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Abstract: 

In situ bimetal combinations, and notably those prepared from MCl2(·TMEDA) (M = Zn, Cd; TMEDA 

= N,N,N',N'-tetramethylethylenediamine) and Li(TMP) (3 or 4 equiv, TMP = 2,2,6,6-

tetramethylpiperidino), were screened for their ability to diastereoselectively deprotonate ferrocenes 

bearing a chiral group. The ferrocene carboxylate generated from diacetone-D-glucose afforded the 

corresponding 2-iodo derivative in 74% yield with 90% de (SP diastereoisomer) using the base 

generated from CdCl2 and Li(TMP) (3 equiv), and in 85% yield with 91% de (SP diastereoisomer) 

through a double asymmetric induction using a chiral lithium-zinc base generated from ZnCl2·TMEDA 

and lithium (R)-bis(1-phenylethyl)amide (4 equiv). In contrast, using a combination prepared from 

ZnCl2 and Li(TMP) (4 equiv) with the ferrocene carboxylate obtained from 6-(tert-

butoxycarbonylamino)-6-deoxy-3-O-methyl-1,2-O-isopropylidene-α-D-glucofuranose led to the RP-

iodo derivative in 57% yield after separation. Suzuki coupling was performed satisfactorily on the 

isolated SP and RP diastereoisomer iodoesters. 

1. Introduction 

Metalation of aromatic compounds is traditionally performed using lithium bases in the presence of 

Lewis bases that simplify their aggregation state (e.g. tetrahydrofuran (THF) as solvent or N,N,N',N'-

tetramethylethylenediamine (TMEDA) as additive).1 Nevertheless, polar carbon-lithium bonds are 

hardly compatible with substrates bearing reactive functions (esters, nitriles…) and π-deficient 

heterocycles. As a consequence, when these sensitive aromatic compounds are submitted to 

conventional lithium bases in deprotonation reactions, very low temperatures and/or the presence of an 

in situ electrophile are required.1 By changing lithium with magnesium, the chemoselectivity of the 

reactions can be improved, but to the detriment of the efficiency since a large excess of base has to be 

used due to its reduced reactivity.2 

Activation of lithium bases by metal additives in order to obtain more efficient and/or more 

chemoselective deprotonation reactions is a challenging field, and many [(R)n(R')n'MLi]-type 
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superbases (M = metal; R, R' = alkyl, amino, chloro…) have already been reported.3 Mixtures of 

organolithiums and M alkali metal alkoxides were the first to be developed; well-known examples are 

LIC-KOR (LIC = butyllithium, KOR = potassium tert-butoxide)4 and BuLi-Li(DMAE) (DMAE = 2-

dimethylaminoethoxide).5 Later, the synergy exhibited by merging lithium compounds with softer non-

alkali derivatives significantly pushed the limits of aromatic deprotonative metalation to new heights. 

Indeed, [(R)n(R')n'MLi]-type compounds with M different from an alkali metal displayed a large panel 

of reactivities, depending on both the metal M and its ligands; in particular, TMP-containing 

combinations (TMP = 2,2,6,6-tetramethylpiperidino) were identified as useful bases to perform the 

aromatic functionalization of a large range of substrates.6  

Within this framework, we developed pairs of metal amides which complement each other in 

deproto-metalation reactions. In particular, the TMP-based lithium-zinc7 and lithium-cadmium 

mixtures,8 respectively prepared from ZnCl2·TMEDA and CdCl2·TMEDA, and Li(TMP) (3 equiv), 

were identified as suitable reagents to chemoselectively functionalize a variety of aromatics. Due to the 

importance of ferrocenes for applications ranging from catalysis9 to materials science10 and 

bioorganometallic chemistry,11 such base combinations were also successfully applied to the 

functionalization of acetal- and ester-substituted derivatives through room temperature metalation-

iodination sequences.7d,12  

The presence of a heteroatom-containing substituent on ferrocene usually directs lithiation to the 

adjacent position, affording 1,2-unsymmetrical derivatives upon quenching with electrophiles. Suitable 

chiral groups were early identified in order to control the absolute planar chiral configuration in the 

course of such reactions.13 We recently communicated diastereoselective deproto-metalation reactions 

starting from chiral ferrocene esters using these mixed lithium-zinc14 and lithium-cadmium15 bases. 

Herein, the details of our investigations on sugar-based ferrocene acetals and esters are recorded. 

2. Results and Discussion 
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Chiral acetals being described as suitable functions to induce diastereoselective lithiation of the 

corresponding ferrocenes,16 we first considered such substrates to evaluate our basic combinations. 

Accordingly, the synthesis of the chiral ferrocene acetals derived from the commercially available 1,2-

O-isopropylidene-3-O-methyl--D-glucofuranose (1a), 1,2:5,6-di-O-isopropylidene-D-mannitol (1b), 

and 1,2-O-isopropylidene--D-xylofuranose (1c) diols was undertaken first. The reactions were carried 

out with ferrocene dimethylacetal in chloroform, using p-toluenesulfonic acid as catalyst.16a Whereas 

the transacetalization using the diols 1a,b gave diastereoisomeric mixtures, a single compound 2c was 

obtained using the diol 1c, and was characterized unambiguously by X-ray diffraction (Scheme 1). 
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Scheme 1. Polyols 1a-d, synthesis of the chiral ferrocene acetal 2c and ORTEP diagram (30% 
probability) of the acetal 2c. 

Different reagents were employed in the deprotonation of 2c, amongst all (i) the all TMP lithium-

cadmium combination already identified as being able to perform chemoselective reactions efficiently,8 

(ii) other organolithiums (BuLi, BuLi·TMEDA, sBuLi, tBuLi in THF), and (iii) tBuLi·tBuOK reported 

as capable of deprotonating bare ferrocene.17 Unfortunately, whatever the conditions used with the 

lithium-cadmium base (THF, room temperature or pentane, reflux), with the organolithium compounds 

(THF, -10 °C to room temperature), and with tBuLi·tBuOK (THF, -75 to -15 °C), only starting 

ferrocene, ferrocenecarboxaldehyde (deprotection of the acetal function), and its corresponding addition 

derivatives were observed after the workup with no deprotonation occurring at all.18 
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Undeterred by these results, we considered the involvement of the Kagan's ferrocene acetal16a,16c,16s 

2d (derived from the commercially available triol 1d) in the deproto-metalation using lithium-zinc and 

lithium-cadmium combinations (Table 1). Using the base in situ prepared in THF at 0 °C (15 min) from 

ZnCl2·TMEDA (1 equiv) and Li(TMP) (3 equiv) led, after 2 h at room temperature and subsequent 

interception with iodine, to the iodide 3d and the diiodide 4d in 75 and 15% yield, respectively. 

Analysis of the iodide 3d by 1H NMR showed a 69% de, and comparison with previously reported 

spectral 13C NMR data16r allowed the main diastereoisomer to be identified as SP (entry 1). The base 

employed being a 1:1 mixture of Zn(TMP)2 and Li(TMP),7i the sequential addition to the substrate 2d 

of a THF solution of ZnCl2·TMEDA (1 equiv) and Li(TMP) (2 equiv) and, 30 min later, a THF 

solution of Li(TMP) (1 or 2 equiv) at -30 °C was attempted. After 2 h stirring at this temperature and 

iodolysis, no diiodide was observed but a mixture of the iodide 3d (37 or 45% yield, respectively) with 

starting material 2d (35 or 27%). Under these conditions, the de, still in favor of the SP diastereoisomer, 

was slightly improved to reach 76 or 79%, respectively (entries 2 and 3). 

Table 1. Metalation of the Kagan's ferrocene acetal 2d using lithium-zinc and lithium-cadmium 
combinations followed by trapping with I2. 

Fe
O

O

2d

MeO

1) Base (x equiv)
THF, conditions

2) I2

Fe
O

O

3d

MeO

I Fe
O

O

4d

MeO

I+

I

 

Entry Base (x equiv) Conditions Yield of 
3d (%) 

Yield of 
4d (%) 

de (%)a 

1 ZnCl2·TMEDA (1) + Li(TMP) (3) rt, 2 h 75 15 69 (SP)
b 

2 ZnCl2·TMEDA (1) + Li(TMP) (2) 
and, 30 min later, Li(TMP) (1) 

-30 °C, 2 h 37c,d 0 76 (SP)
b 

3 ZnCl2·TMEDA (1) + Li(TMP) (2) 
and, 30 min later, Li(TMP) (2) 

-30 °C, 2 h 45e,d 0 79 (SP)
b 

4 CdCl2·TMEDA (1) + Li(TMP) (3) rt, 2 h 0 79  
5 CdCl2·TMEDA (0.5) + Li(TMP) (1.5) rt, 2 h 41f,d 0 71 (SP)

b 
a Determined from the integration of the 1H NMR spectrum of the crude mixture (signals at 5.41 and 5.38 ppm in CDCl3 or at 5.45 and 
5.42 ppm in C6D6) for the SP and RP diastereoisomer, respectively).  
b The attribution of the configuration was made on the basis of previously reported data.16r 
c 35% of 2d was recovered. 
d Estimated yield, due to the presence of starting material. 
e 27% of 2d was recovered. 
f 53% of 2d was recovered. 
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Using the corresponding lithium-cadmium base, prepared from CdCl2·TMEDA (1 equiv) and 

Li(TMP) (3 equiv), the diiodide 4d proved to be the only product formed (entry 4). Reducing the 

amount of base furnished the monoiodide 3d, but in moderate yield and de similar to that obtained 

using the lithium-zinc base (entry 5). 

Encouraged by these preliminary results, we decided to consider the use of chiral groups with which 

monometal lithium bases are not compatible. A literature survey showed that ferrocene chiral esters 

have never been used for this purpose.13b,13e In a previous paper, we reported the possible deprotonative 

metalation of ferrocene esters using the all TMP lithium-zinc and lithium-cadmium combinations.7d 

Inspired, we turned our attention to the variety of chiral ferrocene esters 6a-n, prepared from 

ferrocenecarboxylic acid and the alcohols 5a-n (Scheme 2) under classical conditions,19 in order to 

attempt their diastereoselective deproto-metalation. 
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Scheme 2. Chiral alcohols 5 used to prepare the ferrocene esters. 

The metalation of PMB- and TBDPS-protected (R)-2-hydroxypropyl ferrocenecarboxylate 6a,b was 

first attempted using the lithium-cadmium base prepared in situ from CdCl2·TMEDA (x equiv) and 
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Li(TMP) (3x equiv) in THF at room temperature (Table 2). With x = 1, the diiodides 8a,b were formed 

in low to moderate yields (29 and 68%, respectively, entries 1 and 2). However, reducing the amount of 

base (x = 0.5) resulted in the formation of the monoiodides 7a,b as major products (entries 3 and 4). 

Subsequent reduction to 2-iodoferrocenemethanol (9) using DIBAL-H,20 and analysis by HPLC using a 

chiral stationary phase (AS-H) showed that the metalation was not sufficiently diastereoselective. 

Table 2. Metalation of PMB- and TBDPS-protected (R)-2-hydroxypropyl ferrocenecarboxylates 6a,b 
using the all TMP lithium-cadmium base followed by trapping with I2. 

1) CdCl2·TMEDA (x equiv) 
+ Li(TMP) (3x equiv)
THF, rt, 2 h

2) I2

6a,b

Fe
O

O

RO

1) DIBAL-H
THF, 0 °C, 1 h
2) Hydrolysis

7a,b

Fe
O

O

RO
I

9

Fe
OH

I

8a,b

Fe
O

O

RO

I+

I

 

Entry Substrate R x 7, Yield (%) 8, Yield (%) Yield (%) for 9, ee (%)a 

1 6a PMB 1 7a, 35 8a, 29 b 
2 6b TBDPS 1 7b, 7 8b, 68 b 
3 6a PMB 0.5 7a, 76 8a, 7 94, 7 (SP)

c 
4 6b TBDPS 0.5 7b, 54 8b, 5 98, 1 (SP)

c 
a Determined by HPLC analysis on a chiral stationary phase (AS-H column, eluent: 9:1 hexane-isopropanol, 1 mL/min, Ȝ = 252 nm). 
b Reduction not performed. 
c The attribution of the configuration was made on the basis of previously reported data.21 

Next, another set of chiral ferrocene esters 6c-e were taken up for study, prepared from (R)-N-(tert-

butoxycarbonyl)-4-(hydroxymethyl)-2,2-dimethyloxazolidine (5c), 1,2-O-isopropylidene-3-O-methyl-α-

D-xylofuranose (5d) and 1,2:3,4-di-O-isopropylidene-α-D-galactopyranose (5e) as primary alcohols, 

and ferrocenecarboxylic acid under the earlier mentioned conditions. These esters were converted to the 

corresponding iodo derivatives 7c-e (Scheme 3, Table 3). While the metalation of 6c proved difficult, 

giving only a low yield in the presence of 1 equiv of the lithium-cadmium base (entry 1), that of 6d,e 

proceeded efficiently using 0.5 equiv of base (entries 2 and 3). As previously observed for 6a,b, even 
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herein low diastereoselectivities were obtained in favor of the RP diastereoisomer when 5c was the 

chiral alcohol used, and in the favor of the SP diastereoisomer when 5d,e were the chiral alcohols. 

1) Base (x equiv)
THF, rt, 2 h

2) I2

6

Fe
OR

O

1) DIBAL-H
THF, 0 °C, 1 h
2) Hydrolysis

7

Fe
OR

O

I

9

8

Fe
OR

O

I+

I

 

Scheme 3. Metalation of chiral ferrocenecarboxylates 6c-i using lithium-cadmium or lithium-zinc 
combination followed by trapping with I2. 

Table 3. Metalation of chiral ferrocenecarboxylates 6c-e using the base in situ prepared from 
CdCl2·TMEDA (x equiv) and Li(TMP) (3x equiv) followed by trapping with I2. 

