propagation, then
there is not any RA expression that could compute ε(P ∨Q).

Basically, we decompose the query into 2 steps:

1. first, we build the connexions between block id’s within one partition, and
2. second, we filter the result such that we stay with one single anchor for each

set of equivalent block id’s.

From this perspective, the join operation could be seen as the elaboration of an
equivalence relation over the set of blocks themselves, followed by the anchor
mechanism (reducing step). The first step is not expressible within RA since it
involves reachability issue within a graph, whereas the second step admits a RA
expression.

We then provide the sketch of the algorithm that performs the Join operation
ε(P ∨ Q), where we mix for convenience procedural loop and DRC queries in
Algorithm 1. In the process, θω denotes the fixpoint which is reached in a finite
number of steps since (θ(i))i series is inflationist (θ(i) ⊆ θ(i+1)) and there is an
upper bound on the size of θω that is |adom× adom|.

Algorithm 1 Join operation ε(P ∨Q)

θ(0) ← {(y, y) : ∃x.M(x, y)} . Init step
repeat

θ(i+1) ← θ(i) ∪ {(x, y) : ∃z.(θ(i)(x, z) ∧ ∃t.(M(t, z) ∧ ∃u.(N(t, u) ∧ ∃v.(N(v, u) ∧
M(v, y)))))}

i+ +
until θ(i+1) = θ(i)

θω ← θ(i)

return {(x, y) : ∃z.M(x, z) ∧ θω(z, y) ∧ ∀t.(θω(z, t)→ t ≥ y)}

The above analysis serves the purpose of an implementation of ε(P∨Q) within
regular R-DBMS. Knowing ANSI/ISO SQL3 introduces WITH RECURSIVE
clause that extends RA features of SQL to mimic Datalog recursion, we are able
to express a single SQL query as a Common Table Expression (CTE) statement
to perform the ∨ operation over partitions.

However, this algorithm likely results in unexpected very poor performance
of (∨) computation due to the gathering of a superfluous number of tuples in
θ. In addition, in the last step such that θ(i+1) = θ(i), the relation contains
at worst all the alternative block id’s assignments for the entire active domain
whenever aggregation has to return a single block in the outcoming partition!
It then leads to check |π2(M)|2 tuples and using assumption on the expected
number of blocks drawn by a realistic generator (please refer to our experimental
protocol in Section 4.2), we have to check log2(|π1(M)|), or basically log2(|Ω|)
tuples. Ultimately, for every element of the active domain to be reassigned, we
break the tie between all eligible solutions and choose the minimum as new



block id, that is |Ω| × log2(|Ω|) comparisons at worst, which is awful, from a
computational cost.

Moreover, there is no hope of improving this computational cost by using
recursive query optimizations (for instance [15]) since they only fit in cases where
computation of transitive closure-like query result (such as path queries in graph)
is expected. By no means, it is what we are looking for, and transitive closure is
merely a tool but not our end purpose, that is, transitive reduction performing
block id’s reassignment.

3.4 Optimizations through SQL features

We briefly describe in this section two ways towards possible improvement in
performance of query evaluation for generic set partition operations.

Early Filter Out The first optimization technique deals with the set-theoretic
operators − and ∩ performed through the membership encoding scheme ε. It
basically consists in a pre-filtering step where blocks that cannot be part of the
result set are early discarded.

Indeed, in the basic version of the SQL statement for set-theoretic operations
P OpQ, Op ∈ {−,∩}, each pair of (M -block, N -block) is checked in extension
by scanning its all pairs of objects, to decide whether blocks are equal or not.
Although this deep scan remains necessary for a few candidate pairs, it is possible
to remove pairs (M -block, N -block) that do not satisfy coarse-grained predicates
F (M -block) = F (N -block) with F ∈ {min,max, count} as those basic aggregate
functions are efficiently implemented in R-DBMS.

Example 5. Given P = 123|457|6|89 and Q = 123|467|58|9; we would like to
perform P ∩ Q. There are 12 pairs of (M -blocks,N -blocks) to compare. If we
compute count values, then it remains 6 pairs only. With the minimum value,
we stay with 2 candidate pairs: (123, 123) and (457, 467). The maximum value
does not make any further optimization here. Then, the refinement step would
discard the second candidate pair to provide with the result set: 123.

Then we experiment a revised version of the SQL statement that takes ben-
efits from online fast computation of aggregates (min, max, count) to filter out
pairs of (M -block, N -block).

Window Functions The ANSI/ISO SQL3 introduces a nice feature called
Window Functions, that is now part of almost all R-DBMS.This feature can be
useful for the meet operation P ∧Q within the ε encoding scheme. In that case,
we would like to compute the minimum object value of each block and assign it
to each tuple of that block. Thus, we build a window function within an SQL
statement by partitioning the join M onM.1=N.1 N on pairs (M -block, N -block).
Since those pairs identify blocks of the result set, we could straightforwardly
assign the minimum object value of the subsets of tuples w.r.t. that partitioning
to each tuple of the join.



