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In this paper, we improve results of Gillot, Kumar and Moreno to estimate some exponential sums by means of q-degrees. The method consists in applying suitable elementary transformations to see an exponential sum over a finite field as an exponential sum over a product of subfields in order to apply Deligne bound. In particular, we obtain new results on the spectral amplitude of some monomials.

Introduction

Exponential sums and bounds for them are exploited by coding theorists and communications engineers [START_REF] Paterson | Applications of Exponential Sums in Communications Theory[END_REF]. The minimal distance of dual BCH codes and other cyclic codes can be evaluated in terms of exponential sums. They are also useful in the study of sequences with small correlations, for spread-spectrum and other communications applications. In both case, the estimation of exponential sums is often a key point for the construction of a good code. In this paper, we focus our-self in the estimation of exponential sums over finite fields for some polynomials. First, we begin introducing the tools and known results about spectral amplitude. Then, we generalise results of Kumar and Moreno [START_REF] Kumar | Polyphase sequences with periodic correlation properties better than binary sequences[END_REF] over spectral amplitude of some monomials in odd characteristic. We define the q-degree and the principle of multivariate point of view to be able to apply the results of Deligne [START_REF] Deligne | La conjecture de Weil I[END_REF] for exponential sums over a product of finite fields. Thus, we obtain a bound in terms of q-degree generalising the result of Gillot [START_REF] Gillot | Bounds for exponential sums over finite fields[END_REF].

Spectral Amplitude

All along the paper, L denotes an extension of degree m of a finite field K of order q and characteristic p. The Fourier coefficient of a polynomial f (X) ∈ L[X] at a ∈ L is by definition equal to the value of the exponential sum:

The authors would like to thank Regis Blache, Nicolas Katz and Igor Shparlinsky for theirs useful comments and suggestions while the preparation of the manuscript. where µ L denotes the canonical additive character of L. The maximal value that can take the absolute value of the Fourier coefficients is often called the spectral amplitude of f , we will use the notation R L (f ) = max a∈L | f (a)|. A very difficult question coming from coding theory and cryptography consists in finding polynomials having a small spectral amplitude. If the degree, say d, of f is not divisible by p then the spectral amplitude of f is upper-bounded by the Carlitz-Uchiyama bound :

(2) R L (f ) ≤ (d -1) √ q m .
For each a ∈ L, applying Weil Theorem to the Artin-Schreier curve

y p -y = f (x) + ax of genus g = (p-1)(d-1)

2

, there exists 2g Weil numbers ω i of absolute value √ q m such that Fourier coefficient of f at a in a finite extension L r of degree r of L is given by:

x∈Lr µ Lr f (x) + ax = - 2g i=1 ω r i .
It follows that the bound (2) is optimal in the sense that, when a ∈ L and f (X) ∈ L[X] are fixed, there exists an infinite sequence of finite extensions (L k ) k∈N of the field L of increasing degree r k such that

| x∈L k µ L k f (x) + ax | ∼ R L k (f ) ∼ (d -1) √ q mr k .
On an other side, the Parseval relation :

(

) b∈L | f (b)| 2 = q 2m , implies that √ q m ≤ R L (f ). 3 
There exists polynomials of spectral amplitude √ q m , they define generalised bent functions, see for example [START_REF] Kumar | Welch Generalized bent functions and their properties[END_REF].

Remark that only a very small number of bent functions of monomial form are known, see [START_REF] Helleseth | Monomial and quadratic bent functions over finite fields of odd characteristic[END_REF]. Moreover, if p = 2 then for all

f ∈ L[X] is fixed max b∈L × R L (bf ) ≥ 2q m .
This fact proved by Chabaud and Vaudenay [START_REF] Chabaud | Vaudenay Links between differential and linear cryptanalysis[END_REF] is remarked as a consequence of Sidel'nikov bound in [START_REF] Ph | On the Non-linearity of Power Functions[END_REF]. It is not true in odd characteristic as we will see in the next section. The goal of this paper consists in giving an upper-bound on the spectral amplitude of monomial (i.e. polynomial of the form bx d with b ∈ L × ). More precisely, denoting by S(a, b, d) the exponential sum x∈L µ L (bx d + ax), we will present a new upper-bound on

max b∈L × R L (bx d ) = max a∈L max b∈L × S(a, b, d) .
If δ denotes the gcd of d and q m -1 then, by an averaging argument, one can easily prove :