Entry Substrate, R x 7, Yield (%) 8, Yield (%) Yield (%) for 9, ee (%)a 

1 6c 
N

O
O

OtBu  

1 7c, 18b 8c, 0 98, 14 (RP)
c 

2 6d O

O

O
MeO

 

0.5 7d, 92 8d, 3 93, 4 (SP)
c 

3 6e O

O

O

O

O

 

0.5 7e, 82 8e, 4 95, 8 (SP)
c 

a Determined by HPLC analysis on a chiral stationary phase (AS-H column, eluent: 9:1 hexane-isopropanol, 1 mL/min, Ȝ = 252 nm). 
b Estimated yield, due to the presence of starting material. 
c The attribution of the configuration was made on the basis of previously reported data.21 

Based on the above results, it was presumed that if the chiral group could be moved closer to the 

deprotonation site, the ees (des) could be improved; thus, secondary alcohols were next considered 

(Schemes 2 and 3, Table 4). Toward this purpose, (1R,2S)-N-(tert-butoxycarbonyl)ephedrine (5f), 

(2S,4R)-tert-butyl 4-hydroxy-2-(tert-butyldiphenylsilyloxymethyl)-1-pyrrolidinecarboxylate (5g), 5-O-

(tert-butyldiphenylsilyl)-1,2-O-isopropylidene-α-D-xylofuranose (5h), and 2,3:5,6-di-O-

cyclohexylidene-α-D-mannofuranose (5i) were converted to the corresponding ferrocene esters 6f-i in 

good yields. When 6f was consecutively treated by 0.5 equiv of the lithium-cadmium base and then 

iodine as before, the iodo ester 7f was isolated in 84% yield and an encouraging 30% ee (SP), as 
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determined after reduction to 2-iodoferrocenemethanol (9) (entry 1). Both the all TMP lithium-

cadmium and lithium-zinc bases were tested for the functionalization of the other esters; starting from 

6g, no reaction was noted upon contact with the lithium-cadmium base (entries 2 and 3). However, 

under the same reaction conditions, the use of the lithium-zinc base afforded the expected derivative 6g 

in 73% yield (entry 4). The reactions from 6f and 6g proceeded with similar diastereoselectivities 

(entries 1 and 4). Compound 6h was readily metalated using either 0.5 equiv of the lithium-cadmium 

base or 1 equiv of the lithium-zinc base; the RP diastereoisomer was formed predominantly (20% de, 

entries 5 and 6). Concerning 6i, the metalation was not complete even with both kinds of base, and low 

to significant des were obtained in favor of the SP (entries 7-9). It is pertinent to mention that it was 

possible to avoid the competitive dideprotonation reaction by modifying the R group of the ester, and 

that using excess of base could improve the diastereoselectivity (compare entries 7 and 8).  

Table 4. Metalation of chiral ferrocenecarboxylates 6f-i using the bases in situ prepared from 
MCl2·TMEDA (x equiv) and Li(TMP) (3x equiv) followed by trapping with I2. 

Entry Substrate, R M, x 7, Yield (%), de (%)a Yield (%) for 9, ee (%)b 

1 6f 
N

O
t
Bu

O

Ph

 

Cd, 0.5 7f, 84c 93, 30 (SP)
d 

2 
3 
4 

6g 

N

OSi
t
Bu

Ph

Ph

O

O
t
Bu 

Cd, 0.5 
Cd, 1 
Zn, 1 

e 

e 

7g, 73 

 
 
94, 33 (SP)

d 

5 
6 

6h 

O

O

O

O Si

t
BuPh

Ph

 

Cd, 0.5 
Zn, 1 

7h, 78, 20 
7h, 86, 20 

50, 22 (RP)
d 

61, 22 (RP)
d 

7 
8 
9 

6i 

O

O

O

O

O

 

Cd, 1 
Cd, 1.5 
Zn, 1 

7i, 38f, 27 

7i, 67f, 48 

7i, 50f, 17 

(SP)
d,g 

(SP)
d,g 

(SP)
d,g 

a When possible, determined from the integration of the 1H NMR spectrum of the crude mixture. 
b Determined by HPLC analysis on a chiral stationary phase (AS-H column, eluent: 9:1 hexane-isopropanol, 1 mL/min, Ȝ = 252 nm). 
c The diiodide 8f was isolated in 9% yield. 
d The attribution of the configuration was made on the basis of previously reported data.21 
e No reaction. 
f Estimated yield, due to the presence of starting material. 
g Reduction performed on a fraction. 
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A thorough study was then undertaken in order to evaluate the parameters responsible for the 

diastereoselectivity with ferrocene carboxylate 6j derived from inexpensive diacetone-D-glucose (5j). 

Different reaction conditions were employed using lithium-cadmium bases (Table 5). Thus, the first 

reaction was performed as before using 1 equiv of the all TMP combination to furnish, after 

interception, the monoiodo derivative 7j in 85% yield and 74% de (entry 1). Using lower reaction 

temperatures (entries 2 and 3) or different reaction times (entries 4 and 5) had no effect on the 

conversion. Concerning the diastereoselectivity, reducing the reaction temperature from room 

temperature to -20 °C led to a de decreased by about 10% (entry 3). Further, the reaction was performed 

using different solvents. Et2O and toluene were first compared with THF; both gave similar yields but 

lower des (entries 6 and 7). In the absence of LiCl, the reaction carried out in toluene led to a lower 

conversion (entry 8). On the contrary, the reaction proved more efficient in the presence of TMEDA (5 

equiv, 91% yield), but to the detriment of the diastereoselectivity (54% de, entry 9). Hexane was 

identified as a bad solvent for the reaction, giving the iodide 7j in 28% yield and 40% de (entry 10).  

The deleterious effect of TMEDA22 (5 equiv) on the diastereoselectivity of the reaction performed in 

THF was demonstrated, affording a high 93% yield but a decreased de (65% instead of 74% without 

additional TMEDA, entry 11). The similar negative effect of LiCl23 on the course of the reaction was 

evidenced by carrying out the reaction in the presence of 10 equiv of this salt: though a high yield was 

obtained, a lower de was recorded (60% instead of 74% without additional salt, entry 12). In order to 

chelate LiCl (2 equiv), which is generated in situ due to the reaction between CdCl2·TMEDA and 

Li(TMP) (3 equiv), and check if any effect on the product profile could be seen, we attempted the use 

of N,N,N',N'-tetraethylethylenediamine (TEEDA), a known lithium chelating ligand.24 Unfortunately, 

using additional TEEDA (5 equiv), the product de was lowered to 56%, a result that could be due to a 

non-selective complexation of the lithium atoms of LiCl (entry 13). 

When the reaction was carried out by discarding all TMEDA sources (i.e. using CdCl2 instead of 

CdCl2·TMEDA to prepare the base), a better 82% de was obtained (entry 14). The de could be 
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improved to 90% by adding the substrate to the base at room temperature instead of 0 °C (entry 15), but 

lower (-30 °C) or higher (40 °C) temperatures were less successful (entries 16 and 17). 

Table 5. Metalation of chiral ferrocenecarboxylates 6j,k using lithium-cadmium combinations followed 
by trapping with I2. 

1) Cd source (1 equiv)
+ Li(TMP) (3 equiv)
solvent, conditions

2) I2

6j: R,R = Me,Me
6k: R,R = (CH2)5

Fe

O 1) DIBAL-H
THF, 0 °C, 1 h
2) Hydrolysis

7j: R,R = Me,Me
7k: R,R = (CH2)5

Fe

O

I 9
O

O

O

O

R

R

O

O

R

R

O

O

O

O

R

R

O

O

R

R

 

Entry 6 Cd source Solvent, conditions 7, Yield (%), 
de (%)a 

Yield (%) for 9, 
ee (%)b 

1 
2 
3 

6j CdCl2·TMEDA THF, rt, 2 h 
THF, 0 °C, 2 h 
THF, -20 °C, 2 h 

7j, 85, 74 
7j, 87, 75 
7j, 93, 65 

89, 71 (SP)
c 

89, 75 (SP)
c 

d 
4 
5 

6j CdCl2·TMEDA THF, rt, 0.5 h 
THF, rt, 6 h 

7j, 87, 74 
7j, 91, 74 

d 

d 
6 
7 
8e 
9 
10 

6j CdCl2·TMEDA Et2O, rt, 2 h 
PhMe, rt, 2 h 
PhMe, rt, 2 h 
PhMe, TMEDA (5 equiv), rt, 2 h 
HexH, TMEDA (5 equiv), rt, 2 h 

7j, 87, 50 
7j, 81, 66 
7j, 74, 64 
7j, 91, 54 
7j, 28f, 40 

94, 51 (SP)
c 

d 

d 

94, 52 (SP)
c 

90, 37 (SP)
c 

11 
12 
13 

6j CdCl2·TMEDA THF, TMEDA (5 equiv), rt, 2 h 
THF, LiCl (10 equiv), rt, 2 h 
THF, TEEDA (5 equiv), rt, 2 h 

7j, 93, 65 

7j, 93, 60 

7j, 52, 56 

d 

d 

d 
14g 
15h 
16i 
17j 

6j CdCl2 THF, rt, 2 h 
THF, rt, 2 h 
THF, -30 to 5 °C in 2 h 
THF, 40-50 °C, 2 h 

7j, 87, 82 
7j, 74, 90 
7j, 93, 70 
7j, 89, 61 

d 

d 

d 

d 
18k 6j CdCl2·TMEDA THF, rt, 2 h 7j, 77, 61 93, 57 (SP)

c 

19 6k CdCl2·TMEDA THF, rt, 2 h 7k, 93, 54 94, 58 (SP)
c 

a Determined from the integration of the 1H NMR spectrum of the crude mixture. 
b Determined by HPLC analysis on a chiral stationary phase (AS-H column, eluent: 9:1 hexane-isopropanol, 1 mL/min, Ȝ = 252 nm). 
c The attribution of the configuration was made on the basis of previously reported data.21 
d Reduction not performed. 
e 6j was added after removal of LiCl by filtration. 
f Estimated yield, due to the presence of starting material. 
g Substrate added at 0 °C. 
h Substrate added at room temperature. 
i Substrate added at -30 °C. 
j Substrate added at 40 °C. 
k Using the base in situ prepared from CdCl2·TMEDA (1 equiv), Li(TMP) (2 equiv) and BuLi (1 equiv). 

In order to check the importance of the composition of the base on the course of the reaction, the use 

of a reagent in situ prepared from CdCl2·TMEDA (1 equiv), Li(TMP) (2 equiv) and BuLi (1 equiv)8c 

was attempted; upon reaction in THF at room temperature, the deprotonation still took place albeit 
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resulting in a lower yield but with a 61% de (against 74% using the all TMP base, entry 18). 

Additionally, in a bid to improve the diastereoselectivities, the protective group of the diol was 

modified from a diisopropylidene to a dicyclohexylidene. When the derivative 6k was employed in the 

reaction instead of the corresponding derivative 6j, a 54% de was obtained against 74% when 6j was 

the chiral ester (entry 19). 

Lithium-zinc combinations were also employed to attempt the diastereoselective deproto-metalation 

of ferrocene carboxylate 6j (Table 6). The first reaction was performed using 1 equiv of the all TMP 

base in THF at room temperature for 2 h. After interception as before, the iodide 7j was isolated in 86% 

yield and 54% de (entry 1), a result less interesting than that obtained with the corresponding lithium-

cadmium base (Table 5, entry 1). By performing the reaction at -30 °C or -50 °C using the base 

prepared from ZnCl2·TMEDA (1 equiv) and Li(TMP) (4 equiv), the de was increased by about 10% 

(entries 2 and 3). In contrast, when the reaction mixture was warmed to room temperature after 

combining base and substrate at -30 °C, a moderate 53-56% de (similar to that obtained under the 

conditions described for entry 1) was noted (entries 4-6). By using the base prepared from ZnCl2 

instead of ZnCl2·TMEDA, the efficiency of the deproto-metalation was lowered, even when TMEDA 

(1 equiv) was present in THF at the beginning of the reaction (entry 5) or added later (entry 6). Lower 

yields and des were noted by using hexane containing 5 equiv of TMEDA7a or dimethoxymethane 

(DMM) as solvent (entries 7 and 8).  

The base prepared from ZnCl2·TMEDA (1 equiv) and Li(TMP) (3 equiv) being a 1:1 mixture of 

Zn(TMP)2 and Li(TMP),7i the effect on the diastereoselectivity of adding separately both amides was 

studied. To this purpose, the addition to a THF solution of the substrate 6f containing ZnCl2·TMEDA 

(1 equiv) and Li(TMP) (2 equiv) of a THF solution of Li(TMP) (1 or 2 equiv) was attempted. After 2 h 

stirring at this temperature and iodolysis, the de was slightly improved to reach 64 or 72%, respectively 

(entries 9 and 10). A similar diastereoselectivity was obtained by adding Li(TMP) (3 equiv) to a 

mixture of ZnCl2·TMEDA and 6f under the same conditions (entry 11).  



 13 

In the case of the lithium-zinc base, a deleterious effect of TMEDA on the diastereoselectivity was 

not observed (54% de with and without TMEDA, entry 12). In the case of the mixed lithium-zinc base, 

replacing one TMP by a butyl group7e did not reduce the diastereoselectivity, and a 55% de (entry 13), 

slightly lower than that noted using the corresponding lithium-cadmium base (Table 5, entry 18), was 

obtained. The impact of the diol protection was also checked using the all TMP lithium-zinc base; no 

difference was noticed between the diisopropylidene 6j and the corresponding dicyclohexylidene 6k 

(entry 14). 

Table 6. Metalation of chiral ferrocenecarboxylates 6j,k using lithium-zinc combinations followed by 
trapping with I2. 