4 Experiments

In this section, we report and discuss experimental results. The main conclusion
confirms what we expected from the considerations exposed in previous Sections,
i.e. that the SQL query engine essentially yields query processing times that are
unbearably high for any non small-sized dataset.

The proposed strategies in Section 3.4 have also been implemented to fairly
corroborate our claim about set partition data model mismatching within the
SQL framework. Each of them improve the overall performance for set partitions
operators thanks to advanced features of SQL. Anyway, there is no way to bypass
the closure computation required by the join operator into the SQL framework.

In the following, we first focus on primary SQL encoding of each operator
proposed in Section 3, then we evaluate implementations of SQL tricks intro-
duced in Section 3.4, i.e. pre-filtering on block id’s signature for the (−) operator
and window function for the ∧ operator.

4.1 Settings

Experiments are conducted on randomly drawn partitions. Given two partitions
P and Q, we assess the performance of P ∧Q, P −Q and P ∨Q only. Indeed,
the intersection ∩ relies on the set difference and is formulated as a relative
complement to the difference. Hence, ∧, ∨ and − are the legal baseline.

With respect to the statement of the SQL queries for each operator, empirical
considerations were taken into account. In that purpose, we undertook several
attempts to tune up the query optimizer according to available join algorithms
(Nested Loop, Index Scan, Hash Join and Merge Join) in the R-DBMS. It turns
out that even if an improvement can be observed in several runs, it may also
yield to a significant breakdown for the same operator. Then, it seems that the
default query plan computed by the optimizer is at last a good trade-off to
achieve balanced performances.

SQL query statements have been carefully designed to avoid usual drawbacks
(useless subqueries, etc.) and ultimately, the execution plans have been reviewed
for tracking sub-optimal evaluation strategies.

Regarding indexing strategies, we did not investigate further the regular key-
based indexes since, as stated above, the main problem lies in the closure com-
putation where indexes cannot help and second, we obviously plan to extend
the atomic expressions to more complex partition queries with combination of
different operators. To this end, algorithms are also required to perform well w/o
auxiliary knowledge.

We conducted experiments on a Windows XP (SP3) box powered by an Intel
Q6600@2.4GHz CPU. We sent SQL queries into a PostgreSQL V9.1 R-DBMS.

4.2 Generating partitions

In the following, let sort(P ) = τ be the distribution of size of blocks within a
partition P and τ is a decreasing sorted list where τ [i] gives the size of block



ai in P . Given n objects, we first draw partition P , then generate Q by apply-
ing random permutations on P . The sort of raw partition P follows a power
law. Indeed, a remarkable property of many natural or man-made phenomena is
that, given a population, the frequency of its subpopulations may very often be
well modeled by a power law [4]. Generation of such partitions is easily achieved
with the Chinese Restaurant (stochastic) Process (CRP) [8]. The CRP draws
a random partition over the set of integers [1...n]. As a noteworthy property,
the underlying distribution, known as the Ewens distribution, is said to be ex-
changeable, i.e. the probability of a partition only depends on block sizes. The
expected number of blocks k grows as O(α log n), where α is the scale parameter
of the CRP.

Next, some random permutations are performed on P to generate a list of
partitions (P (1), . . . , P (`)).

The whole generation process can be summarized as follows:

1. Init: random choice of a linear ordering on a subset of blocks {a0, . . . , a`} ⊆
P ;

2. Loop 0 ≤ i ≤ ` − 1: permutation of min(τ [i], τ [i + 1]) objects in the pair of
adjacent blocks (ai, ai+1) to build P (i+1).

Such modeling allows to accurately monitor partition operations according to
some sequential changes applied on operands, and at last, infer some properties
that may impact performance. We shall note also that the equalities rk(P (0)) =
rk(P (1)) = . . . = rk(P (`)) always hold.

4.3 Results and analysis

Results are reported for partitions P and Q defined over n = 1 000, 2, 000 and
5 000 items. Although those numbers are quite low, we observed in experiments
that query processing times prevent increasing n by a further order of magnitude.
The number of blocks is set to range between 10 and 20. Overall, the largest
blocks, generated under the CRP mechanism, are typically about half the size
of the support set, while for n = 2 000 and n = 5 000, there are a few blocks that
are singletons.

We report query processing time related to SQL implementations in Fig. 3,4,5.
The boxplots describe the observed variability from a set of experiments, where:

– The number of blocks ranges in [10..20];

– The number of random permutations applied on P to generate Q varies from
140 to 466 for n = 1 000, from 184 to 532 for n = 2 000, and from 406 to
1 728 for n = 5 000.
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Fig. 3: Main operations−, ∨ and
∧.
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Fig. 4: Optimized version of ops
− and ∧.