(δ -1)q m ≤ max b∈L × S(0, b, d) ≤ max a∈L max b∈L × S(a, b, d) .
Several authors as Vinogradov, Davenport and Heilbronn, Hardy and Littlewood, Hua and Vandiver, Akulinicev, Karatsuba, Carlitz gave general estimations on the magnitude of trigonometric sums involving binomials [START_REF] Lachaud | Exponential sums as discrete Fourier transform with invariant phase functions[END_REF]. The exponential sum S(0, b, d) is a Gauss sum and

∀b ∈ L × , S(0, b, d) ≤ (δ -1) √ q m .
In the paper [START_REF] Lachaud | Exponential sums as discrete Fourier transform with invariant phase functions[END_REF], Lachaud generalises the inequality of Akulinicev to obtain the bound

∀a ∈ L, ∀b ∈ L × , S(a, b, d) ≤ q m √ δ
It is easy to verify that the fourth power moment method, used by Karatsuba [START_REF] Karatsuba | On estimates of complete trigonometric sums[END_REF] in the case of a prime field, works on the extension fields as well, leading to the estimation:

∀b ∈ L × , ∀a ∈ L × , S(a, b, d) ≤ (d -1) 1 4 q 3 4 m

q-degree

All the previous bounds do not take in consideration an important parameter that we will call the q-degree. Before giving a definition, let us analyse a paradigm example to introduce this notion. It is the case where p is odd and d = 1 + q r . The function Q b : x → Tr L/K (bx d ) is nothing other than a quadratic form whose the bi-linear associate form φ b is given by

φ b (x, y) = Q b (x + y) -Q b (x) -Q b (y) = Tr L/K b(x + y) d -bx d -by d = Tr L/K bxy q r + bx q r y
The general theory of quadratic forms tells us that the spectral amplitude of Q b takes the form q (m+κ(b))/2 , where κ(b) denotes the dimension of the radical of the K-space L with respect to the bi-linear form φ b (i.e. the space defined by

V b = {x ∈ L | ∀y ∈ L, φ b (x, y) = 0}). In this precise case, φ b (x, y) = Tr L/K (bx + b q r x q 2r )y q r ,
because the bi-linear form (x, y) → Tr L/K (xy) is non-degenerate, the kernel of Q b corresponds to the set of solutions of the linear equation [START_REF] Deligne | La conjecture de Weil I[END_REF] bx + b q r x q 2r = 0.

Assuming b = 0, the non-zero solutions are also solution of the equation x q 2r -1 = -b 1-q r in the multiplicative group of L. By the Euclidean algorithm, we know that gcd(q 2r -1, q m -1) = q ∆ -1 where ∆ = gcd(2r, m). If there exists a pair (x, b)

∈ L × × L × satisfying (4) then κ(b) = ∆ and thus max b∈L × R L (bx d ) = q m+∆ 2 .
The existence of a solution in ( 4) is equivalent to the fact that -1 is in the product of two groups L × q 2r -1 of order q m -1 q ∆ -1 , and L × q r -1 of order q m -1 q ∆ ′ -1 with ∆ ′ = gcd(r, m). This product of cyclic groups has order q m -1 q ∆ -1 × q ∆ -1 q ∆ ′ -1 , which is an odd number if and only if both m ∆ and ∆ ∆ ′ are odd. This case is equivalent to say that -1 is not in the product, and thus, all the quadratic forms Q b are non degenerate, we conclude

R L (bx d ) = q m 2 .
Proposition 3.1. Let q be odd, and let d = 1 + q r . If the dyadic valuation of r is greater or equal to the dyadic valuation of m then

∀b ∈ L × , R L (bx d ) = q m 2 . Otherwise max b∈L × R L (bx d ) = q m+∆ 2
where ∆ = gcd(2r, m).

Proof. Indeed, let us write r = 2 a r ′ and m = 2 b m ′ where m ′ and r ′ are odd integers. So that ∆ = 2 min(b,a+1) gcd(r ′ , m ′ ) and ∆ ′ = 2 min(b,a) gcd(r ′ , m ′ ) whence the dyadic valuation of m ∆ is equal to b -min(b, a + 1) and those of ∆ ∆ ′ is equal to min(b, a + 1) -min(b, a). These valuations are equal to 0 if and only if a ≥ b.

The above proposition generalises the result obtained by Kumar and Moreno in the section II of [START_REF] Kumar | Polyphase sequences with periodic correlation properties better than binary sequences[END_REF]. As there, it could be possible to give a complete description of the Fourier coefficient distribution by means of quadratic Gauss sums.