1) Zn source (1 equiv)
+ Li(TMP) (2 equiv)
+ RLi (x equiv)
solvent, conditions

2) I2

6j: R,R = Me,Me
6k: R,R = (CH2)5

Fe

O 1) DIBAL-H
THF, 0 °C, 1 h
2) Hydrolysis

7j: R,R = Me,Me
7k: R,R = (CH2)5

Fe

O

I 9
O

O

O

O

R

R

O

O

R

R

O

O

O

O

R

R

O

O

R

R

 

Entry 6 Zn source R (x) Solvent, conditions 7, Yield (%), de (%)a 

1 6j ZnCl2·TMEDA TMP (1) THF, rt, 2 h 7j, 86, 54 (SP)
b 

2 
3c 
4 
5 
6d 

6j ZnCl2·TMEDA 
ZnCl2·TMEDA 
ZnCl2·TMEDA 
ZnCl2 

ZnCl2 

TMP (2) 
TMP (2) 
TMP (2) 
TMP (2) 
TMP (2) 

THF, -30 °C, 2 h 
THF, -50 °C, 5 h 
THF, -30 °C to rt, 2 h 
THF, TMEDA (1 equiv), -30 °C to rt, 2 h 
THF, TMEDA (1 equiv), -30 °C to rt, 2 h 

7j, 82, 66 (SP)
b 

7j, 71, 65 (SP)
b 

7j, 86, 56 (SP)
b 

7j, 30, 56 (SP)
b 

7j, 46, 53 (SP)
b 

7 
8 

6j ZnCl2·TMEDA 
ZnCl2 

TMP (1) 
TMP (2) 

HexH, TMEDA (5 equiv), rt, 2 h 
DMM, rt, 2 h 

7j, 50, 42 (SP)
b,e 

7j, 32, 51 (SP)
b 

9f 

10f 

11 

6j ZnCl2·TMEDA 
ZnCl2·TMEDA 
ZnCl2·TMEDA 

TMP (1) 
TMP (2) 
g 

THF, rt, 2 h 
THF, -30 °C to rt, 2 h 
THF, -30 °C to rt, 2 h 

7j, 89, 64 (SP)
b 

7j, 87, 72 (SP)
b 

7j, 70, 68 (SP)
b 

12 6j ZnCl2 TMP (1) THF, rt, 2 h 7j, 68, 54 (SP)
b 

13h 6j ZnCl2·TMEDA Bu (1) THF, rt, 2 h 7j, 89, 55 (SP)
b,i 

14 6k ZnCl2·TMEDA TMP (1) THF, rt, 2 h 7k, 87, 56 (SP)
b,j 

a Determined from the integration of the 1H NMR spectrum of the crude mixture. 
b The attribution of the configuration was made on the basis of previously reported data.21 
c Base transferred to the substrate. 
d TMEDA slowly added at -30 °C. 
e Reduction using DIBAL-H provided the alcohol 9 in 94% yield and 42% ee (SP). 
f Sequential addition of Li(TMP) (2 equiv) and, 10 min later, RLi (1 or 2 equiv). 
g Substrate mixed with ZnCl2·TMEDA before addition of Li(TMP) (3 equiv). 
h Using the base in situ prepared from ZnCl2·TMEDA (1 equiv), Li(TMP) (2 equiv) and BuLi (1 equiv). 
I Reduction using DIBAL-H provided the alcohol 9 in 93% yield and 60% ee (SP). 
j Reduction using DIBAL-H provided the alcohol 9 in 96% yield and 57% ee (SP). 
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Double asymmetric induction25 was attempted using commercial (R)- and (S)-bis(1-

phenylethyl)amine as ligand source instead of 2,2,6,6-tetramethylpiperidine. When 6j was reacted with 

a base prepared from ZnCl2·TMEDA (1 equiv) and the (R) or (S) lithium amide (3 equiv), the iodide 7j 

was obtained in 67 and 24% yield, and 79 and 10% de in favor of the (SP)-diastereoisomer, 

respectively. In addition, upon treatment by a base prepared from CdCl2 (1 equiv) and the (R) lithium 

amide (3 equiv) under the same reaction conditions, the iodide 7j was obtained in 97% yield, and 80% 

de. The sequential addition to a THF solution of the substrate 6j containing ZnCl2·TMEDA (1 equiv) at 

room temperature of two THF solutions of (R) lithium amide (2 equiv) at 10 min interval was next 

attempted. Trapping using iodine after 2 h contact led to both good yield and de (Scheme 4). 

1) ZnCl2·TMEDA (1 equiv)

+                     (2 equiv)

THF, rt, 10 min

+                     (2 equiv)

THF, rt, 2 h
2) I2

6j

Fe

O

7j: 85% yield, 91% de

Fe

O

I
O

O

O

O

O

O

O

O

O

O

O

O
Ph N

Li
Ph

Ph N
Li

Ph

 

Scheme 4. Metalation of chiral ferrocenecarboxylate 6j using a chiral lithium-zinc combination 
followed by trapping with I2. 

By involving in similar reactions the ester 6l, which differs from 6j at the C3 configuration of the 

sugar substituent, a good conversion to the iodide 7l was observed (64 and 82% yield using the all TMP 

lithium-cadmium and lithium-zinc base, respectively) but with a disappointing excess in favor of the SP 

diastereoisomer (32% ee in both cases, Scheme 5). 

1) MCl2·TMEDA (1 equiv)
+ Li(TMP) (3 equiv)
THF, rt, 2 h

2) I2

6l

Fe

O

7l: 82% yield (M = Cd)
     64% yield (M = Zn)

Fe

O

I
O

O

O

O

O

O

O

O

O

O

O

O 1) DIBAL-H
THF, 0 °C, 1 h
2) Hydrolysis

9

95% yield, 32% ee (M = Cd)
86% yield, 32% ee (M = Zn)

 

Scheme 5. Metalation of chiral ferrocenecarboxylate 6l using lithium-cadmium and lithium-zinc bases 
followed by trapping with I2. 
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In order to evaluate chains more coordinating toward metals, we considered the reaction of the 

ferrocenecarboxylate 6m (Table 7), generated from 5-(tert-butoxycarbonylamino)-5-deoxy-1,2-O-

isopropylidene-α-D-xylofuranose (5m), as the next example. Upon reaction with 1 equiv of the all TMP 

lithium-cadmium base, 6m was converted to the corresponding iodide 7m in 84% yield and in moderate 

diastereoselectivity (entry 1). In order to improve the diastereoselectivity, pre-treating the substrate with 

1 equiv of an organolithium reagent for abstracting the NH proton was considered. The selectivity 

could be improved but at the cost of the yields (entries 2 and 3). As observed with previous substrates, 

the lithium-zinc base proved less efficient (entries 4 and 5). 

Table 7. Metalation of chiral ferrocenecarboxylates 6m (or a lithium derivative) using lithium-
cadmium and lithium-zinc bases followed by trapping with I2. 

1) 1st base (1 equiv)
THF, rt, 1 h
2) 2nd base (x equiv)
THF, rt, 2 h

3) I2
4) Hydrolysis

6m

Fe

O

1) DIBAL-H
THF, 0 °C, 1 h
2) Hydrolysis

7m

Fe

O

I

9

O

O

O

O

NH

O
tBuO

O

O

O

O

NH

O
tBuO

 

Entry 1st base 2nd base (x) Yield (%) for 7m, de (%)a Yield (%) for 9, ee (%)b 

1 
2 
3 

- 
BuLi 
MeLi 

CdCl2·TMEDA (1) + Li(TMP) (3) 
CdCl2·TMEDA (0.5) + Li(TMP) (1.5) 
CdCl2·TMEDA (0.75) + Li(TMP) (2.25) 

84 
48 
52, 52 

92, 32 (SP)
c 

94, 40 (SP)
c 

96, 56 (SP)
c 

4 
5 

- 
- 

ZnCl2·TMEDA (1) + Li(TMP) (3) 
ZnCl2·TMEDA (1.5) + Li(TMP) (4.5) 

40 
70 

d 

91, 11 (SP)
c 

a When possible, determined from the integration of the 1H NMR spectrum of the crude mixture. 
b Determined by HPLC analysis on a chiral stationary phase (AS-H column, eluent: 9:1 hexane-isopropanol, 1 mL/min, Ȝ = 252 nm). 
c The attribution of the configuration was made on the basis of previously reported data.21 
d Reduction not performed. 

The ferrocenecarboxylate 6n, synthesized from 6-(tert-butoxycarbonylamino)-6-deoxy-3-O-methyl-

1,2-O-isopropylidene-α-D-glucofuranose (5n), showed better results (Table 8). Consecutive treatment 

with butyllithium (1 equiv) and the all TMP lithium-cadmium base (0.5 equiv) afforded the iodide 7n 

in 28% yield and an estimated 60% de, this time in favor of the RP diastereoisomer (entry 1). Without 

butyllithium and using 1 equiv of base, the yield was improved, and a similar diastereoselectivity 

obtained. Under these conditions, both diastereoisomers were separated by column chromatography 
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over silica gel (entry 2). The main stereoisomer RP-7n was notably isolated in 34% yield and 98% de 

and identified unambiguously through its reduction with DIBAL-H to afford R-9. More importantly, the 

corresponding but less toxic lithium-zinc base led to similar results (35% yield and 96% de for the 

stereoisomer RP-7n, entry 3). When applied to the ester 6n, the sequential addition of two THF 

solutions, a first prepared from ZnCl2·TMEDA or ZnCl2 (1 equiv) and Li(TMP) (2 equiv) and, 15 min 

later, a second of Li(TMP) (2 equiv) afforded RP-7n in 51 and 57% yield, respectively (entries 4 and 5). 

Table 8. Metalation of chiral ferrocenecarboxylates 6n (or a lithium derivative) using lithium-cadmium 
and lithium-zinc bases followed by trapping with I2. 

3) I2
4) Hydrolysis

1) 1st base (1 equiv)
THF, rt, 1 h
2) 2nd base (x equiv)
THF, rt, 2 h

6n

Fe

O

1) DIBAL-H
THF, 0 °C, 1 h
2) Hydrolysis

7n

Fe

O
9

O

HN

O
OtBu

O

MeO

O

O

O

HN

O
OtBu

O

MeO

O

O

I

 

Entry 1st base 2nd base (x) Yield (%) for 7n Yield (%) for 9, ee (%)a 

1 
2 

BuLi 
- 

CdCl2·TMEDA (0.5) + Li(TMP) (1.5) 
CdCl2·TMEDA (1) + Li(TMP) (3) 

28b 
34 (RP-7n); 16d (SP-7n)e,f 

92, 60 (RP)
c 

90, 98 (RP)
c; 91, 93 (SP)

c 
3 
4 
5 

- 
- 
- 

ZnCl2·TMEDA (1) + Li(TMP) (3) 
ZnCl2·TMEDA (1) + Li(TMP) (2+2) 
ZnCl2 (1) + Li(TMP) (2+2)i 

35 (RP-7n); 12d (SP-7n)f 

51 (RP-7n)g 

57 (RP-7n)g 

81, 96 (RP)
c; 88, 92 (SP)

c 

h 

h 
a Determined by HPLC analysis on a chiral stationary phase (AS-H column, eluent: 9:1 hexane-isopropanol, 1 mL/min, Ȝ = 252 nm). 
b The diiodide 8n was also isolated in 12% yield. 
c The attribution of the configuration was made on the basis of previously reported data.21 
d Estimated yield. 
e The diiodide 8n was also isolated in 37% yield. 
f Both diastereoisomers were separated during the purification by column chromatography over silica gel. 
g Isolation of the other diastereoisomer not performed. 
h Reduction not performed. 
i Sequential addition to the substrate of a THF solution prepared from ZnCl2·TMEDA (1 equiv) and Li(TMP) (2 equiv) and, 10 min later, 
a THF solution of Li(TMP) (2 equiv). 

Lithiation experiments on aryl carboxamides showed that the orientation of the functional group has 

an impact on the efficiency of the metalations at the ortho position. In particular, the coplanarity of the 

oxygen and activated hydrogen within the ring favors the reaction.26 We first compared the dihedral 

angle between the upper plane of the ferrocenyl moiety and the ester from the crystal structures of 6c, 

6d, 6e, 6i, 6j, 6k and 6l obtained (Figure 1) with the planar configuration of the main diastereoisomer 

of 7c, 7d, 7e, 7i, 7j, 7k and 7l observed (Table 9). Except in the case of 6d and 6e, for which des below 
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10% were recorded, a dihedral angle of about 180° corresponds to major formation of the RP 

diastereoisomer and a dihedral angle of about 0° to major formation of the SP diastereoisomer. 

   

     

      

Figure 1. ORTEP diagram (30% probability) of 6c, 6d, 6e, 6i, 6j, 6k and 6l. 

Table 9. Dihedral angle between the upper plane of the ferrocenyl moiety and the ester for 6c, 6d, 6e, 
6i, 6j, 6k and 6l, and expected and observed planar configurations for 7. 

Entry 6 Dihedral angle Expected planar configuration Observed planar configuration 

1 
2 
3 
4 
5 
6 
7 

6c 

6d 

6e 

6i 

6j 

6k 

6l 

about 180° 
about 180° 
about 180° 
about 0° 
about 0° 
about 0° 
about 0° 

RP 

RP 

RP 

SP 

SP 

SP 

SP 

RP (14% de) 

SP (4% de) 

SP (8% de) 

SP (48% de) 

SP (90% de) 

SP (56% de) 

SP (32% de) 

We next attempted a rationalization of the diastereoselectivity observed through DFT calculations. 

While the solid-state structure of 6j was obtained, we investigated the conformation of 6j in solution, 

which should affect the reaction outcome. In order to identify more stable conformers, geometrical 
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(local stabilization) optimization was performed by changing the dihedral angle between the upper 

plane of the ferrocenyl moiety and the ester carbonyl group (B3LYP/6-31G(d), structure of the 

ferrocenyl group fixed). The dihedral angle was fixed with 30° intervals from 0° to 330°. The two most 

stable structures, with dihedral angles of 0° (to give the major SP diastereoisomer) and 180° (to give the 

minor SP diastereoisomer), were identified and calculated in greater detail (M06/LanL2DZ(Fe)&6-

31G(d), SCRF (PCM, solvent = THF)) at around 0° and 180°. The conformation with the dihedral 

angle of -6.6° proved 4.0 kcal.mol-1 lower in energy than that of 180°. The calculation in gas-phase 

provided almost identical results; the conformation with the dihedral angle of –6.0° proved 4.6 kcal 

mol–1 lower in energy than that of 190°.14 These calculated results are in accordance with the observed 

diastereoselectivity in the deproto-metalation of 6j (Scheme 6).  

  
Fe H

O

OR

X

6j

Fe

H
O

OR

R =
O

O
O

O

O

dihedral
angle: 0°

dihedral
angle: 180°

 

Scheme 6. Calculated most stable conformer (M06/LanL2DZ(Fe)&6-31G(d)) of 6j in THF (SCRF 
calculation) and observed diastereoselectivity in its deproto-metalation. 

In order to reach new kinds of ferrocene derivatives, coupling reactions were attempted using the 

iodoesters 7. Firstly, it was decided to attempt Ullmann-type coupling reactions on the 

iodoferrocenecarboxylate RP-7j, synthesized as described in Scheme 4, and isolated by chromatography 

over silica gel in about 75% yield. The reagent system comprising NiCl2(PPh3)2, triphenylphosphine, 

zinc and sodium hydride, reported by Lin and Hong in 2001,27 was attempted for this purpose, but only 

led to the deiodinated compound 6j. In contrast, when methyl 2-iodoferrocenecarboxylate rac-7o, easily 

prepared by deprotonation-iodination,7d was involved in the reaction under the same conditions, the 

expected self-coupling products were obtained, and separated by chromatography over silica gel 
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(Scheme 7). The meso derivative meso-10o and the racemic mixture rac-10’o were isolated in 53 and 

15% yield, respectively, and both were unambiguously identified by X-ray diffraction (Figure 2). 

Fe
OMe

O

I

NiCl2(PPh3)2 (1 equiv)
PPh3 (2 equiv)
Zn (4 equiv)
NaH (8 equiv)

toluene, 75 °C, 12 h

rac-7o meso-10o
(53% yield)

rac-10'o
(15% yield)

+

Fe

Fe

MeO2C

CO2Me

Fe

Fe

CO2Me
CO2Me

 

Scheme 7. Homocoupling of racemic methyl 2-iodoferrocenecarboxylate rac-7o. 

