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ESTIMATION OF SOME EXPONENTIAL SUM BY

MEANS OF q-DEGREE

VALÉRIE GILLOT AND PHILIPPE LANGEVIN

Abstract. In this paper, we improve results of Gillot, Kumar and
Moreno to estimate some exponential sums by means of q-degrees.
The method consists in applying suitable elementary transforma-
tions to see an exponential sum over a finite field as an exponential
sum over a product of subfields in order to apply Deligne bound.
In particular, we obtain new results on the spectral amplitude of
some monomials.

keywords: spectral amplitude, monomial, binomial, Fourier coeffi-
cient, exponential sum, Weil bound, Carlitz-Uchiyama bound, Deligne
bound.

1. Introduction

Exponential sums and bounds for them are exploited by coding the-
orists and communications engineers [15]. The minimal distance of
dual BCH codes and other cyclic codes can be evaluated in terms of
exponential sums. They are also useful in the study of sequences with
small correlations, for spread-spectrum and other communications ap-
plications. In both case, the estimation of exponential sums is often a
key point for the construction of a good code. In this paper, we focus
our-self in the estimation of exponential sums over finite fields for some
polynomials. First, we begin introducing the tools and known results
about spectral amplitude. Then, we generalise results of Kumar and
Moreno [10] over spectral amplitude of some monomials in odd charac-
teristic. We define the q-degree and the principle of multivariate point
of view to be able to apply the results of Deligne [4] for exponential
sums over a product of finite fields. Thus, we obtain a bound in terms
of q-degree generalising the result of Gillot [6].

2. Spectral Amplitude

All along the paper, L denotes an extension of degree m of a finite
field K of order q and characteristic p. The Fourier coefficient of a
polynomial f(X) ∈ L[X] at a ∈ L is by definition equal to the value
of the exponential sum:

The authors would like to thank Regis Blache, Nicolas Katz and Igor Shparlinsky
for theirs useful comments and suggestions while the preparation of the manuscript.
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(1) f̂(a) =
∑

x∈L

µL

(

f(x) + ax
)

,

where µL denotes the canonical additive character of L. The max-
imal value that can take the absolute value of the Fourier coefficients
is often called the spectral amplitude of f , we will use the notation
RL(f) = maxa∈L |f̂(a)|. A very difficult question coming from coding
theory and cryptography consists in finding polynomials having a small
spectral amplitude. If the degree, say d, of f is not divisible by p then
the spectral amplitude of f is upper-bounded by the Carlitz-Uchiyama
bound :

(2) RL(f) ≤ (d− 1)
√
qm.

For each a ∈ L, applying Weil Theorem to the Artin-Schreier curve

yp−y = f(x)+ax of genus g = (p−1)(d−1)
2

, there exists 2g Weil numbers
ωi of absolute value

√
qm such that Fourier coefficient of f at a in a

finite extension Lr of degree r of L is given by:

∑

x∈Lr

µLr

(

f(x) + ax
)

= −
2g

∑

i=1

ωr
i .

It follows that the bound (2) is optimal in the sense that, when a ∈ L
and f(X) ∈ L[X] are fixed, there exists an infinite sequence of finite
extensions (Lk)k∈N of the field L of increasing degree rk such that

|
∑

x∈Lk

µLk

(

f(x) + ax
)

| ∼ RLk
(f) ∼ (d− 1)

√
qmrk .

On an other side, the Parseval relation :

(3)
∑

b∈L

|f̂(b)|2 = q2m,

implies that
√
qm ≤ RL(f). There exists polynomials of spectral ampli-

tude
√
qm, they define generalised bent functions, see for example [11].

Remark that only a very small number of bent functions of monomial
form are known, see [7]. Moreover, if p = 2 then for all f ∈ L[X] is
fixed

max
b∈L×

RL(bf) ≥
√

2qm.

This fact proved by Chabaud and Vaudenay [3] is remarked as a conse-
quence of Sidel’nikov bound in [13]. It is not true in odd characteristic
as we will see in the next section. The goal of this paper consists
in giving an upper-bound on the spectral amplitude of monomial (i.e.
polynomial of the form bxd with b ∈ L×). More precisely, denoting
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by S(a, b, d) the exponential sum
∑

x∈L µL(bxd + ax), we will present a
new upper-bound on

max
b∈L×

RL(bxd) = max
a∈L

max
b∈L×

∣

∣S(a, b, d)
∣

∣.