By definition the q-ary weight of a positive integer d < q m , denoted by wt q (d), is equal to sums of the digits

d 0 + d 1 + d 2 + . . . + d m-1 of the q-ary expansion of d = d 0 + d 1 q 1 + d 2 q 2 + . . . + d m-1 q m-1 .
The q-degree of a polynomial f is defined as the integer :

deg q (f ) = max d∈supp (f ) {wt q (d)}
where supp (f ) = {i | a i = 0} is the support of f (x) = i a i x i . As we will see in next section, the q-degree of f is nothing but the degree of a certain polynomial F in several variables, this is the explanation of the terminology q-degree used in the title.

Multivariate point of view

The principle of the multivariate method detailed in [START_REF] Gillot | Bounds for exponential sums over finite fields[END_REF][START_REF] Kumar | Polyphase sequences with periodic correlation properties better than binary sequences[END_REF], applied to a single variable polynomial f (X) ∈ L[X], consists in transforming the exponential sum:

(5) S(f, L) = x∈L µ L f (x)
in an exponential involving several variables. This is done by choosing an arbitrary basis

{β 1 , β 2 , . . . , β m } of L over K. S(f, L) = x 1 ,x 2 ,...,xm∈K µ L f (x 1 β 1 + • • • + x m β m ) = x 1 ,x 2 ,...,xm∈K µ K F (x 1 , x 2 , . . . , x m ) = S(F, K m )
where µ K is the canonical additive character of K and where F is the multivariate polynomial associate to f . The polynomial F is obtained by reduction modulo the ideal I = (X q 1 -X 1 , . . . , X q m -X m ) of the partial development of the trace operator:

(6) F (x 1 , . . . , x m ) = Tr L/K f (x 1 β 1 + • • • + x m β m ) mod I.
We use the Deligne bound, stated in [START_REF] Deligne | La conjecture de Weil I[END_REF] as follow, to evaluate S(F, K m ).

Theorem 4.1. Let Q be a polynomial in n variables with degree d over K. Let Q d be the homogeneous part of degree d of Q. Let ψ : K → C * be a non trivial additive character over K. Assume that

(i) d is prime to the characteristic of K; (ii) The homogeneous part Q d defines a smooth hypersurface H 0 in P n-1 (K). Then (7) | x 1 ,...,xn∈K ψ Q(x 1 , . . . , x n ) | ≤ (d -1) n q n/2 .
In most of cases, the homogeneous part of higher degree of F rises from the exponents with greatest q-ary weight in the support of f . Of course, the degree of F is nothing other than the q-degree of the polynomial f . In order to study the singularities of the hypersurface defined by F , we substitute x 1 β q i-1 and noting that the previous transformation is invertible, explicitly

1 + • • • + x m β q i-
x i = λ i y 1 + λ q i y 2 + • • • + λ q m-1
i y m where (λ i ) 1≤i≤m is the trace-dual basis of (β i ) 1≤i≤m (i.e. Tr L/K (β i λ j ) = δ ij , the Kronecker symbol), the study of singularities of F is reduced to those of φ.

In [START_REF] Gillot | Bounds for exponential sums over finite fields[END_REF], a bound for S(f, L) in terms of the q-ary weight for specific cases of degree of f is given, let us state this result with our notations in the following theorem. Theorem 4.2. Let f be a one-variable polynomial defined over L, such that f (x) = bx d + g(x) where d is the only exponent in the support of f with q-ary weight equal to deg q (f ).

Assume that d = 1 + d r q r with (p, d r ) = 1 then |S(f, L)| ≤ wt q (d) -1 m q m/2
Proof. See [START_REF] Gillot | Bounds for exponential sums over finite fields[END_REF].

A new exponential sum bound

In this section, the study of singularities of φ(y 1 , . . . , y m ) lead us to the characterisation of the exponents for which the multivariate method applies, generalising Theorem 4.2.

Lemma 5.1. Let φ the transformed polynomial associated to a monomial f (x) = bx d . If d has more than two digits in its q-ary expansion or if d = d k q k + d l q l with d k = 1 and d l = 1 then φ is singular.

Proof. For a monomial f (x) = bx d of degree d = d 0 + d 1 q + • • • + d m-1 q m-1 , we have F (x 1 , . . . , x m ) = m k=1 b q k-1 (x 1 β q k-1 1 + • • • + x m β q k-1 m ) d φ(y 1 , . . . , y m ) = m k=1 b q k-1 y d 0 k y d 1 k+1 . . . y d m-1 k+m-1 ,
where the indexes are calculated modulo m. In both cases, (1 : 0 . . . : 0) is a singular point of φ.