  

Figure 2. ORTEP diagram (30% probability) of meso-10o and rac-10’o. 

According to the result obtained from rac-7o, the reactions between opposite enantiomers (RP-7j and 

SP-7j, to afford meso-10o, 53% yield) appears as more likely than the reactions between same 

enantiomers (to give rac-10’o, 15% yield), because of ferrocene-ferrocene hindrance. When the methyl 

ester is replaced by the sugar-based group (substrate RP-7j), a meso compound cannot be obtained any 

more, and the formation of the RP,RP coupled derivative becomes unlikely, probably for steric reasons. 

Suzuki-type coupling reactions were finally performed from the 2-iodoferrocenecarboxylates SP-7j 

and RP-7n (Scheme 8). Reaction of 4-methoxyphenylboronic acid with rac-7o was first carried out as a 

test reaction in the presence of cesium fluoride in order to avoid the use of basic reagents.28 The 

reaction proceeded at the reflux temperature of toluene using catalytic amounts of Pd(dba)2 and 

triphenylphosphine, affording the expected 4-methoxyphenyl derivative rac-11o in 97% yield. SP-7j 

and RP-7n were similarly involved in the reaction, affording the coupled products RP-11j and SP-11n, 

respectively. 
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CsF (2 equiv)
Pd(dba)2 (0.05 equiv)
PPh3 (0.2 equiv)
toluene, reflux, 12 h

SP-7j

Fe
OR

O

I
(HO)2B

OMe RP-11j (98% yield)

Fe
OR

O

RP-7n

Fe

I

Fe

OMe

O

OR

SP-11n (96% yield)

OMe

O

OR

 

Scheme 8. Suzuki cross-couplings from 2-iodoferrocenecarboxylates SP-7j and RP-7n. 

3. Conclusion 

In summary, several chiral esters were screened for their ability to induce diastereoselective deproto-

metalation reactions of ferrocenes using mixed lithium-cadmium and lithium-zinc bases. Due to the 

tolerance of these bimetallic combinations toward reactive functional groups, many substrates were 

functionalized at room temperature. Among the different groups tested, two proved impressive: the one 

present in ferrocenecarboxylate 6j, generated from commercially available inexpensive diacetone-D-

glucose (5j), allowing the synthesis of the iodo derivative 7j in either 74% yield and 90% de (SP 

diastereoisomer) using the TMEDA-free all TMP lithium-cadmium base or 85% yield and 91% de 

using a chiral lithium-zinc base (double asymmetric induction), and the one present in 

ferrocenecarboxylate 6n, synthesized from 6-(tert-butoxycarbonylamino)-6-deoxy-3-O-methyl-1,2-O-

isopropylidene-α-D-glucofuranose (5n), leading to the iodo derivative RP-7n in 57% yield. 

Through X-ray diffraction data of the ferrocene substrates or/and more accurate calculations of the 

most stable conformer, we could observe a direct link between the dihedral angle between the upper 

plane of the ferrocenyl moiety and the ester, and the planar chirality observed in the main 

diastereoisomer: a dihedral angle of about 180° corresponds to major formation of the RP 

diastereoisomer and a dihedral angle of about 0° to major formation of the SP diastereoisomer. 

4. Experimental Section 
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4.1. General. All reactions were performed in Schlenk tubes under argon atmosphere. THF was 

distilled over sodium/benzophenone. Liquid chromatography separations were achieved on silica gel 

Merck-Geduran Si 60 (63-200 m). Nuclear magnetic resonance spectra were acquired using Bruker 

AC-300 (300 MHz and 75 MHz for 1H and 13C respectively) or Avance 500 spectrometer (500 MHz 

and 125 MHz for 1H and 13C respectively). 1H chemical shifts () are given in ppm relative to the 

solvent residual peak, and 13C chemical shifts relative to the central peak of the solvent signal. High 

resolution mass spectra measurements were performed at the Centre Régional de Mesures Physiques de 

l'Ouest (CRMPO) in Rennes. 1,2:3,4-Di-O-isopropylidene-α-D-galactopyranose (5e), 2,3:5,6-di-O-

cyclohexylidene-α-D-mannofuranose (5i), 1,2:5,6-di-O-isopropylidene-α-D-glucofuranose (5j), 1,2:5,6-

di-O-cyclohexylidene-α-D-glucofuranose (5k) and 1,2:5,6-di-O-isopropylidene-α-D-allofuranose (5l) 

are commercially available. (2S,4S)-2-Ferrocenyl-4-(methoxymethyl)-1,4-dioxane (2d),16a (R)-2-(4-

methoxybenzyloxy)-1-propanol (5a),29 (R)-2-(tert-butyldiphenylsilyloxy)-1-propanol (5b),30 (R)-N-

(tert-butoxycarbonyl)-4-(hydroxymethyl)-2,2-dimethyloxazolidine (5c),31 1,2-O-isopropylidene-3-O-

methyl-α-D-xylofuranose (5d)32 (1R,2S)-N-(tert-butoxycarbonyl)ephedrine (5f)33 and 5-O-(tert-

butyldiphenylsilyl)-1,2-O-isopropylidene-α-D-xylofuranose (5h)34 were prepared as previously 

described. 

4.2. 1,2-O-Isopropylidene-3,5-O-(ferrocenylmethylene)-α-D-xylofuranose (2c) was prepared from 

commercially available 1,2-O-isopropylidene-α-D-xylofuranose (1c) by transacetalization of the known 

ferrocene dimethylacetal in chloroform using p-toluenesulfonic acid as catalyst.16a Purification by flash 

chromatography on silica gel (eluent: 100:0 to 92:8 heptane-EtOAc) afforded a pale yellow powder 

(yield: 60% for 2 steps): mp 163-164 °C; 1H NMR (300 MHz, CDCl3) δ 1.34 (s, 3H), 1.52 (s, 3H), 

4.05-4.21 (m, 9H), 4.30-4.43 (m, 4H), 4.62 (d, 1H, J = 3.7 Hz), 5.29 (s, 1H), 6.05 (d, 1H, J = 3.7 Hz); 

13C NMR (75 MHz, CDCl3) δ 26.3, 26.8, 66.7, 67.0, 67.1, 68.5, 68.6, 69.4 (5C), 72.4, 78.8, 84.0, 85.4, 

98.3, 105.8, 111.8; []D = -5.5 (CHCl3, c = 0.2, 20 °C). Anal. Calcd for C9H22FeO5 (386.22): C, 59.09; 
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H, 5.74. Found: C, 58.76; H, 5.62. The structure was identified unequivocally by X-ray structure 

analysis (CCDC 970485) from crystals obtained by slowly evaporating a 92:8 heptane-EtOAc solution. 

4.3. (2S,4R)-tert-Butyl 4-hydroxy-2-(tert-butyldiphenylsilyloxymethyl)-1-pyrrolidinecarboxylate 

(5g) was prepared following a described procedure,34 and was isolated as a white solid: mp 148 °C; 1H 

NMR (300 MHz, CDCl3) δ 1.03 (s, 9H), 1.32 and 1.47 (s, 9H), 1.94-2.14 (m, 1H), 2.29-2.37 (m, 1H), 

3.42-3.77 and 3.97-4.10 (m, 5H), 4.50-4.57 (m, 1H), 7.34-7.42 (m, 6H), 7.60-7.64 (m, 4H); 13C NMR 

(75 MHz, CDCl3) δ 19.1, 26.6, 26.7 (several C), 28.3, 28.4, 36.6, 37.2, 55.0, 55.1, 55.4, 55.5, 57.0, 

57.1, 57.2, 63.7, 63.8, 64.8, 69.4, 70.1, 79.2, 79.3, 79.4, 127.6, 129.5, 133.2-133.4 (4 signals), 135.4 (2 

signals), 154.6-154.7 (4 signals); []D = -32 (CHCl3, c = 5.0, 20 °C); HRMS: calcd for C26H37NNaO4Si 

[(M+Na)+•] 478.2384, found 478.2385. 

4.4. 5-(tert-Butoxycarbonylamino)-5-deoxy-1,2-O-isopropylidene-α-D-xylofuranose (5m) and 6-

(tert-Butoxycarbonylamino)-6-deoxy-3-O-methyl-1,2-O-isopropylidene-α-D-glucofuranose
15 (5n) 

were prepared by adapting a described procedure.35 Their analyses were as described previously.15 

4.5. General procedure for the reaction of ferrocenecarboxylic acid with chiral alcohols. A 

solution of ferrocenecarboxylic acid (0.93 g, 4.0 mmol), DCC (0.91 g, 4.4 mmol), the required chiral 

alcohol (4.0 mmol) and DMAP (0.48 g, 4.4 mmol) in CH2Cl2 (40 mL) was heated under reflux for 16 

h. N,N'-dicyclohexylurea was filtered off, and the filtrate was washed with water (3 x 40 mL). After 

drying over anhydrous Na2SO4, the solvent was evaporated under reduced pressure, and the ester was 

isolated by purification by flash chromatography on silica gel. 

4.5.1. (R)-2-(4-Methoxybenzyloxy)-1-propyl ferrocenecarboxylate (6a) was prepared from 5a 

(0.78 g) and was isolated (eluent: 93:7 heptane-EtOAc) as a red oil (yield: 45%): 1H NMR (300 MHz, 

CDCl3) δ 1.29 (d, 3H, J = 6.4 Hz), 3.80 (s, 3H), 3.81-3.87 (m, 1H), 4.18 and 4.31 (AB-part of an ABX 

system, 2H, JAB = 11.5 Hz, JAX = 6.0 Hz, JBX = 4.2 Hz), 4.20 (s, 3H), 4.40 (t, 2H, J = 2.0 Hz), 4.58 and 

4.62 (AB, 2H, JAB = 11.5 Hz), 4.81-4.84 (m, 2H), 6.88 (d, 2H, J = 8.7 Hz), 7.32 (d, 2H, J = 8.7 Hz); 13C 

NMR (75 MHz, CDCl3) δ 17.4, 55.4, 67.1, 69.9 (5C), 70.3 (2C), 70.9, 71.1, 71.4 (2C), 72.6, 113.9 
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(2C), 129.4 (2C), 130.7, 159.2, 171.7; [α]D = +0.83 (CH2Cl2, c = 1.9, 20 °C). Anal. Calcd for 

C22H24FeO4 (408.27): C, 64.72; H, 5.93. Found: C, 64.45; H, 5.99. 

4.5.2. (R)-2-(tert-Butyldiphenylsilyloxy)-1-propyl ferrocenecarboxylate (6b) was prepared from 

5b (1.3 g) and was isolated (eluent: 93:7 heptane-EtOAc) as an orange oil (yield: 53%): 1H NMR (500 

MHz, CDCl3) δ 1.09 (s, 9H), 1.17 (d, 3H, J = 6.0 Hz), 4.12 (m, 3H), 4.16 (s, 5H), 4.37 (t, 2H, J = 1.9 

Hz), 4.8 (br d, 2H, J = 9.0 Hz), 7.35-7.43 (m, 6H), 7.72 (m, 4H); 13C NMR (125 MHz, CDCl3) δ 19.4, 

20.7, 27.1 (3C), 67.8, 69.3, 69.9 (5C), 70.3, 70.4, 70.7, 71.4 (2C), 127.7 (2C), 127.8 (2C), 129.8, 129.9, 

134.1, 134.4, 135.9 (2C), 136.0 (2C), 171.7; [α]D = -5.7 (CH2Cl2, c = 0.35, 20 °C). Anal. Calcd for 

C30H34FeO3Si (526.52): C, 68.43; H, 6.51. Found: C, 68.77; H, 6.79. 

4.5.3. (S)-[N-(tert-Butoxycarbonyl)-2,2-dimethyl-4-oxazolidyl]methyl ferrocenecarboxylate (6c) 

was prepared from 5c (0.93 g) and was isolated (eluent: 88:12 heptane-EtOAc) as a red powder (yield: 

76%): mp 70 °C; 1H NMR (500 MHz, 340 K, C6D6) δ 1.44 (s, 9H), 1.51 (s, 3H), 1.69 (s, 3H), 3.74 (dd, 

1H, J = 6.5, 8.8 Hz), 3.89 (d, 1H, J = 8.8 Hz), 4.00 (m, 1H), 4.02 (s, 5H), 4.09 (s, 2H), 4.20 (br m, 1H), 

4.56 (dd, 1H, J = 3.2, 10.4 Hz), 4.81 (d, 2H, J = 6.7 Hz); 13C NMR (125 MHz, 340 K, C6D6) δ 23.5, 

27.3, 28.6 (3C), 56.7, 63.6, 65.7, 70.1 (5C), 70.7, 70.8, 71.4 (2C), 72.2, 80.0, 94.4, 152.1, 170.7; [α]D = 

-16 (CH2Cl2, c = 1.0, 20 °C). Anal. Calcd for C22H29FeNO5 (443.31): C, 59.60; H, 6.59; N, 3.16. 

Found: C, 59.30; H, 6.54; N, 3.11. The structure was identified unequivocally by X-ray structure 

analysis (CCDC 970486) from crystals obtained by slowly evaporating a 2:8 EtOAc-heptane solution. 

4.5.4. 6-O-(Ferrocenecarbonyl)-1,2-O-isopropylidene-3-O-methyl-α-D-xylofuranose (6d) was 

prepared as described previously.15 Its structure was identified unequivocally by X-ray structure 

analysis (CCDC 798861) from crystals obtained by slowly evaporating a 2:8 CH2Cl2-pentane solution. 

4.5.5. 6-O-(Ferrocenecarbonyl)-1,2:3,4-di-O-isopropylidene-α-D-galactopyranose (6e) was 

prepared as described previously.15 Its structure was identified unequivocally by X-ray structure 

analysis (CCDC 798860) from crystals obtained by slowly evaporating a CH2Cl2 solution. 
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4.5.6. (1R,2S)-2-[N-(tert-Butoxycarbonyl)-N-methylamino]-1-phenylpropyl 

ferrocenecarboxylate (6f) was prepared from 5f (1.1 g) and was isolated (eluent: 92:8 heptane-EtOAc) 

as a red oil (yield: 38%): 1H NMR (500 MHz, 340 K, C6D6) δ 1.22 (d, 3H, J = 6.9 Hz), 1.36 (s, 9H), 

2.59 (br s, 3H), 3.89 (s, 5H), 4.08 (s, 2H), 4.74 (br s, 1H), 4.77 (br s, 1H), 4.83 (br s, 1H), 6.22 (d, 1H, J 

= 8.1 Hz), 7.07 (t, 1H, J = 7.3 Hz), 7.16 (m, 2H), 7.52 (d, 2H, J = 7.4 Hz); 13C NMR (125 MHz, 340 K, 

C6D6) δ 14.4, 28.5 (3C), 30.1, 55.2, 70.0 (5C), 70.5, 70.7, 71.3, 71.4, 72.4, 77.4, 79.2, 127.8-128.4 

(5C), 139.8, 155.3, 169.9; [α]D = +47.6 (CH2Cl2, c = 2.5, 20 °C). Anal. Calcd for C26H31FeNO4 

(477.37): C, 65.42; H, 6.55; N, 2.93. Found: C, 65.34; H, 6.63; N, 3.03. 