If δ denotes the gcd of d and qm−1 then, by an averaging argument,
one can easily prove :

√

(δ − 1)qm ≤ max
b∈L×

∣

∣S(0, b, d)
∣

∣ ≤ max
a∈L

max
b∈L×

∣

∣S(a, b, d)
∣

∣.

Several authors as Vinogradov, Davenport and Heilbronn, Hardy and
Littlewood, Hua and Vandiver, Akulinicev, Karatsuba, Carlitz gave
general estimations on the magnitude of trigonometric sums involving
binomials [12]. The exponential sum S(0, b, d) is a Gauss sum and

∀b ∈ L×,
∣

∣S(0, b, d)
∣

∣ ≤ (δ − 1)
√
qm.

In the paper [12], Lachaud generalises the inequality of Akulinicev to
obtain the bound

∀a ∈ L, ∀b ∈ L×,
∣

∣S(a, b, d)
∣

∣ ≤ qm

√
δ

It is easy to verify that the fourth power moment method, used by
Karatsuba [9] in the case of a prime field, works on the extension fields
as well, leading to the estimation:

∀b ∈ L×, ∀a ∈ L×,
∣

∣S(a, b, d)
∣

∣ ≤ (d− 1)
1

4 q
3

4
m

3. q-degree

All the previous bounds do not take in consideration an important
parameter that we will call the q-degree. Before giving a definition, let
us analyse a paradigm example to introduce this notion. It is the case
where p is odd and d = 1 + qr. The function Qb : x 7→ TrL/K(bxd) is
nothing other than a quadratic form whose the bi-linear associate form
φb is given by

φb(x, y) = Qb(x+ y) −Qb(x) −Qb(y)

= TrL/K

(

b(x+ y)d − bxd − byd
)

= TrL/K

(

bxyqr

+ bxqr

y
)

The general theory of quadratic forms tells us that the spectral ampli-
tude of Qb takes the form q(m+κ(b))/2, where κ(b) denotes the dimension
of the radical of the K-space L with respect to the bi-linear form φb

(i.e. the space defined by Vb = {x ∈ L | ∀y ∈ L, φb(x, y) = 0}). In
this precise case,

φb(x, y) = TrL/K

(

(bx+ bq
r

xq2r

)yqr)

,
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because the bi-linear form (x, y) 7→ TrL/K(xy) is non-degenerate, the
kernel of Qb corresponds to the set of solutions of the linear equation

(4) bx+ bq
r

xq2r

= 0.

Assuming b 6= 0, the non-zero solutions are also solution of the equation
xq2r−1 = −b1−qr

in the multiplicative group of L. By the Euclidean
algorithm, we know that gcd(q2r − 1, qm − 1) = q∆ − 1 where ∆ =
gcd(2r,m). If there exists a pair (x, b) ∈ L× × L× satisfying (4) then
κ(b) = ∆ and thus

max
b∈L×

RL(bxd) = q
m+∆

2 .

The existence of a solution in (4) is equivalent to the fact that −1 is

in the product of two groups
(

L×
)q2r−1

of order qm−1
q∆−1

, and
(

L×
)qr−1

of order qm−1

q∆′
−1

with ∆′ = gcd(r,m). This product of cyclic groups has

order qm−1
q∆−1

× q∆−1

q∆′
−1

, which is an odd number if and only if both m
∆

and
∆
∆′

are odd. This case is equivalent to say that −1 is not in the product,
and thus, all the quadratic forms Qb are non degenerate, we conclude
RL(bxd) = q

m
2 .

Proposition 3.1. Let q be odd, and let d = 1 + qr. If the dyadic
valuation of r is greater or equal to the dyadic valuation of m then

∀b ∈ L×, RL(bxd) = q
m
2 .

Otherwise
max
b∈L×

RL(bxd) = q
m+∆

2

where ∆ = gcd(2r,m).

Proof. Indeed, let us write r = 2ar′ and m = 2bm′ where m′ and r′ are
odd integers. So that

∆ = 2min(b,a+1) gcd(r′,m′) and ∆′ = 2min(b,a) gcd(r′,m′)

whence the dyadic valuation of m
∆

is equal to b−min(b, a+1) and those

of ∆
∆′

is equal to min(b, a + 1) − min(b, a). These valuations are equal
to 0 if and only if a ≥ b. �

The above proposition generalises the result obtained by Kumar and
Moreno in the section II of [10]. As there, it could be possible to give
a complete description of the Fourier coefficient distribution by means
of quadratic Gauss sums.