Lemma 5.2. Let φ be the transformed polynomial of f (x) = bx d . Assume that r and m are co-prime, d = d 0 + d r q r with d 0 = 1 or d r = 1. Then all the components of a singularity of φ are different from zero.

Proof. For d = d 0 +d r q r , from now let d 0 = 1 (the result remain true for the symmetric case d r = 1) to obtain φ(y 1 , . . . , y m ) = m i=1 b q i-1 y i y dr i+r and ∂φ ∂y j (y 1 , . . . , y m ) = b q j-1 y dr j+r + d r b q j-1-r y j-r y dr-1 j Assume that P a singularity of φ with y j = 0. Replacing y j by 0 in the partial derivative ∂φ ∂y j (P ), we obtain y j+r = 0. Now, replacing y j+r by 0 in the partial derivative ∂φ ∂y j+r (P ), we obtain y j+2r = 0. While reiterating the method, we obtain that the components of P are null for the positions {j, j + r, j + 2r, j + 3r, . . . , j + kr}. For (m, r) = 1, the smallest k such that kr = 0 mod m, is m, thus P has m components equal to zero. A contradiction is obtained and a singularity of φ cannot have a component equal to zero. Proof. see [START_REF] Gillot | Bounds for exponential sums over finite fields[END_REF].

Theorem 5.1. Let f (x) = bx d + g(x) ∈ L[x]
be a polynomial such that for any b ∈ L × the q-degree of f only depends on the term bx d that is deg q (f ) = wt q (d) > deg q (g). If (i) The q-ary expansion of d has only two digits d = d 0 + d r q r with d 0 = 1 or d r = 1, where r is any integer co-prime to m.

(ii) d m 0 = (-1) m d m r mod p then |S(f, L)| ≤ wt q (d) -1 m q m/2
Proof. Let F (x 1 , . . . , x m ) be the transformed (6) polynomial of f (x) = bx d + g(x). If d = d 0 + d r q r and (m, r) = 1 then, according to Lemma 5.3, the term Tr L/K (bx d ) is not equal to zero. In the particular case m = 2, the assumption (ii) of the theorem also gives Tr L/K (bx d ) = 0. In both cases, the homogeneous part of higher degree of the transformed polynomial F , say F d , only depends on the term bx d , since the q-degree of f is wt q (d), its degree is wt q (d) = d 0 + d r .

On the other hand, we can associate to F d the polynomial φ as in (8). Lemma 5.1 gives us the restriction on the case where the exponent d has only two digits in its q-ary expansion. Note that d k q k + d r q r = q k (d k + d r q r-k ), after the reduction (9), we just have to study integers of the form d 0 + d r q r , with d 0 = 1 or d r = 1.

The homogeneous polynomial F d satisfies the condition (i) of Deligne theorem since the second assumption implies that wt q (d) is prime to the field characteristic p. Using the simple form of

d = d 0 + d r q r , φ(y 1 , . . . , y m ) = m k=1 b q k-1 y d 0 k y dr k+r
Since the degree of the homogeneous form φ is prime to the characteristic of L, the singularities of φ correspond exactly to the non-zero solutions of partial derivative system [START_REF] Kumar | Polyphase sequences with periodic correlation properties better than binary sequences[END_REF] ∂φ ∂y i (y 1 , . . . , y m ) = 0, ∀i, 1 ≤ i ≤ m.

According to Lemma 5.2, we may assume that for all i, y i = 0. Multiplying the i th equation by y i , we obtain a new system [START_REF] Kumar | Welch Generalized bent functions and their properties[END_REF] 

y i ∂φ ∂y i (y 1 , . . . , y m ) = d 0 b q i-1 y d 0 i y dr i+r + d r b q i-r-1 y d 0 i-r y dr i = 0, ∀i, 1 ≤ i ≤ m.
Changing, y d 0 i y dr i+r by z i , we obtain [START_REF] Lachaud | Exponential sums as discrete Fourier transform with invariant phase functions[END_REF] 

y i ∂φ ∂y i (y 1 , . . . , y m ) = d 0 b q i-1 z i + d r b q i-r-1 z i-r = 0, ∀i, 1 ≤ i ≤ m.
The matrix of this system is

(b q j-1 d i-j ) 1≤i,j≤m with d i-j =      d 0 if i = j, d r if i -j = r, 0 otherwise. 
Up to the norm factor m j=1 b q j-1 , the determinant of the previous matrix is

ζ m =1 (d 0 + d r ζ r ) If (-d 0 /d r )
is not a m-th root of unity modulo p, the system (12) has only one solution (0, . . . , 0). According to Lemma 5.2 this solution is not admissible since a singularity of φ cannot have a null component. Thus, under the conditions of the theorem the solution of (10) are trivial and φ is always smooth. Theorem 4.1 can be applied to the polynomial F of degree wt q (d) = d 0 + d r to obtain the bound in terms of the q-degree of f : q max b∈L × R L (bx d ) where L has order q 2 and q ≤ 100.

|S(f, L)| = |S(F, K m )| ≤ d 0 + d r -1 m q m/2 .