4.5.7. (2S,4R)-1-tert-Butoxycarbonyl-2-(tert-butyldiphenylsilyloxymethyl)-4-pyrrolidyl 

ferrocenecarboxylate (6g) was prepared from 5g (1.8 g) using DCC (1.2 g, 6.0 mmol) and DMAP 

(0.65 g, 6.0 mmol) in CH2Cl2 (20 mL), and was isolated (eluent: 93:7 heptane-EtOAc) as an orange 

gum (yield: 83%): 1H NMR (300 MHz, CDCl3) δ 1.06 (s, 9H), 1.36 and 1.48 (s, 9H), 2.17-2.33 (m, 

1H), 2.44-2.56 (m, 1H), 3.63-3.90 (m, 4H), 4.05-4.23 (m, 1H), 4.20 (s, 5H), 4.40 (br s, 2H), 4.77-4.80 

(m, 2H), 5.47-5.51 (m, 1H), 7.36-7.43 (m, 6H), 7.63-7.68 (m, 4H); 13C NMR (75 MHz, CDCl3) 

mixture of conformers δ 19.1, 19.2, 19.2, 26.8, 28.4, 28.5, 33.7, 35.0, 52.5, 53.3, 57.3, 57.3, 57.3, 63.8, 

64.9, 69.7 (several C), 69.9, 70.1, 70.2, 70.7, 70.9, 71.3, 71.3, 71.4, 72.3, 72.3, 72.9, 76.5, 79.6, 127.6, 

127.7, 127.7, 129.6, 129.6, 129.7, 133.2, 135.5, 154.2, 154.3, 171.2, 171.4; [α]D = -36.5 (CHCl3, c = 

0.41, 20 °C); HRMS: calcd for C37H45
56FeNNaO5Si [(M+Na)+•] 690.2309, found 690.2308. 

4.5.8. 3-O-(Ferrocenecarbonyl)-5-O-(tert-butyldiphenylsilyl)-1,2-O-isopropylidene-α-D-

xylofuranose (6h) and 1-O-(ferrocenecarbonyl)-2,3:5,6-di-O-cyclohexylidene-α-D-mannofuranose 

(6i) were prepared as described previously.15 The structure of 6i was identified unequivocally by X-ray 

structure analysis (CCDC 798862) from crystals obtained by slowly evaporating a 7:3 hexane-CH2Cl2 

solution. 
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4.5.9. 3-O-(Ferrocenecarbonyl)-1,2:5,6-di-O-isopropylidene-α-D-glucofuranose (6j) was prepared 

as described previously.15 Its structure was identified unequivocally by X-ray structure analysis (CCDC 

798863) from crystals obtained by slowly evaporating a 1:1 pentane-CH2Cl2 solution. 

4.5.10. 3-O-(Ferrocenecarbonyl)-1,2:5,6-di-O-cyclohexylidene-α-D-glucofuranose
15 (6k) was 

prepared as described previously.15 Its structure was identified unequivocally by X-ray structure 

analysis (CCDC 970487) from crystals obtained by slowly evaporating a 7:3 hexane-CH2Cl2 solution. 

4.5.11. 3-O-(Ferrocenecarbonyl)-1,2:5,6-di-O-isopropylidene-α-D-allofuranose (6l) was prepared 

as described previously.15 Its structure was identified unequivocally by X-ray structure analysis (CCDC 

798864) from crystals obtained by slowly evaporating a 7:3 hexane-CH2Cl2 solution. 

4.5.12. 5-(tert-Butoxycarbonylamino)-5-deoxy-3-O-(ferrocenecarbonyl)-1,2-O-isopropylidene-α-

D-xylofuranose (6m) and 6-(tert-butoxycarbonylamino)-6-deoxy-5-O-(ferrocenecarbonyl)-1,2-O-

isopropylidene-3-O-methyl-α-D-glucofuranose (6n) were prepared as described previously.15,14  

4.6. (2S,4S)-2-(2-Iodoferrocenyl)-4-(methoxymethyl)-1,4-dioxane (diastereoisomeric mixture) 

(3d). To a stirred cooled (0 °C) solution of 2,2,6,6-tetramethylpiperidine (0.68 mL, 4.0 mmol) in THF 

(5 mL) were successively added BuLi (1.6 M hexanes solution, 4.0 mmol) and, 5 min later, 

ZnCl2·TMEDA7e (0.51 g, 2.0 mmol). The mixture was stirred for 10 min at 0 °C before introduction of 

2d (0.63 g, 2.0 mmol). After 10 min at room temperature, a cooled (-30 °C) solution prepared in THF 

(5 mL) from 2,2,6,6-tetramethylpiperidine (0.68 mL, 4.0 mmol) and BuLi (1.6 M hexanes solution, 4.0 

mmol) was added, and the resulting mixture was stirred for 2 h at -30 °C before a solution of I2 (2.0 g, 

8.0 mmol) in THF (5 mL) was added. The mixture was stirred overnight before addition of an aq 

saturated solution of Na2S2O3 (10 mL) and extraction with EtOAc (3 x 20 mL). After drying over 

anhydrous Na2SO4, the solvent was evaporated under reduced pressure, and the iodide 3d was isolated 

by purification by flash chromatography on silica gel (eluent: 9:1 heptane-EtOAc) in an estimated 45% 

yield. A 79% de was determined by NMR. The minor isomer was identified as (2S,4S,RP)-2-(2-

iodoferrocenyl)-4-(methoxymethyl)-1,4-dioxane (RP-3d) by comparison with reported 13C NMR data in 
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C6D6:
16r 13C NMR (75 MHz, C6D6)  28.0 (CH2), 42.4 (C), 59.1 (CH3), 66.8 (CH2), 67.0 (CH), 69.0 

(CH), 72.3 (5CH), 75.0 (CH), 75.9 (CH2), 76.4 (CH), 87.3 (C), 100.9 (CH); 13C NMR (75 MHz, 

CDCl3) δ 27.λ (CH2), 41.7 (C), 59.6 (CH3), 66.3 (CH), 67.0 (CH2), 68.9 (CH), 72.0 (5CH), 74.8 (CH), 

75.7 (CH2), 76.4 (CH), 86.4 (C), 100.7 (CH). The major isomer proved to be (2S,4S,SP)-2-(2-

iodoferrocenyl)-4-(methoxymethyl)-1,4-dioxane (SP-3d): 13C NMR (75 MHz, C6D6)  28.5 (CH2), 42.1 

(C), 59.1 (CH3), 66.9 (CH), 66.9 (CH2), 68.9 (CH), 72.2 (5CH), 75.1 (CH), 75.6 (CH2), 76.5 (CH), 87.5 

(C), 101.0 (CH); 13C NMR (75 MHz, CDCl3) δ 28.1 (CH2), 41.6 (C), 59.4 (CH3), 66.3 (CH), 67.1 

(CH2), 68.8 (CH), 71.9 (5CH), 75.0 (CH), 75.4 (CH2), 76.3 (CH), 86.1 (C), 101.0 (CH). 

4.7. (a) General procedure for the deprotonation using the lithium-cadmium base prepared 

from CdCl2·TMEDA (1 equiv) and Li(TMP) (3 equiv) in THF followed by trapping using I2. To a 

stirred cooled (0 °C) solution of 2,2,6,6-tetramethylpiperidine (1.1 mL, 6.0 mmol) in THF (5 mL) were 

successively added BuLi (1.6 M hexanes solution, 6.0 mmol) and, 5 min later, CdCl2·TMEDA36 (0.60 

g, 2.0 mmol). The mixture was stirred for 10 min at 0 °C before introduction of the required substrate 

(2.0 mmol). After 2 h at room temperature, a solution of I2 (1.5 g, 6.0 mmol) in THF (5 mL) was added. 

The mixture was stirred overnight before addition of an aq saturated solution of Na2S2O3 (10 mL) and 

extraction with EtOAc (3 x 20 mL). After drying over anhydrous Na2SO4, the solvent was evaporated 

under reduced pressure, and the iodide was isolated by purification by flash chromatography on silica 

gel. (b) General procedure for the conversion of 2-iodoferrocenecarboxylates 7 to 2-

iodoferrocenemethanol (9).
21 The required diastereoisomeric mixture of iodoferrocenecarboxylates 7 

(0.30 mmol) was dissolved in THF (3 mL), and a 1.0 M DIBAL-H solution in heptane (1.2 mL, 1.2 

mmol) was added dropwise at 0 °C. The mixture was stirred at this temperature for 1 h before 

quenching by addition of MeOH (0.5 mL), dilution with Et2O (10 mL), and addition of an aqueous 

saturated solution of sodium and potassium tartrate (10 mL) at 0 °C. After stirring for 30 min at room 

temperature, extraction with Et2O and drying over anhydrous Na2SO4, the solvent was evaporated 

under reduced pressure, and 2-iodoferrocenemethanol (9) was isolated as orange crystals by purification 
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by flash chromatography on silica gel (eluent: 88:12 heptane-EtOAc). HPLC analysis on a chiral 

stationary phase (AS-H column, eluent: 9:1 hexane-isopropanol, 1 mL/min, Ȝ = 252 nm) gave two well 

separated peaks for the two enantiomers of 2-iodoferrocenemethanol (RP-9, 12.5 min, and SP-9, 22.2 

min). 

4.7.1. (2S,4S)-2-(2,5-Diiodoferrocenyl)-4-(methoxymethyl)-1,4-dioxane (4d) was prepared from 

2d (0.63 g) using 4.7. (a) and was isolated (eluent: 85:15 heptane-EtOAc) as an orange oil (yield: 79%): 

1H NMR (300 MHz, CDCl3) δ 1.50 (ddd, 1H, J = 13.0, 3.8 and 2.3 Hz), 1.86 (ddd, 1H, J = 16.6, 12.5 

and 5.0 Hz), 3.45 (s, 3H), 3.48 (dd, 1H, J = 10.2 and 4.8 Hz), 3.63 (dd, 1H, J = 10.2 and 6.4 Hz), 3.94 

(td, 1H, J = 12.1 and 2.5 Hz), 4.08 (dddd, 1H, J = 11.2, 6.7, 4.6 and 2.4 Hz), 4.22 (s, 5H), 4.29 (ddd, 

1H, J = 11.3, 4.9 and 1.2 Hz), 4.49 (d, 1H, J = 2.4 Hz), 4.52 (d, 1H, J = 2.4 Hz), 5.45 (s, 1H); 13C NMR 

(75 MHz, CDCl3) δ 28.0 (CH2), 39.0 (C), 40.7 (C), 59.6 (CH3), 67.2 (CH2), 75.1 (5CH), 75.8 (CH2), 

76.4 (CH), 76.6 (CH), 77.1 (CH), 85.1 (C), 100.8 (CH). Anal. Calcd for C16H18FeI2O3 (567.97): C, 

33.83; H, 3.19. Found: C, 33.70; H, 3.41. 

4.7.2. (R)-2-(4-Methoxybenzyloxy)-1-propyl 2,5-diiodoferrocenecarboxylate (8a) was prepared 

from 6a (0.82 g) using 4.7. (a) and was isolated (eluent: 94:6 heptane-EtOAc) as a red oil (yield: 29%): 

1H NMR (300 MHz, CDCl3) δ 1.38 (d, 3H, J = 6.3 Hz), 3.78 (s, 3H), 3.96 (hex, 1H, J = 5.6 Hz), 4.24 

(s, 5H), 4.32 and 4.41 (AB-part of an ABX system, 2H, JAB = 11.4 Hz, JAX = 5.5 Hz, JBX = 4.6 Hz), 4.58 

and 4.64 (AB, 2H, JAB = 11.4 Hz), 4.76 (s, 2H), 6.86 (d, 2H, J = 8.6 Hz), 7.33 (d, 2H, J = 8.6 Hz); 13C 

NMR (75 MHz, CDCl3) δ 17.9, 39.0 (2C), 55.4, 67.5, 70.8, 72.6, 73.3, 75.9 (5C), 80.6 (2C), 113.9 

(2C), 129.5 (2C), 130.6, 159.2, 168.8; [α]D = -9.7 (CH2Cl2, c = 1.5, 20 °C). Anal. Calcd for 

C22H22FeI2O4 (660.06): C, 40.03; H, 3.36. Found: C, 40.07; H, 3.42. 

4.7.3. (R)-2-(tert-Butyldiphenylsilyloxy)-1-propyl 2,5-diiodoferrocenecarboxylate (8b) was 

prepared from 6b (1.1 g) using 4.7. (a) and was isolated (eluent: 96:4 pentane-Et2O) as a red oil (yield: 

68%). The analyses were as described previously.7d 
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4.7.4. (S)-[N-(tert-Butoxycarbonyl)-2,2-dimethyl-4-oxazolidyl]methyl 2-

iodoferrocenecarboxylate (diastereoisomeric mixture) (7c) was prepared from 6c (0.89 g) using 4.7. 

(a) but could not be separated from the starting material (estimated yield: 18%), and the mixture was 

treated with DIBAL-H according to 4.7. (b) to afford 2-iodoferrocenemethanol (9) in 98% yield and 

14% ee (RP). 

4.7.5. 3-O-(2-Iodoferrocenecarbonyl)-1,2:5,6-di-O-cyclohexylidene-α-D-glucofuranose 

(diastereoisomeric mixture) (7k) was prepared from 6k (1.1 g) using 4.7. (a) and was isolated (eluent: 

95:5 heptane-EtOAc) as an orange solid (93% yield). A 54% de was determined by NMR. The analyses 

were as described previously.15 Treatment with DIBAL-H according to 4.7. (b) afforded 2-

iodoferrocenemethanol (9) in 94% yield and 58% ee (SP). 

4.7.6. 3-O-(2-Iodoferrocenecarbonyl)-1,2:5,6-di-O-isopropylidene-α-D-allofuranose 

(diastereoisomeric mixture)
15,14 (7l) was prepared from 6l (0.94 g) using 4.7. (a) but could not be 

separated from the starting material (estimated yield: 82%). It was identified by HRMS: calcd for 

C23H27
56FeINaO7 [(M+Na)+•] 621.0043, found 621.0043. The mixture was treated with DIBAL-H 

according to 4.7. (b) to afford 2-iodoferrocenemethanol (9) in 95% yield and 32% ee (SP). 