By definition the q-ary weight of a positive integer d < qm, denoted
by wtq(d), is equal to sums of the digits d0 +d1 +d2 + . . .+dm−1 of the
q-ary expansion of d = d0 +d1q

1 +d2q
2 + . . .+dm−1q

m−1. The q-degree
of a polynomial f is defined as the integer :

degq(f) = max
d∈supp (f)

{wtq(d)}
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where supp (f) = {i | ai 6= 0} is the support of f(x) =
∑

i aix
i. As we

will see in next section, the q-degree of f is nothing but the degree of
a certain polynomial F in several variables, this is the explanation of
the terminology q-degree used in the title.

4. Multivariate point of view

The principle of the multivariate method detailed in [6, 10], applied
to a single variable polynomial f(X) ∈ L[X], consists in transforming
the exponential sum:

(5) S(f, L) =
∑

x∈L

µL

(

f(x)
)

in an exponential involving several variables. This is done by choosing
an arbitrary basis {β1, β2, . . . , βm} of L over K.

S(f, L) =
∑

x1,x2,...,xm∈K

µL

(

f(x1β1 + · · · + xmβm)
)

=
∑

x1,x2,...,xm∈K

µK

(

F (x1, x2, . . . , xm)
)

= S(F,Km)

where µK is the canonical additive character of K and where F is the
multivariate polynomial associate to f . The polynomial F is obtained
by reduction modulo the ideal I = (Xq

1 − X1, . . . , X
q
m − Xm) of the

partial development of the trace operator:

(6) F (x1, . . . , xm) = TrL/K

(

f(x1β1 + · · · + xmβm)
)

mod I.

We use the Deligne bound, stated in [4] as follow, to evaluate S(F,Km).

Theorem 4.1. Let Q be a polynomial in n variables with degree d over
K. Let Qd be the homogeneous part of degree d of Q. Let ψ : K → C

∗

be a non trivial additive character over K. Assume that

(i) d is prime to the characteristic of K;
(ii) The homogeneous part Qd defines a smooth hypersurface H0 in

P
n−1(K).

Then

(7) |
∑

x1,...,xn∈K

ψ
(

Q(x1, . . . , xn)
)

| ≤ (d− 1)nqn/2.

In most of cases, the homogeneous part of higher degree of F rises
from the exponents with greatest q-ary weight in the support of f .
Of course, the degree of F is nothing other than the q-degree of the
polynomial f . In order to study the singularities of the hypersurface



6

defined by F , we substitute x1β
qi−1

1 + · · ·+xmβ
qi−1

m by yi in F to obtain
an other multivariate polynomial:

(8) φ(y1, . . . , ym) = F (x1, . . . , xm).

According to

(9)
∂F

∂xj

(x1, . . . , xm) =
m

∑

i=1

∂φ

∂yi

(y1, . . . , ym) × ∂yi

∂xj

and noting that the previous transformation is invertible, explicitly

xi = λiy1 +λq
iy2 + · · ·+λqm−1

i ym where (λi)1≤i≤m is the trace-dual basis
of (βi)1≤i≤m (i.e. TrL/K(βiλj) = δij, the Kronecker symbol), the study
of singularities of F is reduced to those of φ.

In [6], a bound for S(f, L) in terms of the q-ary weight for specific
cases of degree of f is given, let us state this result with our notations
in the following theorem.

Theorem 4.2. Let f be a one-variable polynomial defined over L, such
that f(x) = bxd + g(x) where d is the only exponent in the support of
f with q-ary weight equal to degq(f). Assume that d = 1 + drq

r with
(p, dr) 6= 1 then

|S(f, L)| ≤
(

wtq(d) − 1
)m
qm/2

Proof. See [6]. �

5. A new exponential sum bound

In this section, the study of singularities of φ(y1, . . . , ym) lead us to
the characterisation of the exponents for which the multivariate method
applies, generalising Theorem 4.2.

Lemma 5.1. Let φ the transformed polynomial associated to a mono-
mial f(x) = bxd. If d has more than two digits in its q-ary expansion
or if d = dkq

k + dlq
l with dk 6= 1 and dl 6= 1 then φ is singular.