Regarding genuine operators, the P ∧Q operation is slightly more expensive
than P − Q whereas P ∨ Q computation performs worst than all the others.
Besides, operations on partitions of 5 000 objects are all much more costly (one
order of magnitude) than those with 1 000 and 2 000 objects. Roughly, adding
noise into partitions increases the root mean square of the execution time. Ulti-
mately, P op P (`), op ∈ {∧ ∨ −} shows outlier runs w.r.t. the execution time,
where P (`) is the farthest partition from P in the generation process. This ob-
servation is still emphasized by the growing size n of the support set. The very
first conclusion is that query processing time rapidly becomes prohibitive, even
for data sets with small to moderate size.

Moreover, though optimized versions of meet and difference operators per-
form much better than their respective basic implementations, it is nonetheless
necessary to note that it does not outweigh the low performance of both genuine
operators.

We then evaluated to which extent optimized operations could be a reli-
able basis to scale up to complex expression evaluation. Following this outline,
Fig. 5 depicts several independent trials where we measured execution time of
an increasing sequence of optimized ∧, initially with only 2 operands up to 10,
randomly choosen among the collection {P (0), P (1), . . . , P (`)}. One can observe
a strict linear behavior of the execution time. It turns out that the SQL query
optimizer has no impact on the behavior of such complex queries, though the
collection of partitions has algebraic properties that can serve the purpose of an
optimization strategy. Indeed, since partition ranks are mutually equal, it implies
that the result of any meet sequence outputs a partition with a strictly lower
rank. As partitions observe an increasing distance to the raw partition P (0), it
comes that the expected result of any run is the single meet operation between
the two farthest partitions of the query, i.e. P (i) ∧ . . . ∧ P (i+k) = P (i) ∧ P (i+k).



More generally, computing a sequence of the same lattice operator leads to find-
ing out the equivalent query formula that combines the smallest subset of par-
titions to reach the lowest upper bound (resp. the highest lower bound) in the
lattice. It then clearly underlies the requirement for a well-designed query plan
and it is at least an open issue and a challenging task.
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Fig. 5: SQL query processing time for increasing sequence of combination of (windowed)
∧ operations with n = 5 000

5 Related work

There have been efforts for supporting an algebra of sets in SQL through set-
comparison queries, involving several nested queries because each set-theoretic
operator requires its semantical translation in predicate calculus restricted to
existential quantifiers [10]. However, query evaluation has not been assessed and
it does not cover partitions as sets of sets with mutual exclusion. In [17], au-
thors define a Minimum Description Length problem for set partition-like data
structures, which they apply to query optimization purpose for ROLAP queries.
Another effective approach to set partitions is the so-called relation partition al-
gebra (RPA) proposed in [7]. In the application domain of software engineering,
RPA brings mathematical foundations for modular development b.t.w. of the
lifting operator defined as a binary relation (“use” and “part-of” module depen-
dencies) over equivalence classes of a partition i.e., all functions packaged within
the same module. This work nevertheless focuses on the relational level built on
top of the partition algebra, rather than studying partition algebra itself.



Further, lots of works, such as [2, 3, 12], have been conducted to provide XML-
relational mapping and object-relational mapping in many directions. Although
the objective is similar in the sense that they try to map complex structures
(trees and graphs) into relations, none of the above approaches deals with set
partitions.

In another direction, there has been a 20 years line of research on groupjoin [18,
1, 14]. Though the merging of group-by and relational join allows for efficient
computation of aggregate queries, groupjoin, whatever the implementation, has
no extension to closure computation that is the critical issue of the partition
join. Moreover, it can even not handle block identification by anchor since the
aggregate value (min) must be associated to each and every object rather than
one single representative. Roughly, the aggregate value is itself the parameter of
the group-by clause.

Finally, partitions may be seen as annotated relations [11] where the anno-
tation is essentially the label (id) of a block and the main relation represents
objects. In such a context, most of the efforts have been concentrated on defin-
ing algebraic rules to support propagation of annotations along with relational
operations on main tables. At the contrary, membership encoding of partitions
is not intended to support any regular RA query, but rather to bring its own
semantics through the ε encoding scheme and the lattice operations.

6 Conclusion

To the best of our knowledge, there has been no proposal for generic set partition
query processing and no assessment of how computation on partitions performs,
especially when the data model follows a relational-based encoding.

We provide a contribution towards achieving some relational modeling of
partition through an object-block membership relation, so that it can handle
set partitions of a collection of objects. This is typically needed by large-scale
repositories storing both data and results of data analysis, or data mining tasks
which take partitions as inputs. We also studied its computing framework. We
then translated each operator of both partition lattice and algebra of sets as
relational algebra queries, wherever possible, Datalog query otherwise. We gave
a few sketches to enhance the behavior for some operators through storage of
additional information on-the-fly. Through several experimentations, we showed
that computing operators over partitions is globally intractable when their un-
derlying ground set is growing, even if we consider SQL-based optimized queries.
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