4.7.7. 6-(tert-Butoxycarbonylamino)-6-deoxy-5-O-(2,5-diiodoferrocenecarbonyl)-1,2-O-

isopropylidene-3-O-methyl-α-D-glucofuranose (8n) was prepared from 6n (1.1 g) using 4.7. (a) and 

was isolated (eluent: 3:7 heptane-EtOAc) as a yellow liquid (yield: 37%): 1H NMR (300 MHz, CDCl3) 

δ 1.32 (s, 3H), 1.42 (s, 9H), 1.50 (s, 3H), 3.41 (s, 3H), 3.53-3.62 (m, 1H), 3.79-3.87 (m, 1H), 3.93 (d, 

1H, J = 3.2 Hz), 4.27 (s, 5H), 4.43 (dd, 1H, J = 6.7, 3.1 Hz), 4.58 (d, 1H, J = 5.2 Hz), 4.78 (s, 2H), 5.11 

(t, 1H, J = 5.2 Hz), 5.43-5.49 (m, 1H), 5.93 (d, 1H, J = 3.7 Hz); 13C NMR (75 MHz, CDCl3) δ 26.4, 

27.1, 28.6 (3C), 41.9, 58.2, 70.6 (2C), 76.1 (5C), 79.4, 79.9, 80.7, 80.8, 80.9, 81.4, 83.9, 105.3 (2C), 

112.0, 155.9, 168.0; [α]D = -10 (CH2Cl2, c = 1.1, 20 °C). Anal. Calcd for C26H33FeI2NO8 (797.20): C, 

39.17; H, 4.17; N, 1.76. Found: C, 39.52; H, 4.45; N, 1.67. 
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4.8. General procedure for the deprotonation using the lithium-cadmium base prepared from 

CdCl2·TMEDA (0.5 equiv) and Li(TMP) (1.5 equiv) in THF followed by trapping using I2. To a 

stirred cooled (0 °C) solution of 2,2,6,6-tetramethylpiperidine (1.1 mL, 6.0 mmol) in THF (5 mL) were 

successively added BuLi (1.6 M hexanes solution, 6.0 mmol) and, 5 min later, CdCl2·TMEDA36 (0.60 

g, 2.0 mmol). The mixture was stirred for 10 min at 0 °C before introduction of the required substrate 

(4.0 mmol). After 2 h at room temperature, a solution of I2 (1.5 g, 6.0 mmol) in THF (5 mL) was added. 

The mixture was stirred overnight before addition of an aq saturated solution of Na2S2O3 (10 mL) and 

extraction with EtOAc (3 x 20 mL). After drying over anhydrous Na2SO4, the solvent was evaporated 

under reduced pressure, and the iodide was isolated by purification by flash chromatography on silica 

gel. 

4.8.1. (R)-2-(4-Methoxybenzyloxy)-1-propyl 2-iodoferrocenecarboxylate (diastereoisomeric 

mixture) (7a) was prepared from 6a (1.6 g) and was isolated (eluent: 94:6 heptane-EtOAc) as a red oil 

(yield: 76%): 1H NMR (300 MHz, CDCl3) δ 1.32 (2d, 3H, J = 6.4 Hz), 3.79 and 3.80 (2s, 3H), 3.83-

3.94 (m, 1H), 4.21-4.22 (2s, 5H), 4.17-4.46 (m, 3H), 4.56-4.65 (m, 2H), 4.69-4.71 (m, 1H), 4.85-4.88 

(m, 1H), 6.90-6.95 (m, 2H), 7.29-7.34 (m, 2H); 13C NMR (75 MHz, CDCl3) δ 17.5 (2 peaks), 39.8, 

55.4, 67.0, 67.3, 70.4 (2 peaks), 70.8, 70.9, 72.4, 72.6, 72.7, 72.9 (5C), 76.0, 79.9, 113.9 (2C), 129.4 (2 

peaks, 2C), 130.7, 159.3, 170.2, 170.3. Anal. Calcd for C22H23FeIO4 (534.17): C, 49.47; H, 4.34. 

Found: C, 49.20; H, 4.21. Treatment with DIBAL-H according to 4.7. (b) afforded 2-

iodoferrocenemethanol (9) in 94% yield and 7% ee (SP). 

4.8.2. (R)-2-(tert-Butyldiphenylsilyloxy)-1-propyl 2-iodoferrocenecarboxylate (diastereoisomeric 

mixture) (7b) was prepared from 6b (2.1 g) and was isolated (eluent: 94:6 heptane-Et2O) as a red 

powder (yield: 54%): mp 126 °C; 1H NMR (300 MHz, CDCl3) δ 1.08 and 1.09 (2s, 9H), 1.21 and 1.25 

(2d, 3H, J = 5.9 Hz), 4.10-4.22 (m, 8H), 4.41 (q, 1H, J = 2.7 Hz), 4.67-4.69 (m, 1H), 4.77-4.78 (m, 

1H), 7.33-7.44 (m, 6H), 7.68-7.73 (m, 4H); 13C NMR (75 MHz, CDCl3) δ 19.4, 20.8, 27.1 (3C), 39.8, 

67.7, 67.8, 69.4 (2 peaks), 70.3, 72.3 (2 peaks), 72.9 (2 peaks, 5C), 79.9, 127.8 (2 peaks, 4C), 129.8 
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(2C), 134.0 (2 peaks), 134.3 (2 peaks), 136.0 (2 peaks, 4C), 170.2. Anal. Calcd for C30H33FeIO3Si 

(652.42): C, 55.23; H, 5.10. Found: C, 55.08; H, 5.34. Treatment with DIBAL-H according to 4.7. (b) 

afforded 2-iodoferrocenemethanol (9) in 98% yield and 1% ee (SP). 

4.8.3. 5-O-(2-Iodoferrocenecarbonyl)-1,2-O-isopropylidene-3-O-methyl-α-D-xylofuranose 

(diastereoisomeric mixture) (7d) was prepared from 6d (1.7 g) and was isolated (eluent: 88:12 

heptane-EtOAc) as a red oil (yield: 92%). The analyses were as described previously.15 Treatment with 

DIBAL-H according to 4.7. (b) afforded 2-iodoferrocenemethanol (9) in 93% yield and 4% ee (SP). 5-

O-(2,5-Diiodoferrocenecarbonyl)-1,2-O-isopropylidene-3-O-methyl-α-D-xylofuranose (8d) was 

isolated similarly in 3% yield as a red liquid, and was identified by NMR: 1H NMR (300 MHz, CDCl3) 

δ 1.34 (s, 3H), 1.52 (s, 3H), 3.46 (s, 3H), 3.95 (d, 1H, J = 2.7 Hz), 4.26 (s, 5H), 4.52-4.65 (m, 4H), 4.77 

(s, 2H), 5.97 (d, 1H, J = 3.8 Hz); [α]D = -19 (CH2Cl2, c = 0.11, 20 °C). 

4.8.4. 6-O-(2-Iodoferrocenecarbonyl)-1,2:3,4-di-O-isopropylidene-α-D-galactopyranose 

(diastereoisomeric mixture) (7e) was prepared from 6e (1.9 g) and was isolated (eluent: 75:25 

heptane-Et2O) as an orange powder (yield: 82%). The analyses were as described previously.15 

Treatment with DIBAL-H according to 4.7. (b) afforded 2-iodoferrocenemethanol (9) in 95% yield and 

8% ee (SP). 6-O-(2,5-Diiodoferrocenecarbonyl)-1,2:3,4-di-O-isopropylidene-α-D-galactopyranose 

(8e) was isolated similarly in 4% yield as a red liquid, and was identified by NMR: 1H NMR (300 

MHz, CDCl3) δ 1.34 (s, 3H), 1.36 (s, 3H), 1.49 (s, 3H), 1.60 (s, 3H), 4.29-4.33 (m, 6H), 4.37 (dd, 1H, J 

= 5.0, 2.5 Hz), 4.43-4.49 (m, 3H), 4.67 (dd, 1H, J = 7.9, 2.5 Hz), 4.75 (s, 2H), 5.60 (d, 1H, J = 5.0 Hz); 

13C NMR (75 MHz, CDCl3) δ 24.6, 25.1, 26.2, 26.6, 39.0, 39.4, 64.1, 66.0, 70.5, 70.8, 71.2, 73.1, 76.2 

(5C), 80.5, 96.5, 108.9, 109.7, 168.8; [α]D = -36 (CH2Cl2, c = 0.67, 20 °C). 

4.8.5. (1R,2S)-2-[N-(tert-Butoxycarbonyl)-N-methylamino]-1-phenylpropyl 2-

iodoferrocenecarboxylate (diastereoisomeric mixture) (7f) was prepared from 6f (1.9 g) and was 

isolated (eluent: 8:2 heptane-EtOAc) as a yellow oil (yield: 84%): 1H NMR (500 MHz, 340 K, C6D6) δ 

common signals: 1.27 (d, 3H, J = 6.8 Hz), 1.34 (s, 9H), 2.57 (br s, 3H), 4.77 (br s, 1H), 7.08-7.20 (m, 
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3H); major diastereoisomer signals: 3.87 (s, 5H), 3.99 (t, 1H, J = 2.6 Hz), 4.42 (dd, 1H, J = 2.6, 1.6 

Hz), 4.73 (dd, 1H, J = 2.6, 1.6 Hz), 6.21 (d, 1H, J = 8.6 Hz), 7.55 (d, 2H, J = 6.8 Hz); minor 

diastereoisomer signals: 3.86 (s, 5H), 3.98 (t, 1H, J = 2.6 Hz), 4.41 (dd, 1H, J = 2.6, 1.6 Hz), 4.82 (dd, 

1H, J = 2.6, 1.6 Hz), 6.30 (d, 1H, J = 8.4 Hz), 7.66 (d, 2H, J = 7.2 Hz); 13C NMR (125 MHz, 340 K, 

C6D6) δ common signals: 14.9, 28.5 (3C), 55.2, 72.0, 72.9 (5C), 79.2, 127.8-128.8 (5C), 139.5, 155.2; 

major diastereoisomer signals: 30.2, 39.9, 70.7, 72.3, 77.8, 80.2, 168.5; minor diastereoisomer signals: 

30.3, 39.8, 71.3, 72.5, 78.4, 80.4, 168.8. Anal. Calcd for C26H30FeINO4 (603.27): C, 51.76; H, 5.01; N, 

2.32. Found: C, 52.09; H, 5.17; N, 2.27. Treatment with DIBAL-H according to 4.7. (b) afforded 2-

iodoferrocenemethanol (9) in 93% yield and 30% ee (SP). (1R,2S)-2-[N-(tert-Butoxycarbonyl)-N-

methylamino]-1-phenylpropyl 2,5-diiodoferrocenecarboxylate (8f) was isolated similarly in 9% 

yield as a yellow oil, and was identified by NMR: 1H NMR (500 MHz, 340 K, C6D6) δ 1.35 (s, 9H), 

1.38 (d, 3H, J = 6.8 Hz), 2.57 (br s, 3H), 3.86 (s, 5H), 4.34 (m, 2H), 4.98 (br s, 1H), 6.28 (d, 1H, J = 9.2 

Hz), 7.09 (t, 1H, J = 7.6 Hz), 7.19 (t, 2H, J = 7.6 Hz), 7.70 (d, 2H, J = 7.6 Hz); 13C NMR (125 MHz, 

340 K, C6D6) δ 15.5, 28.5 (3C), 30.2, 39.0, 39.6, 55.0, 73.0, 75.9 (5C), 79.0, 79.2, 81.2, 81.2, 127.5-

128.8 (5C), 139.1, 155.2, 167.2; [α]D = +37.5 (CH2Cl2, c = 0.93, 20 °C). 

4.8.6. 5-(tert-Butoxycarbonylamino)-5-deoxy-3-O-(2-iodoferrocenecarbonyl)-1,2-O-

isopropylidene-α-D-xylofuranose (diastereoisomeric mixture) (7m) was prepared similarly from 6m 

(2.0 g) but after treatment of the substrate with BuLi (1.6 M hexane solution, 4.0 mmol), and was 

isolated (eluent: 96:4 to 90:10 heptane-EtOAc) as an orange solid (yield: 48%). A 52% de was 

estimated by NMR. The analyses were as described previously.15 Treatment with DIBAL-H according 

to 4.7. (b) afforded 2-iodoferrocenemethanol (9) in 94% yield and 40% ee (SP). 

4.9. General procedure for the deprotonation using the lithium-zinc base prepared from 

ZnCl2·TMEDA (1 equiv) and Li(TMP) (3 equiv) in THF followed by trapping using I2. To a 

stirred cooled (0 °C) solution of 2,2,6,6-tetramethylpiperidine (1.1 mL, 6.0 mmol) in THF (5 mL) were 

successively added BuLi (1.6 M hexanes solution, 6.0 mmol) and, 5 min later, ZnCl2·TMEDA7e (0.51 
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g, 2.0 mmol). The mixture was stirred for 10 min at 0 °C before introduction of the required substrate 

(2.0 mmol). After 2 h at room temperature, a solution of I2 (1.5 g, 6.0 mmol) in THF (5 mL) was added. 

The mixture was stirred overnight before addition of an aq saturated solution of Na2S2O3 (10 mL) and 

extraction with EtOAc (3 x 20 mL). After drying over anhydrous Na2SO4, the solvent was evaporated 

under reduced pressure, and the iodide was isolated by purification by flash chromatography on silica 

gel. 

4.9.1. (2S,4R)-1-tert-Butoxycarbonyl-2-(tert-butyldiphenylsilyloxymethyl)-4-pyrrolidyl 2-

iodoferrocenecarboxylate (diastereoisomeric mixture) (7g) was prepared from 6g (1.3 g) and was 

isolated (eluent: 95:5 heptane-EtOAc) as an orange gum (yield: 73%): 1H NMR (300 MHz, CDCl3) δ 

1.05 (s, 9H), 1.34 and 1.46 (s, 9H), 2.21-2.59 (m, 2H), 3.57-3.86 (m, 3H), 3.98-4.25 (m, 2H), 4.21 and 

4.22 (s, 5H), 4.44-4.46 (m, 1H), 4.69 (br s, 1H), 4.82-4.89 (m, 1H), 5.50-5.52 (m, 1H), 7.35-7.43 (m, 

6H), 7.63-7.67 (m, 4H); HRMS: calcd for C37H44
56FeINNaO5Si [(M+Na)+•] 816.1275, found 816.1276. 