Proof. For a monomial f(x) = bxd of degree d = d0 + d1q + · · · +
dm−1q

m−1, we have

F (x1, . . . , xm) =
m

∑

k=1

bq
k−1

(x1β
qk−1

1 + · · · + xmβ
qk−1

m )d

φ(y1, . . . , ym) =
m

∑

k=1

bq
k−1

yd0

k y
d1

k+1 . . . y
dm−1

k+m−1,

where the indexes are calculated modulo m. In both cases, (1 : 0 . . . : 0)
is a singular point of φ. �

Lemma 5.2. Let φ be the transformed polynomial of f(x) = bxd. As-
sume that r and m are co-prime, d = d0 + drq

r with d0 = 1 or dr = 1.
Then all the components of a singularity of φ are different from zero.
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Proof. For d = d0+drq
r, from now let d0 = 1 (the result remain true for

the symmetric case dr = 1) to obtain φ(y1, . . . , ym) =
∑m

i=1 b
qi−1

yiy
dr

i+r

and
∂φ

∂yj

(y1, . . . , ym) = bq
j−1

ydr

j+r + drb
qj−1−r

yj−ry
dr−1
j

Assume that P a singularity of φ with yj = 0. Replacing yj by 0 in

the partial derivative ∂φ
∂yj

(P ), we obtain yj+r = 0. Now, replacing yj+r

by 0 in the partial derivative ∂φ
∂yj+r

(P ), we obtain yj+2r = 0. While

reiterating the method, we obtain that the components of P are null
for the positions {j, j+ r, j+2r, j+3r, . . . , j+kr}. For (m, r) = 1, the
smallest k such that kr = 0 mod m, is m, thus P has m components
equal to zero. A contradiction is obtained and a singularity of φ cannot
have a component equal to zero. �

Lemma 5.3. For an integer d of the form d = d0 + drq
r and for any

b ∈ L×, we have

TrL/K(bxd) = 0

for any x ∈ L if and only if r = m/2, d0 = dr and TrL/Fqr (b) = 0.

Proof. see [6]. �

Theorem 5.1. Let f(x) = bxd + g(x) ∈ L[x] be a polynomial such that
for any b ∈ L× the q-degree of f only depends on the term bxd that is
degq(f) = wtq(d) > degq(g). If

(i) The q-ary expansion of d has only two digits d = d0 + drq
r with

d0 = 1 or dr = 1, where r is any integer co-prime to m.
(ii) dm

0 6= (−1)mdm
r mod p

then

|S(f, L)| ≤
(

wtq(d) − 1
)m
qm/2

Proof. Let F (x1, . . . , xm) be the transformed (6) polynomial of f(x) =
bxd + g(x). If d = d0 + drq

r and (m, r) = 1 then, according to Lemma
5.3, the term TrL/K(bxd) is not equal to zero. In the particular case
m = 2, the assumption (ii) of the theorem also gives TrL/K(bxd) 6= 0. In
both cases, the homogeneous part of higher degree of the transformed
polynomial F , say Fd, only depends on the term bxd, since the q-degree
of f is wtq(d), its degree is wtq(d) = d0 + dr.

On the other hand, we can associate to Fd the polynomial φ as in
(8). Lemma 5.1 gives us the restriction on the case where the exponent
d has only two digits in its q-ary expansion. Note that dkq

k + drq
r =

qk(dk + drq
r−k), after the reduction (9), we just have to study integers

of the form d0 + drq
r, with d0 = 1 or dr = 1.

The homogeneous polynomial Fd satisfies the condition (i) of Deligne
theorem since the second assumption implies that wtq(d) is prime to
the field characteristic p. Using the simple form of d = d0 + drq

r,
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φ(y1, . . . , ym) =
m

∑

k=1

bq
k−1

yd0

k y
dr

k+r

Since the degree of the homogeneous form φ is prime to the charac-
teristic of L, the singularities of φ correspond exactly to the non-zero
solutions of partial derivative system

(10)
∂φ

∂yi

(y1, . . . , ym) = 0, ∀i, 1 ≤ i ≤ m.

According to Lemma 5.2, we may assume that for all i, yi 6= 0. Multi-
plying the ith equation by yi, we obtain a new system

(11) yi
∂φ

∂yi

(y1, . . . , ym) = d0b
qi−1

yd0

i y
dr

i+r + drb
qi−r−1

yd0

i−ry
dr

i = 0,

∀i, 1 ≤ i ≤ m.

Changing, yd0

i y
dr

i+r by zi, we obtain

(12) yi
∂φ

∂yi

(y1, . . . , ym) = d0b
qi−1

zi + drb
qi−r−1

zi−r = 0,

∀i, 1 ≤ i ≤ m.

The matrix of this system is

(bq
j−1

di−j)1≤i,j≤m with di−j =











d0 if i = j,

dr if i− j = r,

0 otherwise.