Numerical results and final remarks

If we apply Theorem 5.1 in the case of q-degree equal to 2, we refind a theorem of Kumar and Moreno [START_REF] Kumar | Polyphase sequences with periodic correlation properties better than binary sequences[END_REF], but this is also a consequence of Proposition 3.1. In particular, the bound is optimal.

In order to check the interest of the bound given in Theorem 5.1 in the case of q-degree equals to 3, we computed the true spectral amplitude of all the monomials bx d over a quadratic extension for the finite field of odd order q ≤ 100 with degree d = 2 + q. Note that (d, q 2 -1) = 1 or 3 according to q ≡ 2 mod 3 or q ≡ 1 mod 3, in particular S(0, b, d) ≤ 2q. For a such d, the conditions of the main theorem are fulfilled if and only if (p, 3) = 1, and in that case our bound claims

1 q max b∈L × R L (bx d ) ≤ 4. ( 13 
)
The values are plotted in the graphic of Fig. 1. The numerical experiments show that the bound seems very good for all q ≡ 2 mod 3 but two times too large in the case q ≡ 2 mod 3. This last point is a probable consequence of cancellations of Weil numbers. It is interesting to notice that these exponential sums can be describe by means of the norm N L/K from L onto K, (

) x∈L µ L (ax + bxN L/K (x)), 14 
As it has been pointed to us by Katz, one can use a trick of Deligne [START_REF] Deligne | Cohomologie étale des schémas[END_REF] (4.5 of Sommes trig.) to reduce to the split case in which L is no longer the quadratic extension of K, but rather is the product K × K, with trace function (x, y) → x + y, and the norm (x, y) → N ((x, y)) = xy. In an appropriate extension field E the sum ( 14) becomes Using a classical result on character sum with quadratic argument (see [START_REF] Lidl | Niederreiter Finite Fields[END_REF] Th. 5.33), we can express the inner sum in term of a quadratic Gauss sum G K (ψ, ν) involving the quadratic character of K.

= G K (ν, ψ)ν(-N ) x∈K × ψ(x 3 + ux + N v 2 4x
)ν(x) + qδ 0 (v).

Since the last hybrid sum, is a sum of 3 or 4 Weil's numbers, according to whether v = 0 or not, we get the previous estimation [START_REF] Ph | On the Non-linearity of Power Functions[END_REF]. All the other sums S(a, b, d) are estimated in a similar way. Numerically the case q ≡ 0 mod 3 and q ≡ 1 mod 3 seem very similar, and it will be nice to know when and how to avoid the technical hypothesis (ii) of Theorem 5.1 to obtain a more general bound independent of the characteristic of p. Similar transformations using the works of Adolphson and Sperber [START_REF] Adolphson | Exponential sums and Newton polyhedra: cohomology and estimates[END_REF] is probably a way to get answers but we reserve this approach for future researches.
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 53 For an integer d of the form d = d 0 + d r q r and for any b ∈ L × , we have Tr L/K (bx d ) = 0 for any x ∈ L if and only if r = m/2, d 0 = d r and Tr L/F q r (b) = 0.
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 1 Figure 1. The value of 1q max b∈L × R L (bx d ) where L has order q 2 and q ≤ 100.

  x,y∈E µ E (a(x + y) + b(x + y)xy), and again Deligne's theorem applies as soon as p = 3 to show that the sum depends on four Weil numbers. Using a remark of Blache, one can avoid Deligne result to estimate the above sum, in the case [L : K] = 2, as follow. Let N be an non quadratic residue of K, and let ω ∈ L such that ω 2 = N . Using the basis {1, ω} to decompose a = u + ωv, b = s + ωt, and the elements of L as x + ωy, we haveTr L/K ((u + ωv)(x + ωy)) = 2ux -2N vy Tr L/K ((s + ωt)(x + ωy) q+2 ) = 2(sx -N ty)(x 2 -N y 2 ).In particular, denoting by ψ the composition of the character µ K by the multiplication by 2, S(a, 1, q + 2) = x,y∈K ψ(ux -vN y + x 3 -N xy 2 ) = x∈K ψ(x 3 + ux) y∈K ψ(-vN y -N xy 2 )