Treatment with DIBAL-H according to 4.7. (b) afforded 2-iodoferrocenemethanol (9) in 94% yield and 

33% ee (SP). 

4.9.2. 3-O-(2-Iodoferrocenecarbonyl)-5-O-(tert-butyldiphenylsilyl)-1,2-O-isopropylidene-α-D-

xylofuranose (diastereoisomeric mixture) (7h) was prepared from 6h (1.3 g) and was isolated 

(eluent: 93:7 heptane-EtOAc) as an orange solid (yield: 86%). A 20% de was estimated by NMR. The 

analyses were as described previously.15 Treatment with DIBAL-H according to 4.7. (b) afforded 2-

iodoferrocenemethanol (9) in 61% yield and 22% ee (RP). 

4.10. 1-O-(2-Iodoferrocenecarbonyl)-2,3:5,6-di-O-cyclohexylidene-α-D-mannofuranose 

(diastereoisomeric mixture) (7i). To a stirred cooled (0 °C) solution of 2,2,6,6-tetramethylpiperidine 

(1.1 mL, 6.0 mmol) in THF (5 mL) were successively added BuLi (1.6 M hexanes solution, 6.0 mmol) 

and, 5 min later, CdCl2·TMEDA36 (0.60 g, 2.0 mmol). The mixture was stirred for 10 min at 0 °C 

before introduction of 6i (1.1 g, 1.3 mmol). After 2 h at room temperature, a solution of I2 (1.5 g, 6.0 

mmol) in THF (5 mL) was added. The mixture was stirred overnight before addition of an aq saturated 



 33 

solution of Na2S2O3 (10 mL) and extraction with EtOAc (3 x 20 mL). After drying over anhydrous 

Na2SO4, the solvent was evaporated under reduced pressure, and the iodide 7i was purified by 

purification by flash chromatography on silica gel. Compound 7i could not be separated from the 

starting material (estimated yield: 67%). A 48% de was estimated by NMR. The analyses were as 

described previously.15 The treatment of a fraction containing only the main diastereoisomer with 

DIBAL-H according to 4.7. (b) afforded (SP)-2-iodoferrocenemethanol ((SP)-9). 

4.11. 3-O-(2-Iodoferrocenecarbonyl)-1,2:5,6-di-O-isopropylidene-α-D-glucofuranose 

(diastereoisomeric mixture) (7j). To a stirred cooled (0 °C) solution of 2,2,6,6-tetramethylpiperidine 

(1.1 mL, 6.0 mmol) in THF (5 mL) was added BuLi (1.6 M hexanes solution, 6.0 mmol). After 5 min, 

this solution was transferred at -10 °C to CdCl2 (0.37 g, 2.0 mmol) dried by heating under vacuum. The 

mixture was stirred for 10 min at 0 °C before introduction of 6j (0.94 g, 2.0 mmol). After 2 h at room 

temperature, a solution of I2 (1.5 g, 6.0 mmol) in THF (5 mL) was added. The mixture was stirred 

overnight before addition of an aq saturated solution of Na2S2O3 (10 mL) and extraction with EtOAc (3 

x 20 mL). After drying over anhydrous Na2SO4, the solvent was evaporated under reduced pressure, 

and the iodide 7j was isolated by purification by flash chromatography on silica gel. It was isolated 

(eluent: 93:7 heptane-EtOAc) in 87% yield. A 82% de was determined by NMR. The analyses of both 

diastereoisomers were as described previously.15 The treatment of a fraction containing only the (RP)-

diastereoisomer with DIBAL-H according to 4.7. (b) afforded (RP)-2-iodoferrocenemethanol ((RP)-9) in 

93% yield. The treatment of a fraction containing only the (SP)-diastereoisomer with DIBAL-H 

according to 4.7. (b) afforded (SP)-2-iodoferrocenemethanol ((SP)-9) in 95% yield. 

4.12. (RP)-6-(tert-Butoxycarbonylamino)-6-deoxy-5-O-(2-iodoferrocenecarbonyl)-1,2-O-

isopropylidene-3-O-methyl-α-D-glucofuranose (RP-7n). To a stirred cooled (0 °C) solution of 

2,2,6,6-tetramethylpiperidine (0.68 mL, 4.0 mmol) in THF (5 mL) was added BuLi (1.6 M hexanes 

solution, 4.0 mmol). After 5 min, the solution was cooled at -10 °C and added to ZnCl2 (0.27 g, 2.0 

mmol). The mixture was stirred for 10 min at 0 °C and transferred to 6n (1.1 g, 2.0 mmol) in THF (5 
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mL). After 10 min at room temperature, a cooled (-30 °C) solution prepared in THF (5 mL) from 

2,2,6,6-tetramethylpiperidine (0.68 mL, 4.0 mmol) and BuLi (1.6 M hexanes solution, 4.0 mmol) was 

added, and the resulting mixture was stirred for 2 h at room temperature before a solution of I2 (2.0 g, 

8.0 mmol) in THF (5 mL) was added. The mixture was stirred overnight before addition of an aq 

saturated solution of Na2S2O3 (10 mL) and extraction with EtOAc (3 x 20 mL). After drying over 

anhydrous Na2SO4, the solvent was evaporated under reduced pressure, and the iodide RP-7n was 

isolated by purification by flash chromatography on silica gel. It was isolated (eluent: 7:3 heptane-

EtOAc) as an orange gum (yield: 57%). The analyses were as described previously.15  

4.13. Meso-2,2"-Bis(methoxycarbonyl)-1,1"-biferrocene (meso-10o) was synthesized by adapting 

a described procedure.27 Treating under argon a solution of racemic methyl 2-iodoferrocenecarboxylate 

(rac-7o, 0.72 g, 2.0 mmol) in toluene (15 mL) by NaH (60% in a mineral oil, 0.64 g, 16 mmol), 

NiCl2(PPh3)2 (1.3 g, 2.0 mmol), PPh3 (1.0 g, 4 mmol), and Zn (powder, 0.52 g, 8.0 mmol) resulted in a 

mixture that was heated at 75 °C for 12 h. Quenching at room temperature with 5% HCl, extraction 

with Et2O (2 x 10 mL) and CH2Cl2 (10 mL), washing of the combined organic layers with brine (2 x 10 

mL), drying over Na2SO4, and purification by flash chromatography on silica gel (eluent: 9:1 heptane-

EtOAc) afforded meso-10o as an orange solid (yield: 53%): mp 159 °C; 1H NMR (300 MHz, CDCl3) δ 

4.81 (s, 6H), 4.07 (s, 10H), 4.43 (t, 2H, J = 2.6 Hz), 4.82 (dd, 2H, J = 1.6, 2.6 Hz), 4.99 (dd, 2H, J = 

1.6, 2.6 Hz); 13C NMR (75 MHz, CDCl3) δ 51.6 (2C), 69.5 (2C), 69.6 (2C), 70.4 (2C), 71.5 (10C), 76.9 

(2C), 85.6 (2C), 172.0 (2C); HRMS: calcd for C24H22
56Fe2NaO4 [(M+Na)+•] 509.0109 and 

C24H22
56Fe2O4 (M+•) 486.0211, found 509.0110 and 486.0231. The structure of meso-10o was 

identified unequivocally by X-ray structure analysis (CCDC 970488) from crystals obtained by slowly 

evaporating a 7:3 hexane-CH2Cl2 solution. 2,2"-Bis(methoxycarbonyl)-1,1"-biferrocene (racemic 

mixture) (rac-10’o) was obtained similarly (eluent: 7:3 heptane-EtOAc) as an orange solid (yield: 

15%): mp 185 °C; 1H NMR (300 MHz, CDCl3) δ 3.62 (s, 6H), 4.20 (s, 10H), 4.45 (t, 2H, J = 2.6 Hz), 

4.83-4.81 (m, 3H); 13C NMR (75 MHz, CDCl3) δ 51.3 (2C), 69.1 (2C), 70.0 (2C), 71.0 (10C), 71.7 
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(2C), 76.4 (2C), 85.1 (2C), 172.0 (2C); HRMS: calcd for C24H22
56Fe2NaO4 [(M+Na)+•] 509.0109 and 

C24H22
56Fe2O4 (M

+•) 486.0211, found 509.0110 and 486.0213. The structure of rac-10’o was identified 

unequivocally by X-ray structure analysis (CCDC 970489) from crystals obtained by slowly 

evaporating a 7:3 hexane-CH2Cl2 solution. 

4.14. General procedure for the Suzuki coupling. A solution of the required iodoferrocene 7 (0.5 

mmol), the required boronic acid (2.0 mmol), and CsF (0.15 g, 1.0 mmol) in the toluene (5 mL) was 

degassed with Ar for 30 min before addition of Pd(dba)2 (14 mg, 25 ȝmol), and PPh3 (26 mg, 0.10 

mmol). The resulting mixture was heated for 12 h under reflux before cooling and dilution with Et2O 

(30 mL), washing with H2O, and extraction with CH2Cl2 (3 x 20 mL). After drying over anhydrous 

Na2SO4, the solvent was evaporated under reduced pressure, and the iodide was isolated by purification 

by flash chromatography on silica gel. 

4.14.1. Methyl 2-(4-methoxyphenyl)ferrocenecarboxylate (racemic mixture) (rac-11o) was 

prepared from racemic methyl 2-iodoferrocenecarboxylate (rac-7o, 0.18 g) and 4-

methoxyphenylboronic acid (0.30 g). It was isolated (eluent: 93:7 heptane-EtOAc) as an orange gum 

(yield: 97%): 1H NMR (300 MHz, CDCl3) δ 3.76 (s, 3H), 3.83 (s, 3H), 4.20 (s, 5H), 4.45 (t, 1H, J = 2.6 

Hz), 4.56 (dd, 1H, J = 1.6, 2.5 Hz), 4.88 (dd, 1H, J = 1.6, 2.6 Hz), 6.87 (d, 2H, J = 8.8 Hz), 7.55 (d, 2H, 

J = 8.8 Hz); 13C NMR (75 MHz, CDCl3) δ 51.2, 55.0, 68.3, 69.5, 70.9 (5C), 71.1, 73.7, 90.8, 112.6 

(2C), 128.6, 131.1 (2C), 158.4, 171.7; HRMS: calcd for C19H18
56FeNaO3 [(M+Na)+•] 373.0503, found 

373.0500. 

4.14.2. (RP)-3-O-(2-(4-Methoxyphenyl)ferrocenecarbonyl)-1,2:5,6-di-O-isopropylidene-α-D-

glucofuranose (RP-11j) was prepared from SP-7j (0.30 g) and 4-methoxyphenylboronic acid (0.30 g). It 

was isolated (eluent: 93:7 heptane-EtOAc) as an orange gum (yield: 98%): 1H NMR (300 MHz, CDCl3) 

δ 1.28 (s, 3H), 1.33 (s, 3H), 1.43 (s, 3H), 1.53 (s, 3H), 3.83 (s, 3H), 4.07-4.28 (m, 4H), 4.26 (s, 5H), 

4.48 (t, 1H, J = 2.6 Hz), 4.54 (d, 1H, J = 3.6 Hz), 4.61 (dd, 1H, J = 1.6, 2.6 Hz), 4.88 (dd, 1H, J = 1.6, 

2.6 Hz), 5.38 (d, 1H, J = 2.8 Hz), 5.86 (d, 1H, J = 3.6 Hz), 6.87 (d, 2H, J = 8.8 Hz), 7.58 (d, 2H, J = 8.8 
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Hz); 13C NMR (75 MHz, CDCl3) δ 25.3, 26.1, 26.7, 27.0, 55.2, 67.1, 67.5, 70.0, 71.2 (5C), 72.3, 74.2, 

75.5, 80.1, 83.3, 91.4, 105.1, 109.5, 112.2, 112.8 (2C), 128.3, 131.4 (2C), 158.7, 170.1; [α]D = -13.7 

(CHCl3, c = 2.4, 20 °C); HRMS: calcd for C30H34
56FeNaO8 [(M+Na)+•] 601.1495, found 601.1493. 

4.14.3. (SP)-6-(tert-Butoxycarbonylamino)-6-deoxy-5-O-[2-(4-

methoxyphenyl)ferrocenecarbonyl]-1,2-O-isopropylidene-3-O-methyl-α-D-glucofuranose (SP-11n) 

was prepared from RP-7n (0.34 g) and 4-methoxyphenylboronic acid (0.30 g). It was isolated (eluent: 

8:2 heptane-EtOAc) as an orange gum (yield: 96%): 1H NMR (300 MHz, CDCl3) δ 1.31 (s, 3H), 1.42 

(s, 9H), 1.49 (s, 3H), 3.32 (s, 3H), 3.44 (dt, 1H, J = 6.2, 12.5 Hz), 3.65 (d, 1H, J = 3.6 Hz), 3.74 (ddd, 

1H, J = 4.0, 5.8, 14.2 Hz), 3.82 (s, 3H), 4.20-4.26 (m, 1H), 4.24 (s, 5H), 4.46 (t, 1H, J = 2.5 Hz), 4.53 

(d, 1H, J = 3.7 Hz), 4.56 (dd, 1H, J = 1.6, 2.5 Hz), 4.87-4.96 (m, 2H), 5.19-5.25 (m, 1H), 5.88 (d, 1H, J 

= 3.7 Hz), 6.86 (d, 2H, J = 8.8 Hz), 7.54 (d, 2H, J = 8.8 Hz); 13C NMR (75 MHz, CDCl3) δ 26.2, 26.7, 

28.4 (3C), 42.0, 55.2, 57.8, 67.9, 69.2, 69.8, 71.0, 71.2 (5C), 74.1, 79.1, 79.9, 81.0, 83.7, 91.4, 105.0, 

111.7, 112.8 (2C), 128.6, 131.3, 155.7, 158.6, 170.6; [α]D = +3.93 (CHCl3, c = 1.6, 20 °C); HRMS: 

calcd for C33H41
56FeNNaO9 [(M+Na)+•] 601.1495, found 601.1493. 

Acknowledgments. We gratefully acknowledge Rennes Métropole, Région Bretagne, University of 

Rennes 1 and CNRS for financial support given to G.D., A.S. and D.V.R. We thank Thermo Fischer for 

generous gift of 2,2,6,6-tetramethylpiperidine. F.M. also thanks the Institut Universitaire de France and 

Rennes Métropole. This research has been partly performed as part of the Indo-French “Joint 

Laboratory for Sustainable Chemistry at Interfaces”. 

Supplementary data. CIF files and X-ray crystallographic data for 2c, 6c-e, 6i-l, meso-10o and rac-

10'o. NMR spectra for 2c, 5g, 6a-c, 6f,g, 7a,b,f,g, 8a,d-f,n, meso-10o, rac-10'o, RP-11j, SP-11n and 

rac-11o. These data can be found in the online version, at http://dx.doi.org/10.1016/j.tet.xxxxxxxxxxx. 