Up to the norm factor
∏m

j=1 b
qj−1

, the determinant of the previous ma-
trix is

∏

ζm=1

(d0 + drζ
r)

If (−d0/dr) is not a m-th root of unity modulo p, the system (12) has
only one solution (0, . . . , 0). According to Lemma 5.2 this solution is
not admissible since a singularity of φ cannot have a null component.
Thus, under the conditions of the theorem the solution of (10) are
trivial and φ is always smooth. Theorem 4.1 can be applied to the
polynomial F of degree wtq(d) = d0 + dr to obtain the bound in terms
of the q-degree of f :

|S(f, L)| = |S(F,Km)| ≤
(

d0 + dr − 1
)m
qm/2.

�
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Figure 1. The value of 1
q
maxb∈L× RL(bxd) where L

has order q2 and q ≤ 100.

6. Numerical results and final remarks

If we apply Theorem 5.1 in the case of q-degree equal to 2, we refind
a theorem of Kumar and Moreno [10], but this is also a consequence of
Proposition 3.1. In particular, the bound is optimal.

In order to check the interest of the bound given in Theorem 5.1
in the case of q-degree equals to 3, we computed the true spectral
amplitude of all the monomials bxd over a quadratic extension for the
finite field of odd order q ≤ 100 with degree d = 2 + q. Note that
(d, q2 − 1) = 1 or 3 according to q ≡ 2 mod 3 or q ≡ 1 mod 3, in
particular S(0, b, d) ≤ 2q. For a such d, the conditions of the main
theorem are fulfilled if and only if (p, 3) = 1, and in that case our
bound claims

1

q
max
b∈L×

RL(bxd) ≤ 4.(13)

The values are plotted in the graphic of Fig.1. The numerical experi-
ments show that the bound seems very good for all q ≡ 2 mod 3 but
two times too large in the case q 6≡ 2 mod 3. This last point is a prob-
able consequence of cancellations of Weil numbers. It is interesting to
notice that these exponential sums can be describe by means of the
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norm NL/K from L onto K,

(14)
∑

x∈L

µL(ax+ bxNL/K(x)),

As it has been pointed to us by Katz, one can use a trick of Deligne [5]
(4.5 of Sommes trig.) to reduce to the split case in which L is no longer
the quadratic extension of K, but rather is the product K ×K, with
trace function (x, y) 7→ x + y, and the norm (x, y) 7→ N((x, y)) = xy.
In an appropriate extension field E the sum (14) becomes

∑

x,y∈E

µE(a(x+ y) + b(x+ y)xy),

and again Deligne’s theorem applies as soon as p 6= 3 to show that
the sum depends on four Weil numbers. Using a remark of Blache,
one can avoid Deligne result to estimate the above sum, in the case
[L : K] = 2, as follow. Let N be an non quadratic residue of K, and
let ω ∈ L such that ω2 = N . Using the basis {1, ω} to decompose
a = u+ ωv, b = s+ ωt, and the elements of L as x+ ωy, we have

TrL/K((u+ ωv)(x+ ωy)) = 2ux− 2Nvy

TrL/K((s+ ωt)(x+ ωy)q+2) = 2(sx−Nty)(x2 −Ny2).

In particular, denoting by ψ the composition of the character µK by
the multiplication by 2,

S(a, 1, q + 2) =
∑

x,y∈K

ψ(ux− vNy + x3 −Nxy2)

=
∑

x∈K

ψ(x3 + ux)
∑

y∈K

ψ(−vNy −Nxy2)

Using a classical result on character sum with quadratic argument (see
[14] Th. 5.33), we can express the inner sum in term of a quadratic
Gauss sum GK(ψ, ν) involving the quadratic character of K.

= GK(ν, ψ)ν(−N)
∑

x∈K×

ψ(x3 + ux+
Nv2

4x
)ν(x) + qδ0(v).

Since the last hybrid sum, is a sum of 3 or 4 Weil’s numbers, according
to whether v = 0 or not, we get the previous estimation (13). All the
other sums S(a, b, d) are estimated in a similar way.

Numerically the case q ≡ 0 mod 3 and q ≡ 1 mod 3 seem very sim-
ilar, and it will be nice to know when and how to avoid the technical
hypothesis (ii) of Theorem 5.1 to obtain a more general bound inde-
pendent of the characteristic of p. Similar transformations using the
works of Adolphson and Sperber [1] is probably a way to get answers
but we reserve this approach for future researches.
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