References and Notes 



 37 

1. (a) Gschwend, H. W.; Rodriguez, H. R. Org. React. 1979, 26, 1-360; (b) Beak, P.; Snieckus, V. 
Acc. Chem. Res. 1982, 15, 306-312; (c) Snieckus, V. Chem. Rev. 1990, 90, 879-933; (d) Gant, 
T. G.; Meyers, A. I. Tetrahedron 1994, 50, 2297-2360; (e) Schlosser, M. Organometallics in 

Synthesis 2002, 2nd ed. (Ed.: Schlosser, M.), Wiley: New York, Chapter I. 
2. See for example: Eaton, P. E.; Lee, C. H.; Xiong, Y. J. Am. Chem. Soc. 1989, 111, 8016-8018. 
3. (a) Harrison-Marchand, A.; Mongin, F. Chem. Rev. 2013, 113, 7470-7562; (b) Mongin, F.; 

Harrison-Marchand, A. Chem. Rev. 2013, 113, 7563-7727. 
4. (a) Schlosser, M. Pure Appl. Chem. 1988, 60, 1627-1634; (b) Lochmann, L. Eur. J. Inorg. 

Chem. 2000, 1115-1126. 
5. Gros, P. C.; Fort, Y. Eur. J. Org. Chem. 2009, 4199-4209. 
6. For reviews, see: (a) Mulvey, R. E. Organometallics 2006, 25, 1060-1075; (b) Mulvey, R. E.; 

Mongin, F.; Uchiyama, M.; Kondo, Y. Angew. Chem. Int. Ed. 2007, 46, 3802-3824; (c) Mulvey, 
R. E. Acc. Chem. Res. 2009, 42, 743-755; (d) Haag, B.; Mosrin, M.; Ila, H.; Malakhov, V.; 
Knochel, P. Angew. Chem. Int. Ed. 2011, 50, 9794-9824; (e) Mongin, F.; Uchiyama, M. Curr. 

Org. Chem. 2011, 15, 2340-2361. 
7. (a) Seggio, A.; Lannou, M.-I.; Chevallier, F.; Nobuto, D.; Uchiyama, M.; Golhen, S.; Roisnel, 

T.; Mongin, F. Chem. Eur. J. 2007, 13, 9982-9989; (b) Seggio, A.; Chevallier, F.; Vaultier, M.; 
Mongin, F. J. Org. Chem. 2007, 72, 6602-6605; (c) L'Helgoual'ch, J. M.; Seggio, A.; 
Chevallier, F.; Yonehara, M.; Jeanneau, E.; Uchiyama, M.; Mongin, F. J. Org. Chem. 2008, 73, 
177-183; (d) Dayaker, G.; Sreeshailam, A.; Chevallier, F.; Roisnel, T.; Radha Krishna, P.; 
Mongin, F. Chem. Commun. 2010, 46, 2862-2864; (e) Snégaroff, K.; Komagawa, S.; 
Chevallier, F.; Gros, P. C.; Golhen, S.; Roisnel, T.; Uchiyama, M.; Mongin, F. Chem. Eur. J. 
2010, 16, 8191-8201; (f) Chevallier, F.; Halauko, Y. S.; Pecceu, C.; Nassar, I. F.; Dam, T. U.; 
Roisnel, T.; Matulis, V. E.; Ivashkevich, O. A.; Mongin, F. Org. Biomol. Chem. 2011, 9, 4671-
4684; (g) Chevallier, F.; Blin, T.; Nagaradja, E.; Lassagne, F.; Roisnel, T.; Halauko, Y. S.; 
Matulis, V. E.; Ivashkevich, O. A.; Mongin, F. Org. Biomol. Chem. 2012, 10, 4878-4885; (h) 
Kadiyala, R. R.; Tilly, D.; Nagaradja, E.; Roisnel, T.; Matulis, V. E.; Ivashkevich, O. A.; 
Halauko, Y. S.; Chevallier, F.; Gros, P. C.; Mongin, F. Chem. Eur. J. 2013, 19, 7944-7960; (i) 
García-Álvarez, P.; Mulvey, R. E.; Parkinson, J. A. Angew. Chem. Int. Ed. 2011, 50, 9668-
9671. 

8. (a) L'Helgoual'ch, J. M.; Bentabed-Ababsa, G.; Chevallier, F.; Yonehara, M.; Uchiyama, M.; 
Derdour, A.; Mongin, F. Chem. Commun. 2008, 5375-5377; (b) L'Helgoual'ch, J. M.; Bentabed-
Ababsa, G.; Chevallier, F.; Derdour, A.; Mongin, F. Synthesis 2008, 4033-4035; (c) Snégaroff, 
K.; L'Helgoual'ch, J. M.; Bentabed-Ababsa, G.; Nguyen, T. T.; Chevallier, F.; Yonehara, M.; 
Uchiyama, M.; Derdour, A.; Mongin, F. Chem. Eur. J. 2009, 15, 10280-10290; (d) Bentabed-
Ababsa, G.; Blanco, F.; Derdour, A.; Mongin, F.; Trécourt, F.; Queguiner, G.; Ballesteros, R.; 
Abarca, B. J. Org. Chem. 2009, 74, 163-169; (e) Snégaroff, K.; Lassagne, F.; Bentabed-Ababsa, 
G.; Nassar, E.; Cheikh Sid Ely, S.; Hesse, S.; Perspicace, E.; Derdour, A.; Mongin, F. Org. 

Biomol. Chem. 2009, 7, 4782-4788; (f) Bentabed-Ababsa, G.; Cheikh Sid Ely, S.; Hesse, S.; 
Nassar, E.; Chevallier, F.; Nguyen, T. T.; Derdour, A.; Mongin, F. J. Org. Chem. 2010, 75, 839-
847; (g) Snégaroff, K.; Komagawa, S.; Yonehara, M.; Chevallier, F.; Gros, P. C.; Uchiyama, 
M.; Mongin, F. J. Org. Chem. 2010, 75, 3117-3120; (h) Armstrong, D. R.; Kennedy, A. R.; 
Mulvey, R. E.; Parkinson, J. A.; Robertson, S. D. Chem. Sci. 2012, 3, 2700-2707. 

9. (a) Togni, A. Angew. Chem., Int. Ed. Engl. 1996, 35, 1475-1477; (b) Gómez-Arrayás, R.; Adrio, 
J.; Carretero, J. C. Angew. Chem. Int. Ed. 2006, 45, 7674-7715; (c) Butler, I. R. Eur. J. Inorg. 

Chem. 2012, 2012, 4387-4406. 
10. Long, N. J. Angew. Chem., Int. Ed. Engl. 1995, 34, 21-38. 
11. van Staveren, D. R.; Metzler-Nolte, N. Chem. Rev. 2004, 104, 5931-5985. 
12. Stoll, A. H.; Mayer, P.; Knochel, P. Organometallics 2007, 26, 6694-6697. 



 38 

13. (a) Clayden, J. Topics in Organometallic Chemistry 2003, 5, 251-286; (b) Atkinson, R. C. J.; 
Gibson, V. C.; Long, N. J. Chem. Soc. Rev. 2004, 33, 313-328; (c) Ferber, B.; Kagan, H. B. Adv. 

Synth. Catal. 2007, 349, 493-507; (d) Deng, W.-P.; Snieckus, V.; Metallinos, C. Chiral 

Ferrocenes in Asymmetric Catalysis: Synthesis and Applications; Wiley-VCH: Weinheim, 
2010; (e) Schaarschmidt, D.; Lang, H. Organometallics 2013, 32, 5668-5704. 

14. Sreeshailam, A.; Dayaker, G.; Ramana, D. V.; Chevallier, F.; Roisnel, T.; Komagawa, S.; 
Takita, R.; Uchiyama, M.; Radha Krishna, P.; Mongin, F. RSC Adv. 2012, 2, 7030-7032. 

15. Sreeshailam, A.; Dayaker, G.; Chevallier, F.; Roisnel, T.; Radha Krishna, P.; Mongin, F. Eur. J. 

Org. Chem. 2011, 2011, 3715-3718. 
16. (a) Riant, O.; Samuel, O.; Kagan, H. B. J. Am. Chem. Soc. 1993, 115, 5835-5836; (b) Iftime, G.; 

Daran, J.-C.; Manoury, E.; Balavoine, G. G. A. Organometallics 1996, 15, 4808-4815; (c) 
Riant, O.; Samuel, O.; Flessner, T.; Taudien, S.; Kagan, H. B. J. Org. Chem. 1997, 62, 6733-
6745; (d) Neo, A. G.; Gref, A.; Riant, O. Chem. Commun. 1998, 2353-2354; (e) Iftime, G.; 
Daran, J.-C.; Manoury, E.; Balavoine, G. G. A. J. Organomet. Chem. 1998, 565, 115-124; (f) 
Balavoine, G. G. A.; Daran, J.-C.; Iftime, G.; Lacroix, P. G.; Manoury, E.; Delaire, J. A.; 
Maltey-Fanton, I.; Nakatani, K.; Di Bella, S. Organometallics 1999, 18, 21-29; (g) Argouarch, 
G.; Samuel, O.; Kagan, H. B. Eur. J. Org. Chem. 2000, 2885-2891; (h) Glass, R. S.; Stessman, 
N. Y. T. Tetrahedron Lett. 2000, 41, 9581-9584; (i) Mamane, V.; Gref, A.; Lefloch, F.; Riant, 
O. J. Organomet. Chem. 2001, 637-639, 84-88; (j) Mamane, V.; Riant, O. Tetrahedron 2001, 
57, 2555-2561; (k) Chiffre, J.; Coppel, Y.; Balavoine, G. G. A.; Daran, J.-C.; Manoury, E. 
Organometallics 2002, 21, 4552-4555; (l) Mamane, V.; Ledoux-Rak, I.; Deveau, S.; Zyss, J.; 
Riant, O. Synthesis 2003, 455-467; (m) Ferber, B.; Top, S.; Welter, R.; Jaouen, G. Chem. Eur. 

J. 2006, 12, 2081-2086; (n) Cortes, J. G. L.; Ramon, O.; Vincendeau, S.; Serra, D.; Lamy, F.; 
Daran, J.-C.; Manoury, E.; Gouygou, M. Eur. J. Inorg. Chem. 2006, 5148-5157; (o) Ferber, B.; 
Top, S.; Vessieres, A.; Welter, R.; Jaouen, G. Organometallics 2006, 25, 5730-5739; (p) 
Geisler, F. M.; Helmchen, G. Synthesis 2006, 2201-2205; (q) Omedes, M.; Gomez-Sal, P.; 
Andries, J.; Moyano, A. Tetrahedron 2008, 64, 3953-3959; (r) Niemeyer, J.; Kehr, G.; Fröhlich, 
R.; Erker, G. Dalton Trans. 2009, 3716-3730; (s) Mamane, V. Tetrahedron: Asymmetry 2010, 
21, 1019-1029. 

17. (a) Sanders, R.; Mueller-Westerhoff, U. T. J. Organomet. Chem. 1996, 512, 219-224; (b) Witte, 
P.; Lal, T. K.; Waymouth, R. M. Organometallics 1999, 18, 4147-4155. 

18. (a) Steffen, W.; Laskoski, M.; Collins, G.; Bunz, U. H. F. J. Organomet. Chem. 2001, 630, 132-
138; (b) Zhang, W.; Xie, F.; Yoshinaga, H.; Kida, T.; Nakatsuji, Y.; Ikeda, I. Tetrahedron 2006, 
62, 9038-9042. 

19. Rauf, A.; Parveen, H. Eur. J. Lipid Sci. Technol. 2004, 106, 97-100. 
20. Pickett, T., E.; Roca, F., X.; Richards, C., J. J. Org. Chem. 2003, 68, 2592-2599. 
21. Patti, A.; Lambusta, D.; Piattelli, M.; Nicolosi, G. Tetrahedron: Asymmetry 1998, 9, 3073-3080: 

[α]D = -24.1 (CHCl3, c = 0.50) for (SP)-2-iodoferrocenemethanol with ee > 98%. 
22. Concerning the impact of TMEDA on reactions, see for example: Fraser, R. R.; Mansour, T. S. 

Tetrahedron Lett. 1986, 27, 331-334. 
23. Concerning the impact of LiCl on reactions, see for example: Hevia, E.; Mulvey, R. E. Angew. 

Chem., Int. Ed. 2011, 50, 6448-6450. 
24. Salvi, L.; Kim, J. G.; Walsh, P. J. J. Am. Chem. Soc. 2009, 131, 12483-12493. 
25. Metallinos, C.; Snieckus, V. Org. Lett. 2002, 4, 1935-1938. 
26. (a) Beak, P.; Meyers, A. I. Acc. Chem. Res. 1986, 19, 356-363; (b) Beak, P.; Kerrick, S. T.; 

Gallagher, D. J. J. Am. Chem. Soc. 1993, 115, 10628-10636; (c) Whisler, M. C.; MacNeil, S.; 
Snieckus, V.; Beak, P. Angew. Chem. Int. Ed. 2004, 43, 2206-2225. 

27. Lin, G.-q.; Hong, R. J. Org. Chem. 2001, 66, 2877-2880. 
28. Wright, S. W.; Hageman, D. L.; McClure, L. D. J. Org. Chem. 1994, 59, 6095-6097. 



 39 

29. Krishna, P. R.; Narsingam, M. Synthesis 2007, 3627-3634. 
30. Nicolaou, K. C.; Randall, J. L.; Furst, G. T. J. Am. Chem. Soc. 1985, 107, 5556-5558. 
31. Dondoni, A.; Perrone, D. Org. Synth. 2000, 77, 64-77. 
32. Huffman, G. W.; Lewis, B. A.; Smith, F.; Spriestersbach, D. R. J. Am. Chem. Soc. 1955, 77, 

4346-4348. 
33. Graves, C. R.; Zeng, B.-S.; Nguyen, S. T. J. Am. Chem. Soc. 2006, 128, 12596-12597. 
34. Gopishetty, B.; Zhu, J.; Rajan, R.; Sobczak, A. J.; Wnuk, S. F.; Bell, C. E.; Pei, D. J. Am. 

Chem. Soc. 2009, 131, 1243-1250. 
35. Helferich, B.; Burgdorf, M. Tetrahedron 1958, 3, 274-278. 
36. Kedarnath, G.; Kumbhare, L. B.; Jain, V. K.; Phadnis, P. P.; Nethaji, M. Dalton Trans. 2006, 

2714-2718. 

 


